Lecture:
EML and Multimethods

15-312: Foundations of Programming Languages
Jason Reed (jcreed+@cs.cmu.edu)

November 4, 2004

1 Object-Oriented Programming

There are several aspects of the object-oriented programming style that a pro-
ponent of it might point to as centrally important. It advocates achieving
modularity of programs through bundling all of the data and behavior of
something that can be thought of as an object; it encourages reuse of code
through inheritance; it makes claims on abstraction by use of dynamic dis-
patch. The way a message sent to an object is handled need not be known
by the outside world: the object itself ‘knows” how to handle it.

Programmers used to programming in a functional style in type sys-
tems that support ML-style modules may well have different ideas about
what constitutes a natural organization of code and data, and how best to
reuse code. But even without getting into arguments about what ‘natural’
means, we can at least point to one (somewhat) less controversial idiom
that many OO languages easily support, which is not as easily (or at least
not in the same way) codable in a language like ML.

2 Extensibility

2.1

The idea in question is data extensibility. In, for example, Java, suppose you
declare an abstract class and some number of concrete classes.

abstract class Exp {

/I return result of substituting v
/I for x in this expression

Exp subst(Exp v, Int x);

}

class Apply extends Exp {
Apply(Exp el, Exp e2);
... Il implement subst

}

class Fn extends Exp {
Fn(Exp e);
... Il implement subst

}

... Il more kinds of Exp

Here EXp is the abstract class that sits at the top of a part of the class hi-
erarchy that describes the syntax of some language of, perhaps a compiler.
It declares methods for operations that the client of this code wants to per-
form — substitution, for example. To describe the various possible ways
of making an Exp, we create concrete subclasses of Exp, and implement its
methods.

That the language supports data extensibility is just the fact that if, at a
later time, we decide that we want to expand the old datatype with a new
construct, say IsHalting , then the changes we need to make to the old
code consist of simply adding a new class, with new method implementa-
tions:

class IsHalting extends Exp {
IsHalting(Exp e);
... Il implement subst

}

... Il more kinds of Exp

The important things to notice here are that (a) the modifications are “all
together” in one place, in one file, and (b) they are not changes to existing
library code. As a client of library code that defines the datatype Exp, we
may extend it by adding new kinds of Exps in our own code.

2

In contrast, ML (with the exception of the exn type) requires that vari-
ant datatypes give all of their branches at once, and does not permit exten-
sion. Were we to implement the example above in ML, we would start with
something like

structure Syntax > SYNTAX =
struct
datatype exp = Apply of exp * exp
| Fn of exp
| ...
val subst (e : exp, v : exp, x : int) = ..
end

To add IsHalting , we would have to go in and actually change the
original datatype declaration:

structure Syntax :> SYNTAX =

struct

datatype exp = Apply of exp * exp
| Fn of exp
| IsHalting

| ...
val subst (e : exp, v : exp, x : int) = ...
end

Moreover we would have to add another case to the function subst ,
and to any other functions that Syntax might define. Even worse, there
might be functions that take arguments of type exp outside the Syntax
structure as well! The changes required to our code could be wildly discon-
tiguous, spanning many files. Depending on how much attention the pro-
grammer (or her coworkers) pay to eliminating all nonexhaustive match
warnings from a programming project, it may be quite difficult to make
sure all functions have been extended appropriately.

2.2

Java programmers can take data extensibility for granted, while ML pro-
grammers find workarounds, or else just tolerate changing datatype decla-
rations when they must, and hunting down function cases to extend. But

3

there is a sort of extensibility that ML hackers take for granted that Java
hackers symmetrically must go to some pains to acheive: functional exten-
sibility. If instead of adding new sorts of data to an existing program what
we want to do is add new behavior to existing datatypes, then the difficulty
of the task depends on what tools the languages gives us.

Suppose for definiteness that we want to take our compiler above and
add an interpreter to it. In the ML case, we're perfectly capable of writing
a separate module with a function eval like so:

structure Eval :> EVAL = struct
val eval (e : exp) = case e of
(Apply(el,e2)) => ...
| (.) => ..

end

Note again the advantages we have here: (a) the modifications are “all
together” in one place, in one file, and (b) they are not changes to existing
library code. If we write a case for every branch of the type exp, then the
function works on any exp that comes its way. The compiler can provide
accurate warnings as to whether our case analysis is nonexhaustive, redun-
dant, or correct.

