
Lecture Notes on
Storage Management

15-312: Foundations of Programming Languages
Daniel Spoonhower

Modified by Frank Pfenning

Lecture 21
November 11, 2004

In our discussion of mutable storage, a question was raised: if we allo-
cate a new storage cell for each ref expression we encounter, when do we
release these storage cells? As we will discover today, a similar question
will be raised when we reconsider our implementation of pairs, lists, and
closures, or generally any aggregate data structure.

In designing the E machine, our goal was to describe a machine that
more accurately modeled the way that programs are executed on real hard-
ware (for example, by using environments rather than substitution). How-
ever, most real machines will treat small values (such as integers) differently
from large values (such as pairs and closures). Small values may be stored
in registers or on the stack, while larger values, such as pairs and closures,
must be allocated from the heap. While the storage associated with regis-
ters and the stack can be reclaimed at the end of a function invocation or
lexical scope, there is no “obvious” program point at which we can reuse
the storage allocated from the heap.

Clearly, for programs that run for hours, days, or weeks, we must pe-
riodically reclaim any unused storage. One possible solution is to require
the programmer to explicitly manage storage, as one might in languages
such as C or C++. However, doing so not only exposes the programmer to
a host of new programming errors, but also makes it exceedingly difficult
to prove properties of languages such as preservation.

An alternative approach is to require that the implementation of the
language manage storage for the programmer. Automatic memory man-
agement or garbage collection can be found in most modern languages, in-

LECTURE NOTES NOVEMBER 11, 2004

L21.2 Storage Management

cluding Java, C#, Haskell, and SML.
In this lecture, we will modify and extend the semantics of the E ma-

chine to account for the differences between small and large values and
include new transition rules for automatically reclaiming unused storage.

The A Machine

In order to extend the semantics of the E machine with transition rules for
automatic storage management, we must enrich our model of expressions,
values, and program states. For the purposes of our discussion today, we
will use a version of MinML that includes integers, functions, and lists. As
we alluded to above, in order to provide a framework for automatic storage
management, the A machine will distinguish small values from large values,
as follows.

Small Values v ::= num(n) | nil
Large Values w ::= 〈〈η; e〉〉 | cons (v1, v2)

Closures and cons cells (i.e. large values) will not be stored directly in the
stack or environment; instead we will use locations to refer to them indi-
rectly. As in our formulation of references, locations (denoted syntactically
as l) will not appear in the concrete syntax.

Locations l
Expressions e ::= . . . | loc (l)
Small Values v ::= . . . | loc (l)

We will also maintain a finite mapping from locations to large values,
called a heap. We allow locations to appear in the stack and environment,
but whenever we are forced to compute with a pair or closure, we must
look-up the actual value in the heap.1

Heaps H ::= · | H, l=w
Environments η ::= · | η, x=v
States s ::= H ; k > e

| H ; k < v

Frames f and stacks k are given as before but with the replacement of small
values for values.

1The heap is similar in notion to the store as it appeared in our discussion of mutable
references; however, while the store may be updated by assignment, the heap is immutable
from the programmer’s perspective.

LECTURE NOTES NOVEMBER 11, 2004

Storage Management L21.3

Since the A machine does not allow small values to be maintained in or
returned to the stack, in states where we previously returned large values,
we must instead create and look-up locations. For example, cons cells are
now introduced and eliminated according to the following rules.

H ; k > cons (e1, e2) 7→a H ; k . cons (�, e2) > e1

H ; k . cons (�, e2) < v1 7→a H ; k . cons (v1,�) > e2

H ; k . cons (v1,�) < v2 7→a H, l=cons (v1, v2) ; k < loc (l)

H ; k > case (e1, e2, x.y.e3) 7→a H ; k . case (�, e2, x.y.e3) > e1

H ; k . case (�, e2, x.y.e3) < nil 7→a H ; k > e2

H ; k . case (�, e2, x.y.e3) < loc (l) 7→a H ; k I (x=v1, y=v2) > e3

where l=cons (v1, v2) in H

Recall that environment frames k I η on the stack are popped when values
are returned past them, and that variables are looked up in the environ-
ments on the stack from right to left (see also Assignment 4 and the code in
the sample solution). We will now return to the question, when can values
safely be removed from the heap?2

Garbage and Collection

We would like to state that “the collector does not change the behavior of
the program.” That is, garbage should be exactly those parts of the program
state that do not affect the result of evaluation. Consider the following
program,

(let p = cons(3,cons(4,nil)) in
case p of nil => 2

| cons(n,k) = p in
[a] fn x => n

end
end [b]) 7 [c];

If we allocate p as described above, when it is safe to free it? At point [a]?
[b]? [c]? We would like to release the storage associated with a location

2Though if we recall our original question with respect to references, we should note
that the ideas described here can also be extended to encompass mutable storage.

