Lecture Notes on
Monadic Input and Output

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 17
October 28, 2004

After reviewing the basic idea behind the encapsulation of effects, we
introduce input and output as a specific kind of effect. After store effects in
the last lecture, this will be our second example. For simplicity, we don’t
consider store and input/output simultaneously.

In review, in a pure functional language programs are evaluated only
to obtain a value. A loose characterization of an effect is simply everything
else that a function might perform. Allocating, mutating, and reading stor-
age cells is one example of effects, input and output are two more. We say
that effects are encapsulated if they do not interfere with the meaning of the
pure expressions in a language. Standard ML does not encapsulate effects,
Haskell does.

Encapsulation of effects is achieved by separating pure expressions (e)
from potentially effectful expressions (written as m). All the usual constructs
in MinML remain pure expressions.

Types 7 ::= 11— 1| - |71ref|OT
Pure Expressions e ::= fn(z.e) | apply(e1,ez2) |- | comp(m)
Monadic Expressions m ::= e | letcomp(e,z.m)

| ref(e) | assign(eq, e2) | deref(e)

In the concrete syntax, we write 7 comp for Ot and let comp z = einmend
for letcomp(e, z.m). As an example, consider the following signature and
implementation.

signature C =
sig

LECTURE NOTES OCTOBER 28, 2004

L17.2 Monadic Input and Output

type ¢

val new : ¢ comp

val inc : ¢ -> unit comp

val get : ¢ -> int comp
end;

structure C > C =
struct
type ¢ = int ref
val new = comp (ref 0)
val inc = fn r => comp (let comp x = !Ir in r := x+1 end)
val get = fn r => comp (Ir)
end;

Now we can create a cell, increment and read it with the following
(monadic) expression, using a slight shorthand by allowing multiple dec-
larations as in Standard ML.

let
comp x = C.new
comp _ = C.nc x
comp y = C.get x
in
y
end;

When started in the empty memory, the above monadic expression ex-
ecutes and evaluates to ((I=1), 1) for some [. It is worth writing out this
computation step by step to see exactly how computation proceeds and
effects and effect-free computations may be interleaved.

In order to model input and output, the state that monadic expres-
sions may refer to contains two streams: an input stream and an output
stream. Streams are potentially infinite sequence of integers, ki -- -k, - - -.
The empty stream is denoted by e. We denote streams by s and write
(s1,50) for the pair of input and output streams. We have the constructs
read, eof and write(e) for reading from the input stream, testing if the input
stream is empty, and writing the value of e to the output stream, respec-
tively. These constructs must be monadic expressions, since they have an
effect.

LECTURE NOTES OCTOBER 28, 2004

Monadic Input and Output L17.3

I'F read —int
I' F eof = bool
I'e:int

' write(e) + 1

As in the case of mutable storage, the operational semantics distin-
guishes states for monadic expressions (which must include the input and
output streams) and pure expressions (which does not include the input
and output streams).

(k- 57,50), read) — (57, 50), int(k)) o™

E
(k- s1,80),e0f) — ((k-sy,50), false) ofFalse

((e,50), eof) — ((€, s0), true) EofTrue

e e .
WriteA
(51, 50), write(e)) — ((s1,50), write())) ' 8

v value

((s1,50), write(int(k))) — ((s1,k - s0), ()

Write

This language extension seems simple, although it is not completely
trivial to write programs using the monadic syntax. Moreover, we have
to formulate the progress theorem carefully. In fact, with the stated rules it
fails! The reason is that if we try to read from an empty input stream no rule
is applicable. It is quite instructive to see where the proof of progress fails
unless we incorporate the possibility that m may be blocked. In a concur-
rent language (or even in a realistic sequential language) such blocking on
input can certainly occur, so it seems reasonable to allow for it and model
it. Of course, our language has no explicit mechanism of unblocking, but
this will change later on. So we are aiming at the following version of the
progress theorem.

LECTURE NOTES OCTOBER 28, 2004

L17.4 Monadic Input and Output

Theorem 1 (Progress)
(1) If -+ e : T then either
(i) e — € for some ¢/, or

(ii) e value
(2) If- = m + 7 then either

(i) ((s1,s0),m) — ((s},sp), m') for some s, s;, and m/, or
(ii) m = v and v value, or

(iii) s; = € and m blocked.

The first thought on how to define the judgment m blocked would be to
simply write

+oad blocked BlockedRead

However, this is not enough as, again, a failed proof of the progress theo-
rem should tell you. We may also be in the situation where the read is not
at the top level, but is the first monadic expression to be executed. In other
words, the search rules may lead us to a read expression. The general way
to capture this is with the rule

m blocked
letcomp(comp(my), x.ms2) blocked

BlockedLet

Note that we never need to look at mso, nor do we need to account for the
case of letcomp(e, z.mg) where e is not a value, because a pure expression e
cannot have an effect unless it is situated as in the BlockedLet rule.

With the right definition of blocked states, it is then easy to prove the
progress theorem, employing value inversion as in other progress proofs
we have carried out up to this point. We just have to be sure to cover all the
possible cases.

We close the lecture with two simple examples. The first is a (non-
recursive) computation which reads one integer and then writes to the out-
put.

val copyOne : unit comp =
comp (let comp x = read in write x end)

The next one is a recursive function to copy the whole input stream to
the output stream. This function should loop forever, if the input stream is
infinite.

LECTURE NOTES OCTOBER 28, 2004

Monadic Input and Output L17.5

val copy : unit comp =
rec copy =>

comp (let
comp b = eof
comp x = if b then comp (let
comp _ = copyOne
comp _ = copy
in () end)
else comp ()
in () end)

This last example has some subtleties. For example, the conditional is
a pure expression (and not a monadic expression). In order to properly
interleave pure and effectful computation, it must be essentially where it
is: on the right-hand side of a comp declaration, where both branches are
again computations.

LECTURE NOTES OCTOBER 28, 2004