If we want to do the same thing in Java, then we have at least two obvi-
ous options, neither necessarily pleasant. One works only if we have access
to the original library, or to its authors. We can add ourselves, or beg the
authors to add, a new method to the superclass Exp, and implement it in
all of the subclasses. This means making many changes in many scattered
places, and it is vulnerable to certain kinds of errors. We may implement
the method for a subclass C' of Exp and forget to implement it for a subclass
D of C': if the inherited code is not appropriate for D, then we have failed
to make enough changes, but there is no way the compiler can tell us. If a
library’s API changes because at one of its users’ behest, other users may be
suddenly stuck with broken code because they don’t implement the newly
added methods to the abstract superclass.

The other apparent option is writing a static function which contains a
big if-elseif-else full of instanceOf tests. Here we are again capa-
ble of leaving out cases in ways the compiler can’t detect and sentencing
ourselves to unexpected runtime errors. Also, in the pursuit of functional
extensibility, we’ve thrown out convenient data extensibility, at least for the
purpose of this one new function. For if we create a new class later, we can-
not implement its eval case as a method (nor will the compiler know that

4

we should implement eval for it all!) but instead we must hunt down the
mass of instanceOf tests in the static eval function and add a new case.

3 EML

3.1

ML beats Java on functional extensibility, and Java beats ML on data ex-
tensibility. Can’t we all just get along, somehow? EML is an attempt to
compromise and get both kinds of extensibility at once. It is, in a sense,
both a functional language and an object-oriented language. We're going
to discuss a simplified version here, but if you want to read the original
paper, you can find it at

http : //www.cs.ucla.edu/ todd/research/icfp02.html

Before we get to how EML supports extensibility, we have to discuss
one other feature, since it is necessary to understand many aspects of EML’s
syntax and semantics. EML, as an object-oriented language, has a feature
that is not present in Java, but which is present in quite a few other OO
languages, called multimethods. It is a natural generalization of the dynamic
dispatch found in Java. Where a method call e1.subst(e2,x) in Java dis-
patches on the run-time tag of only one of its inputs, namely el1, a method
call in a language with multimethods can dispatch on the tags of a tuple of
arguments all at once. This would be useful if we wanted substitution to
do something different depending on what kind of expression e2 was.

Because multimethods allow dispatch over lists of objects instead of just
single objects, we can dispense with the idea that a method is called ‘on” a
single object. Instead the syntax is closer to an ordinary function call in
a functional language. The semantics of the call are still drawn, however,
from the object-oriented paradigm: which code gets called as a result of the
method invocation depends on the run-time tags of the arguments.

3.2

The syntax of the programs in the new language (which again we construe
as an extension of MinML) consists of declarations in addition to expressions
and values. We also have a notion of classes in addition to types. As with
record field labels ¢, we assume there to be infinite supplies of class names
(' and method named m. We have that every class is a type, but not every

type is a class: we still have all of our old types like int and 71 x 7 and
so on. Among classes, there is a notion of subclassing, which is determined
by which classes are actually declared by the programmer to extend one
another.

We have new expressions for constructing objects, which are repre-
sented as tagged records {C : ¢ = &} with tag C and fields ¢, a decon-
structor for projecting out object fields (as we did with records) and a way
to call methods. Formally the language of classes, types, and expressions is
extended as follows:

Classes C
Types 1 == --- |C
Values v == --- |{C:{=7}
Expressions e == --- |[{C:l=¢&}
| #£(e)
| call m(e)

with the usual conventions about ¢ = ¢, etc.
Now the declarations of the language allow us to create classes, create
methods, and implement (i.e. ‘extend”) methods:

Declarations d == --- |[abstract]class C [extends (']
of {{:7}

| method m(C) : 7
|extend m(z:C)=e

A declared class may or may not be abstract (i.e. disallow instantiation
of itself, and only allow subclassing) may or may not extend (i.e. declare
itself a subclass of) another class, and has a set of fields ¢ with types 7. A
method has a tuple of argument classes C, and a return type 7. When we
implement a case of a method — that is, a piece of code that may run when
the method is invoked, depending on the run-time tags of the arguments
given — we specify names and types for all of its arguments z, and provide
a function body e in which all the variables z are bound.