LECTURE NOTES NOVEMBER 11, 2004

L21.4 Storage Management

as soon as it becomes unnecessary to the correct execution of the program.
As it turns out, we will not be able to determine exactly when a particular
location is no longer necessary: doing so is undecidable!

Instead we will make a conservative3 assumption about whether or not
a location is necessary: we will assume that any location that is reachable
may be necessary. To do so, we will need to enumerate the free locations of a
heap, stack, environment or value. (For the moment will we use the syntax
FL() to informally refer to these free locations; we will be more precise
later.)

Given this notion of garbage, collection is exactly the process of remov-
ing garbage from the heap. During our discussion of mutable storage,
something akin to the following transition rule was suggested.

FL(H, k, η) = ∅
H ∪ H ′ ; k > e 7→a H ; k > e

?

Recall that this rule was deficient in its inability to reclaim (unreachable)
cycles in H . For the time being, however, we will tackle a larger problem:
how can we separate H from H ′?

Tracing Collection

At the most abstract level, the garbage collector has to traverse the stack
k and follow chains of location pointers in the heap in order to see which
locations may still be relevant to the evaluation of e in k. Note that an ex-
pression e may contain free variables (which will be bound to small values
in environment in k), but never free locations. This means we don’t have
to traverse e to see which heap cells may be “live” for the current compu-
tation. This general technique is called tracing. We now describe a tracing
collector using our notation of judgments. In what follows we describe
more concrete realizations of this general idea that are closer to what actual
implementations do.

The state of the garbage collector has the form Hf ; k ; Ht where Hf

is the so-called from-space that we are traversing and Ht is the so-called
to-space where we move reachable locations found in Hf . Since locations
remain abstract, we simply move them from Hf to Ht. The judgment above
is invoked in the following way:

3“Conservative” is also, somewhat erroneously, used to describe garbage collection in
the presence of incomplete knowledge of the structure of the stack or heap (e.g. as in an
implementation of C).

LECTURE NOTES NOVEMBER 11, 2004

Storage Management L21.5

H ; k ; · 7→∗
g Hf ; • ; H ′

H ; k > e 7→a H ′ ; k > e

That is, we start the garbage collector with the current heap H as the
from-space and an empty to-space. Then we trace k and H , moving lo-
cations to the to-space until the stack is empty and we can return to the
normal evaluation.

Note that this rule can apply whenever we are in the process of evalu-
ating an expression. In a more realistic scenario the garbage collector either
starts when we run out of space or acts concurrently on the heap.

Next we describe the rules for garbage collection, using single-step tran-
sitions. We use the stack k as a “stack”, pushing onto it those portions of the
small values that we may still have to trace. Since a stack cannot have val-
ues on it directly, only environments, we will use environment with anony-
mous variables. Recall the invariants on expressions (only free variables, no
locations), environments (binds variable to small values) and heaps (binds
locations to large values).

Hf ; k . cons (�, e2) ; Ht 7→g Hf ; k ; Ht

Hf ; k . cons (v1,�) ; Ht 7→g Hf ; k I (=v1) ; Ht

Hf ; k . case (�, e2, x.y.e3) ; Ht 7→g Hf ; k ; Ht

Hf ; k I · ; Ht 7→g Hf ; k ; Ht

Hf ; k I (η, x=nil) ; Ht 7→g Hf ; k I η ; Ht

(Hf , l=cons (v1, v2)) ; k I (η, x=l) ; Ht 7→g

Hf ; k I (η, =v1, =v2) ; Ht, l=cons (v1, v2)

Hf ; k I (η, x=l) ; (Ht, l=w) 7→g Hf ; k I η ; (Ht, l=w)

Similar rules apply to closures; some of them are given in Assignment
8 on Garbage Collection where more details can be found. Note that the last
two rules distinguish the two cases where a heap cell has still to be moved,
or has already been moved. In the first case, we push v1 and v2 onto the
stack, since we have to trace any pointers in them as well. Note that circular
data structures, although they cannot be constructed in the given language
fragment, present no problem to the garbage collector.

LECTURE NOTES NOVEMBER 11, 2004

L21.6 Storage Management

Given our definition of a garbage collector, we could now prove not
only that the algorithm terminates, but that it is safe, and it preserves the
meaning of programs according to our previous definitions of MinML. The
first proof is relatively straightforward; the latter two follow in a manner
similar to our proofs for the E machine (with the addition of typing rules
for the heap H).

Copying Collection

We now give a slightly lower level view of garbage collection where both
from-space and to-space are actually regions in memory whose cells are
addressed by integers. In this case, we actually divide the whole available
memory into two disjoint regions: one that the evaluator uses, and one that
is reserved for the time that we need to call the collector.

Heap cells are allocated from lower to higher addresses, using a spe-
cial next pointer to keep track of the next available address. The garbage
collector is invoked when we are attempting to use more than half of the
available space.

