
Lecture:
EML and Multimethods

15-312: Foundations of Programming Languages
Jason Reed (jcreed+@cs.cmu.edu)

November 9, 2004

1 Safety in EML

Last time we discussed two kinds of errors that an ill-formed EML program
might produce at runtime. We’ll refer to them as:

1. Message not found: a method call (‘message’) made by the program
‘can’t find a match,’ i.e. can’t find a method implementation corre-
sponding to the arguments given.

2. Message ambiguous: a method call made by the program can’t find
a unique match, i.e. some method implementation cases match, but
there is no most specific case.

We want to pick restrictions we can put on programs at compile-time
so that these errors cannot occur at run-time. In the previous lecture, we
simply ran a global analysis to see by brute force that every possible set of
arguments that we might call a method with in fact determined a unique
case. In a large program with a lot of classes and methods and method
cases, this could be very expensive.

So what we’d like to do — and this is what makes EML interesting as
compared to a naïve multimethod language — is do some compile-time
checks to prevent these errors in a modular way. That is, we check the va-
lidity of a program one unit at a time. The unit of checking is going to be
exactly the module · · · end blocks that we introduced already.

What it means to perform a ‘modular’ check on a module is that we
only depend on which classes, methods, and method extentions have been
declared in modules that the current module statically depends on, in the

1

following sense: we say the interface of a module is the set of classes, meth-
ods, and method exentions it declares, ignoring the actual implementation
of the method extentions. A module M is then said to statically depend on
another module M ′ if M ’s interface mentions a name (i.e. class name or
method name) defined in the interface of M ′. Also, if M1 depends on M2

which depends on · · · which depends onMn, then we say thatM1 depends
on Mn.

At the end of the day, when we check a module, we need only consider
the current module and the interface of all the modules it depends on. This
is similar in spirit to the encapsulation that Java and ML provide: you de-
pend on a class’s interface, or a structure’s signature, but not the class’s or
the structure’s implementation.

1.1 Completeness of Methods

We’ll deal with Message not found first. Think about how languages like
Java and ML deal with this issue.

In ML, it does appear at run-time as the error message uncaught ex-
ception nonexhaustive match failure , but the compiler also pro-
duces a warning message, Warning: match nonexhaustive when a
function with missing cases is written. How the compiler knows that cases
are actually missing involves the fact that, in an ML program, all of the
cases of a function must appear as part of the function’s definition. This
fact means that the inherently local analysis the compiler does — that is,
look at all of the cases given in the function definition and see if they’re
sufficient to cover any possible input — is correct.

In Java, the compiler can prevent a method from being invoked on ob-
jects that don’t know how to implement it, because among other reasons,
it knows what type the object has at run-time. If I try to downcast an Ob-
ject to a FloorWaxer and call the method waxFloor() on it, the ex-
ception is raised at the downcast, not at the method call. Moreover, the
compiler guarantees that any subclass of FloorWaxer must either inherit
an implementation of or give its own implementation of all methods, e.g.
waxFloor() . Because of this, if we ever have an expression with type
FloorWaxer , we know it is safe to invoke waxFloor() on it, because it is
statically guaranteed to be of some class that implements that method.

In this simplified version EML we will take a cue from Java and treat
the first argument to each EML method as somewhat special.1 This special

1The real EML allows the programmer to designate any of a tuple of arguments as this

2

treatment in no way changes our existing dispatch method: dispatch is still
simultaneous and symmetric across all method arguments. We treat the
first argument specially only for purposes of the compile-time restrictions
we’re about to introduce.

To prevent method calls from producing ‘message not found’ errors,
informally we say the following: every method must have at least as many
implementations as an ML function or a Java method. It may also have more.

The way we decide whether a method is ‘more ML-like’ or ’more Java-
like’ is based on the the first argument. If our code looks like

module
class C of ...
method m(C,D) : bool
...

end

then the method m occurs in the same module as the declaration of the
class of its first argument. We call such methods internal methods. Since
declaration of new methods in Java always occurs in the same file as the
declaration of the class of their (implicit) first argument (i.e. this) we will
treat internal methods similarly to OO-style methods.

Restriction 1: Internal Methods Require Local Defaults. Sup-
pose there is an internal method m with arguments
C,D1, . . . , Dn. If C is abstract, then for any concrete sub-
class C ′ of C, there must be a local default case for m and C ′,
that is, a case extend m(C ′, D1, . . . , Dn) = e in the same
module as the declaration of C ′.

This restriction is checked whenever a concrete subclass of another class
is declared. When this happens, we look to which methods are declared
whose first argument is one of our superclasses. If we cannot inherit an
implementation from a superclass, then we must write a local default case.

The other restriction applies to methods that are not declared in the
same module as their first argument’s class. These methods are called ex-
ternal. For these we need to impose a stronger condition.

singled-out ‘owner’ position.