A program in EML consists of a list of modules and an expression to be
evaluated. A module for our purposes is just a container for a group of
declarations. It is something of the following form:

module
decl
decl
decl

end

3.3

Before we get to the typing and evaluation rules, let’s just take a quick
look at some EML code that goes precisely where neither ML nor Java dare
tread: pulling off data and functional extensibility at the same time.

Remember we started with a datatype that represented expressions,
and a function that performed substitution. In EML we would write this as
a module

module

abstract class Exp of {}

class Apply extends Exp of {el : Exp, e2 : Exp }
class Var extends Exp of {n :Int }

class Fn extends Exp of {body : Exp }

method subst(Exp, Exp) : int -> Exp
/Il call subst(e, v) x ==> {vIx } e

extend subst(e : Apply, v : Exp) = fn x =>
{Apply: el = call subst(#el e, V) X,
e2 = call subst(#e2 e, v) x }

extend subst(e : Var, v : Exp) = fn x =>
if #n e = x then v else e

extend subst(e : Fn, v : Exp) = fn x =>
{Fn: body = call subst(#body e) (x+1) }

end

Just like in Java, we have a abstract (uninstantiable) class of expressions,
and one concrete class for every variety of expression. We declare a method
that takes two Exp arguments, and returns a function that takes an int and
returns an Exp. We might also view this as a partially curried function
taking three arguments. We implement the method by giving its behavior
on particular cases of its arguments’ run-time tags. If the first argument
happens to be an Apply and the second (as it will inevitably be, as long
as the program is well-typed) is an Exp, then the first piece of code will
execute. Similarly if the first argument is a Fn then the second piece of
code will execute.

If we want data extensibility, then in another module we can write

module
class IsHalting extends Exp of {body : Exp }

extend subst(e : IsHalting, v : Exp) = fn x =>
end
If we want functional extensibility, then in another module we can write

module
method step(Exp) : Exp

extend step(e : Apply) = ...
extend step(e : Fn) = ...
extend step(e : Var) = raise Stuck

end
And if we want both extensions at once, we can write a fourth module

completely separate from the above three that fills in the evaluation case
for isHalting

module
extend step(e : isHalting) = ...
end

From the point of view of ML, what EML gives you is the ability to add
new datatypes and new function cases at places in your code far away from
the original declarations of those datatypes and functions. From the point
of view of Java, what EML allows is the addition of new methods to old
class hierarchies (again, far away from the original codebase) in a way that
tits smoothly with the existing dispatch mechanism.

34

For the typing rules, we assume Decls to be the set of existing declarations.
Every time a module is encountered and determined to be well-formed,
its declarations are imperatively added to the set Decls. For now, well-
formedness of modules will depend on all of the previous parts of the pro-
gram up to that point. In next lecture we will discuss how to make these
checks modular, i.e. local to the current module.

An object expression is well-typed if its tag represents a declared class,
and its fields are all well-typed.

class Cof {f:7} € Decls I'e;:7; (foralli)
r-{C:t=¢e}:C

If the class C subclasses another class C’, then the left-over fields must
form a valid object of class C".

I'Fe;:m (forall 4)
rH={C:0'=¢é}:C
Fr-{C:l=e/l =¢}:C

class Cextends C’of {{:7} € Decls

A projection expression is well-typed if its body is an object of a class
with the indicated field.

0: 1 € Fields(C) 'e:C
I'F#((e)

where Flields is defined by

class Cof {{:7} € Decls
Fields(C) = (£ : 7)

class Cextends C'of {{:7} € Decls
Fields(C) = (¢ : 7, Fields(C"))

9

A method call is well-typed as long as all of its arguments are:

method m(C) : 7 € Decls Fke:Cl (foralli) C'<C
call mf(e):r

where here < is the declared subclass relation defined by

class Cextends C'of {{:7} € Decls
c<c

c<C

CSC’ C/gc//
CSC//

Since there are only finitely many classes declared in a given program, in-
troducing a transitivity rule here is not harmful. We can efficiently compute
the reflexive, transitive closure of the is-a-direct-subclass relation. The no-
tation C' < C’ means that C; < C/ for all i.

