Lecture:
Records and Variants

15-312: Foundations of Programming Languages
Jason Reed (jcreed+@cs.cmu.edu )

November 2, 2004

1 Records

One disadvantage of using tuples to aggregate together many pieces of
data is that it requires the programmer to use a possibly long — and cer-
tainly opaque — sequence of fst s and snds to extract the desired com-
ponent. Even in a realistic language with features like pattern-matching,
the programmer using a tuple would need to at least remember in which
order all of the elements come. It may be especially hard to remember the
meaning of the individual elements if many are of the same type.

A solution to this problem is to introduce labelled records. We assume
that there is an infinite supply of labels ¢ (which we may imagine as, for
instance, strings) and extend our language as follows:

Types T = | {¢: 7}
Values v = | {¢ = v}
Expressions e == --- |{l=¢}
| #((e)

Where ¢ : 7 is shorthand for ¢ : 71,...4, : 7, and similarly for / = & and
{=0.

The expression {¢ = &} constructs a record where, for each i the ¢; field
of the record is assigned the expression e;. The deconstructor is the record
projection #/(e), which is like the tuple projections fst and snd, except
that it requests the named field ¢ from the record expression e. A record
expression is a value just in case all of its fields are assigned expressions
which happen to be values.



A record is well-typed if all of its components are, and a labelled pro-
jection is well-typed if its argument is a record that contains that label. For-
mally, the typing rules for the new constructs are as follows.

FkFei:n (for all 7) IFe:{(:7}
r-{f=e}:{{:7} CE#(e):m

To evaluate a record, we evaluate all of its components in the order they
are given. To evaluate a projection, we evaluate the expression it projects.
When a projection applies to a record value, we return the value with the
label of the projection. We give the formal evaluation rules in small-step
style.

/
€; > €; er— e

{l=vli=e 0" ="} {{=0,0;=¢,, 0" =¢"} #i(e) — #U(e)

#&({ZZ 17}) — v,

It is a natural question to ask how records can be subtyped. In fact,
though they are in a sense ‘merely’ a generalization of tuples, they admit
richer subtyping properties. The subtyping that we expect to be able to
do from our experience with tuples is still present, and we refer to it as
depth subtyping of records. The idea is that if we have two record types
with the same labels, but of different types, if the types of one record are
individually all subtypes of the other’s, then the one record type as a whole
is a subtype of the other.

7 < 7] (for all 7)
{0:7y <{0:7}

If we fix a particular record type { : 7} and a list of coercions f; : 71 <
Ty.ov s fn o Tn < 7, then the coercion that witnesses {¢ : 7} < {¢: 7'} can
be written as

fn record : {labl : taul, ..., labn : taun } =
{labl : f1(  #labl(record)),
lab2 : f2( #lab2(record)),

labn : fn(  #labn(record)) }



However, remember that 7 < 7’ in general can be interpreted as an
expression of type T can safely be substituted in a place that expects an expression
of type 7'. Since all the information we get out of records is by projecting
their fields, it cannot hurt us if the record we are handed has ‘too many’
fields. As long as it has the fields that we want, more fields besides those
are acceptable. Thus a record type that includes more fields than another,
without changing any types of the original, is a subtype of it. This is called
width subtyping, since a record with more fields is seen as ‘wider.”

{0:70 7}y <{l:7}

The coercion function for this subtyping can be written as

fn record :
{labl : taul, ..., labn : taun,
labl’ : taul’, ..., labm’ : taum’ } =

{labl : #labl(record),
lab2 : #lab2(record),

labn :  #labn(record) }

Finally, we would like to be able to say that two record types are iso-
morphic if they only differ in the order of their fields.

ma permutationof 1...n Uy =1 Tri =T} (for all )
{0:7y < {0 .7}

Since if 7 is a permutation, so too is its inverse 7—1 and we have that if
one record type is a permuation of the other, then both are subtypes of each
other, i.e. isomorphic.

The coercion function (assuming labl’ ...labn’ are a permutation of
the original labels labl ...labn )is

fn record : {labl : taul, ..., labn : taun } =
{labl’ :  #lab1'(record),

lab2’ : #lab2'(record),

labn’ :  #labn'(record) }



However, if we look back to the development of the idea of subtyping,
we recall that it is important that we don’t need to add a separate rule for
transitivity. This is because having a transitivity rule would make it unclear
how to write an algorithm for checking whether subtyping holds, since we
don’t know how to guess the ‘middle’ type that appears in both premises
but not in the conclusion.