We then trace the stack and the cells in from-space, moving the cell con-
tents to to-space as we encounter them. Of course, references to memory in
the stack need to be updated to point to the new locations of the cells.

Moreoever, we need to account for multiple pointers to the same loca-
tions. In order to preserve sharing, we replace the cell content by a forward-
ing pointer that goes from from-space to to-space. When we encounter a
forwarding pointer when tracing the heap, we just update the pointer in
the stack to the destination of the forwarding pointers.

Once the whole stack has been traced, all reachable cells have been
moved to the beginning of the to-space. As this point we flip the roles
of the two semi-spaces and resume evaluation.

A pictorial example of copying collection can be found in Figure 1. The
contents of blank cells is irrelevant for the purposes of the garbage collec-
tion algorithm. They will never be visited because tracing never reaches
them.

There are many refinements of copying collection. For example, in
order to avoid using additional stack space for tracing, we use a second
pointer in to-space so that we always know we still have to trace the region
between this second pointer and the next pointer. In essence, we use the
heap as a kind of special purpose stack.

Other refinements include incremental collection, where we do not com-
pletely stop the running program but interleave actions of the garbage col-

LECTURE NOTES NOVEMBER 11, 2004

Storage Management L21.7

lector with actions of the running program, and generational collection where
we collect smaller parts instead the whole semi-space all at once.

Mark-and-Sweep Collection

Another important algorithm for garbage collection is mark-and-sweep,
even though it seems to have fallen into disfavor more recently.

A mark-and-sweep collector does not divide the heap into two semi-
space, but reserves an additional bit for each heap cell called a mark. Ini-
tially all heap cells are unmarked, and the heap is arranged into a linked
list of cells called the free list. When we allocate an element from the heap
we take the first element from the free list and update the free list pointer
to its next element.

When the free list become empty, we have to invoke the garbage collec-
tor. It traces the heap, starting from the stack, much in the same way as the
copying collector. However, rather than copying heap elements it marks
them as being reachable.

In a second phase the garbage collector sweeps through the whole mem-
ory (not just the reachable cells). During this sweep it adds any unmarked
cells to the free list and removes the mark from any marked cells.

A graphic example of mark-and-sweep collection can be found in Fig-
ure 2.

In Assignment 8 you have the opportunity to compare copying and
mark-and-sweep collection and assess their relative merits, so we will not
give a detailed analysis here. One advantage of copying collection that
your analysis will probably not be able to reveal is locality. When copy-
ing, we actually move the elements of the data structures closer together, at
the beginning of the to-space. This means better cache behavior which can
have dramatic impact on running times on modern machine architectures.
As a result, even more mark-and-sweep garbage collectors some algorithm
for compacting memory have been developed to avoid the natural fragmen-
tation of the heap.

Reference Counting

In a reference counting garbage collector every cell has a counter associated
with it that tracks the number of references to it. When we allocate a cell,
this counter is initialized to 1. Operations of the (abstract) machine need
to maintain these counters. As soon as one of them becomes 0, the cell is

LECTURE NOTES NOVEMBER 11, 2004

L21.8 Storage Management

deallocated and the reference counts of the cells that it might point to are
decremented, leading perhaps to further garbage collection.

Reference counting is suspect for the heaps of functional languages be-
cause of the overhead of maintaining the reference counts, and because it
does not work properly with circular structures which prevent reference
counts from going to 0! However, the are many less general situations
where reference counts are appropriate, such as file descriptors in an oper-
ating system, or channels for communication in a distributed environment.
In those situations, the overhead of maintaining reference counts is small,
while a tracing collector would be hard or impossible to implement because
we may not know or even have access to the internals of all processes that
my access a resource.

LECTURE NOTES NOVEMBER 11, 2004

Storage Management L21.9

1

2

3

4

9

1

2

3

4

9

1

2

3

4

9

NIL

NIL

NIL

L1

L2

L1

L2

L2

L1

Initial heap with roots L1 and
L2. Next pointer N exceeds
bounds of current semi-space.

Heap after copying L1.
Dashed lines represent
forwarding pointers.

Heap after copying L2. Next
pointer N is initialized. Semi-
spaces have switched roles.

N

N

N

Figure 1: Example of Copying Garbage Collection

LECTURE NOTES NOVEMBER 11, 2004

L21.10 Storage Management

1

2

3

4

9

NIL

L1

L2

Initial heap with roots L1 and
L2. All cells are unmarked.
Free list pointer F too large.

Heap after marking L1.

1

2

3

4

9

NIL

L1

L2

Heap after marking L2.

1

2

3

4

9

NIL

L1

L2

Heap after sweep. Dashed
lines represent free list
pointers. All cells unmarked.

1

2

3

4

9

NIL

L1

L2

F

F

Figure 2: Examples of Mark and Sweep Garbage Collection

LECTURE NOTES NOVEMBER 11, 2004