3.5

The operational semantics of EML depend on the idea of a best match for a
given method call. Suppose we have an object hierarchy consisting of the
classes Square and Rect, where Square is a subclass of Rect, and the method
Intersect(Rect, Rect):bool . If we declare cases for Intersect for all
four possibilities of Square and Rect inputs,

extend Intersect(Rect, Rect) = ...
extend Intersect(Rect, Square) .
extend Intersect(Square, Rect) = ...

extend Intersect(Square, Square) = ...

then we can consider what happens when we invoke the method by writ-
ing call Intersect(el, e2) for some expressions el, e2 . Ifel and
e2 are both Squares, then although all four cases match — in the sense that

10

the arguments given by the method call are subtypes of the arguments re-
quired by each case — only the fourth case seems appropriate, since it is
the most specific.

We don’t want to require exact matches between the run-time argu-
ments and the case’s arguments, for if we only wrote

extend Intersect(Rect, Rect) = ...

we would still like the code to work on Squares as well by inheritance. So if
there is a more specific case we will use it, but any maximally specific case
that matches is the one we will execute.

Formally, the evaluation rules are comprised of search rules

e— e

{C:P=t"t=el=¢E"}—{C:0=00=¢0=¢)}

e— € e—eé
#i(e) — #l(e/) call m(v,ee)—cal m(v,€e,e)

the reduction rule

and the dispatch rule

extend m(C’) = e € Decls
c<c
For any other extend m(C") = ¢’ € Decls such that
C < C"wehave C' < ("
cal m(vias {Cy:---},...,vpas {Cy:---})—{v/z}e

This last rule expresses that we dispatch to a method case if (a) the argu-
ments C are individually subclasses of the required arguments C’ of that
case and (b) any other case m(C”) that also matches the arguments C is
more general (i.e. less specific) than this case.

11

3.6

The problem with the operational semantics given is that it may get stuck,
in one of two ways.

One is that we try invoking a method for which no case is applicable.
This happens if we have declared the Intersect method and implemented
it only for a pair of Squares, and try to invoke it on a pair of Rectangles (or
on a Rectangle and a Square).

The other is that more than one case is applicable, and no single case is
the most specific. If what we have implemented is only

extend Intersect(Rect, Square)
extend Intersect(Square, Rect)

and we try to invoke Intersect on two Squares, then both cases are applica-
ble, but neither is more specific than the other. It would take an implemen-
tation of

extend Intersect(Square, Square) = ...

to remedy this.

In the next lecture we will discuss EML’s method for preventing these
kind of run-time errors, in an efficient and local way. Until then, imagine
that the type-checker does a global pass over the program, trying by brute
force to determine whether these exhaustivity and ambiguity errors can
arise.

For exhaustivity, we can simply enumerate all of the possible argument
lists that could legitimately be given to a declared method, and check for
the existence of a case that handles each one.

For ambiguity, we can, for each method, enumerate every pair of de-
clared cases it has. Suppose the case we have in mind are extend m(C) = e
and extend m(C’) = ¢’. Now for a set of arguments to cause an ambiguity
error to occur with these two cases, it would have to match both of them.
That is, there would be a list of classes C” such that C” < C and C" < C'.
For each position in this list, if there are any common subclasses of C; and
C!, there is a ‘most super’ subclass, a subclass highest in the hierarchy. In
fact it must be either C; or C. This follows from the fact that we have no

12

multiple inheritance. Finding this “‘most super’ subclass is also called find-
ing the greatest lower bound of C; and C}, which we can write as C; N CJ. It
may be, however, if neither C; nor C is a descendant of the other, that there
is no lower bound at all. If this is ever the case, we are safe with respect to
this pair of cases, for no list of arguments could ever satisfy both.

Otherwise we can do this for all elements in the list, thus finding ondc'.
This list of classes, if it exists, is the most general set of arguments that is
specific enough to possibly trigger the two cases we began considering.
Now we simply check whether C' < C’ or C' < C. If either of these holds,
we are safe, for there is no ambiguity. One case is more specific than the
other. Otherwise, we throw up a compile-time error, because invoking
method m with arguments tagged with C N C’ would cause a run-time
ambiguity error.

13