The rules we have given so far for record subtyping do not admit tran-
sitivity as an admissible rule. That is, they themselves don’t allow us to
derive as many facts as we would be able to if we also had a transitivity
rule. For instance, if we had transitivity, we could conclude that {x : int,y :
int,z :int} < {y : float,x : int} by using depth subtyping to change y’s
type from int to float, width subtyping to drop the field z, and permutation
subtyping to interchange the positions of  and y. We cannot actually show
this with just the three rules above.

To fix this, we introduce a single record subtyping rule that encom-
passes all three forms of record subtyping at once:

7 a permutationof 1...n by =0 Tri < 1! (for all 7)
{:7,0:7}y<{0": 7"}

If we fix a particular record type {¢: 7} and a list of coercions f : 7,1 <

...y fa t Tan < 7/, and assume that labl’ ...labn’ are a permuta-
tion of the original labels labl ...labn via 7, then then the coercion that

witnesses the resulting fact can be written as

fn record : {labl : taul, ..., labn : taun,
labl’ : taul’, ..., labn’ : taum’ } =
{labl’ : f1(  #labl’'(record)),
lab2’ : f2(  #lab2'(record)),

labn’ : fn(  #labn’(record)) }

2 Variants

Just as binary sum types express the alternation between two possibilities
in a way dual to the combination of two pieces of data of binary prod-
uct types, we can take records — which combine an arbitrary number of



smaller pieces of data — and describe their dual, the concept of named vari-
ants which allows for the alternation among arbitrary number of possibil-
ities. Named variants are familiar, if not under that name, to any ML pro-
grammer. In ML, a datatype declaration that doesn’t use polymorphism
or recursive types is just a declaration of a named variant. We extend our
language as follows:

Types T = ]
Values v == .-+ |
Expressions e = |
|

where again we use shorthand like ¢:7forty :7,... 0, : 7, and Z.€ for
x1.e1,T2.€2,... ,Tn.en. Like records, variant types are specified by giving a
list of labels and types. Here the list means a set of possibilities rather than
a set of fields. Consequently, the expressions and values of a variant type
only contain one label and one expression. In order for these expressions
to have unique types, we add type annotations, just as we did for sum
types. Also familiar from sum types is the destructor, a case construct. The
difference is that the case has arbitrarily many branches, instead of just two.

A variant expression is well-typed if it contains an expression which
is well-typed at the branch of the variant type corresponding to the given
label. A case statement is well-typed if the expression being cased over is
of variant type, and all the branches, when given a variable of the type of
one of the branches of the variant, share the same result type. Formally, the
typing rules are:

T'ke:T; I'ke:{l:7) Iz, : e :o0 (foralli)
DE(li=e)gr: 0:7) l'tcase(e,z2:€):0

The evaluation rules work very much like those for sum types. In both
the constructor and the first argument of the deconstructor, as usual, we
evaluate expressions until they become values. A case statement applied
to a variant value v then takes the appropriate branch, according to the
label of v, and the expression of v is substituted for the branch’s variable.

er— ¢ er— ¢
(i =€)z = (i =€) zn case (e,z.e) — case (€/,z.€)

case ((¢; =v),z.€e) — {v/x}e;

5



A noticeable difference between variants and records is that variants,
as presented above, require a type annotation on every variant expression.
However, if we introduce subtyping (especially if we are working in a sys-
tem of bidirectional typechecking) we can relax the notion that every ex-
pression must have a unique type, and drop the type annotation. In this
case the syntax for expressions and values is simply

Values v =

| (£=w)
Expressions e u= --- | e
|

)

(e,T.€)

14
14
a

o~ o~

(@)
n
(]

and the typing rules and evaluation rules are modified by dropping type
annotations wherever they appear.

Now the subtyping principles that hold for variants are dual to those
that hold for records. We have again depth subtyping for variants:

7 <71/ (for all 7)
7)< {l:7)

and also subtyping by permutation:

Tri =T} (for all )

The rule for width subtyping, however, is reversed. While a record with
more fields contains more information, (and hence is a subtype of a record
with a subset of its fields) a variant with more branches conveys less infor-
mation: with more possibilities, we are less certain what branch is present.
So a variant with more branches is a supertype of a variant type with fewer.

7)< W:7,0:7)

By similar reasoning as before, we actually want to combine all three
rules into one so that transitivity is admissible instead of necessary as a
separate rule. The single rule for variant subtyping is as follows.

7 a permutationof 1...n Uri = 0! Tri < 1) (for all 7)
{7 <W:.70:7)