3

Restriction 2: External Methods Require Global Defaults.
Suppose there is an external method m with arguments
C,D1, . . . , Dn. Then in the same module as m there
must be a global default case for m, that is, a case extend
m(C,D1, . . . , Dn) = e

Here we simply guarantee that the most general case of the method is
covered, and therefore trivially no ‘message not found’ error can occur.

By fairly simple reasoning we can see that these two restrictions are
sufficient for any well-typed program. For every method call that occurs
at run-time, either the method is internal or external. If it is external, then
somewhere there has been defined a global default, so we are covered. If it
is internal, then since we assumed the program was well-typed, we know
the argument given has a run-time tag that is a subclass C ′ of the first argu-
ment C of the method being called. This means that in some module, we
declared the class C ′, as a (possibly indirect) subclass of C. At that time, by
restriction 1, we must have checked that a local default case for C ′ existed
in the same module. This local default case is sufficient to show that at least
one applicable case matches our method call, QED.

Notice that although we require a sort of imitation of either OOP lan-
guages in requiring local defaults or FP in requiring that we are certain of
exhaustiveness at the point of declaration of a method (in this case by re-
quiring a global default) this imitation is only a minimum requirement: we
can also define more specific cases in addition to the local or global defaults
for either internal or external methods, and this is a strict improvement
over what ML or Java offers us.

1.2 Nonambiguity of Methods

To prevent ambiguous message warnings, we similarly turn to familiar lan-
guage paradigms for ideas.

The reason Java doesn’t have ambiguity problems is that although it
does OO-style dynamic dispatch, it’s only single dispatch. The run-time
dispatch that takes place during the call x.method(y,z) only depends
on the run-time tag of x , not those of y,z . This is related to the fact that all
method implementations are textually bundled up with the class of their first
argument.2 The only place you can override a method — and what over-
riding a method means is creating a new specialized behavior for when the

2Be careful not to confuse this with the idea in the definition of internal vs. external: that
was about method declarations being bundled with the class of their first argument

4

reciever of a method call is some classC — is in the scope of the declaration
of class C.

One reason that means already that ML can’t have ambiguity problems
is that its semantics for case analysis is different from EML’s. In ML, if mul-
tiple cases match, then the earlier cases have precedence. However, even
if ML had EML’s semantics of preferring the most specific case regardless
of order (and the potential for ambiguity that comes with it) it could still
do a good job of warning about ambiguity and compile-time. This is be-
cause all cases of a case analysis have to occur all in the same place: in EML
terms, all of the method implementations have to be in the same place as
the method declaration.

We don’t wish to impose either of these restrictions wholesale on the
programmer, so we give them the choice extention-by-extention whether
to make a particular case (a) OOP-style (keeping it with the class of its first
argument) or (b) FP-style (keeping it with the method declaration).

Restriction 3: Nonambiguity Constraint. Every method im-
plementation extend m(C,D1, . . . , Dn) = e must occur
either (a) in the same module as the declaration of C or (b)
in the same module as the declaration of m

Why does this prevent ambiguous match errors at run-type? Here is a
sketch of a proof. Suppose we have a method call call m(e1, . . . , en) , and
e1 evaluates to an object value {D : · · · } of class D. Suppose that two cases
match this call, say, extend m(C ′, . . .) = e′ and extend m(C ′′, . . .
) = e′′. In particular we know D is a subclass of both C ′ and C ′′.

Recall that, when checking the validity of a module, we do have avail-
able all the information in the interfaces of all the modules that module de-
pends on. This means that if either of these two extentions satisfied part (b)
of the nonambiguity contraint above, then any potential ambiguity would
have been detected by the compiler. For suppose without loss of generality
the first case extend m(C ′, . . .) = e′ is declared in the same module
as the method m itself. Then the second case, extend m(C ′′, . . .) =
e′′, since it mentions the method m, statically depends on that module. So
when we check the module containing the second case, the first case will
be visible when we do the ordinary ambiguity checks mentioned in last
lecture.

If both extentions satisfy only part (a) of the constraint, however, we
have to reason differently. In that case it may be that the two cases occur
in different modules, say M ′ and M ′′, each of which statically depends on
the module that declares m, but neither of M ′,M ′′ depends on the other. (If

5

it happens that one does depend on the other, we are already done, for the
same reason as the last case: suppose it’s M ′ that depends on M ′′. While
checking M ′ we will ‘see’ M ′′ and therefore see both extentions and detect
that they are ambiguous) But we must actually satisfy part (a) for each ex-
tention. This means that C ′ is declared in M ′ and C ′′ is declared in M ′′.
Because M ′ and M ′′ are assumed not to depend on one another, this means
neither of C ′ and C ′′ are subclasses of one another. Since we don’t have
multiple inheritance, this means the fact that D is a subclass of C ′ and C ′′

is a contradiction, QED.

6

