
Lecture Notes on
Mutable Storage

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 16
October 26, 2004

After several lectures on extensions to the type system that are indepen-
dent from computational mechanism, we now consider mutable storage as
a computational effect. This is a counterpart to the study of exceptions and
continuations which are control effects.

We will look at mutable storage from two different points of view: one,
where essentially all of MinML becomes an imperative language and one
where we use the type system to isolate effects (next lecture). The former
approach is taken in ML, that latter in Haskell.

To add effects in the style of ML, we add a new type τ ref and three
new expressions to create a mutable cell (ref(e)), to write to the cell (e1 :=
e2), and read the contents of the cell (!e). There is only a small deviation
from the semantics of Standard ML here in that updating a cell returns
its new value instead of the unit element. We also need to introduce cell
labels themselves so we can uniquely identify them. We write l for locations.
Locations are assigned types in a store typing Λ.

Store Typings Λ : := · | Λ, l:τ

Locations never appear in the input program, but they can arise during
evaluation, when cells are allocated using the ref(e) construct. We there-
fore need to thread the store typing through the typing judgment which
now has the form Λ; Γ ` e : τ . We obtain the following rules, which should
be familiar from Standard ML. We use here the concrete, rather than the
abstract syntax, in order to present the assignment and dereferencing oper-
ations.

LECTURE NOTES OCTOBER 26, 2004



L16.2 Mutable Storage

Λ; Γ ` e : τ

Λ; Γ ` ref(e) : τ ref

Λ; Γ ` e1 : τ ref Λ; Γ ` e2 : τ

Λ; Γ ` e1 := e2 : τ

Λ; Γ ` e : τ ref

Λ; Γ ` !e : τ
l:τ in Λ

Λ; Γ ` loc(l) : τ ref

It is important to keep in mind the difference between locations and
variables. Expressions that we evaluate are always closed with respect to
variables (we substitute for them), but they may contain references l to lo-
cations.

To describe the operational semantics, we need to model the store. We
think of it simply as a mapping from locations to values and we denote it
by M for memory.

Stores M : : = · | M, l=v

Note that in the evaluation of a functional program in a real compiler
there are many other uses of memory (heap and stack, for example), while
the store only contains the mutable cells. As usual, we assume that all
locations in a store are distinct.

In this approach to modeling mutable storage, the evaluation of any
expression can potentially have an effect. This means we need to change
our basic model of computation to add a store. We replace the ordinary
transition judgment e 7→ e′ by

〈M, e〉 7→ 〈M ′, e′〉

which asserts that expression e in store M steps to expression e′ with store
M ′. First, we have to take care of changing all prior rules to thread through
the store. Fortunately, this is quite systematic. We show only the cases for
functions.

〈M, e1〉 7→ 〈M ′, e′1〉
〈M, apply (e1, e2)〉 7→ 〈M ′, apply (e′1, e2)〉

v1 value 〈M, e2〉 7→ 〈M ′, e′2〉
〈M, apply (v1, e2)〉 7→ 〈M ′, apply (v1, e

′
2)〉

v2 value

〈M, apply (fn (τ2, x.e), v2)〉 7→ 〈M, {v2/x}e〉

LECTURE NOTES OCTOBER 26, 2004



Mutable Storage L16.3

For the new operations we have to be careful about the evaluation order,
and also take into account that evaluating, say, the initializer of a new cell
may actually change the store.

〈M, e〉 7→ 〈M ′, e′〉
〈M, ref(e)〉 7→ 〈M ′, ref(e′)〉

v value
〈M, ref(v)〉 7→ 〈(M, l=v), loc(l)〉 loc(l) value

〈M, e1〉 7→ 〈M ′, e′1〉
〈M, e1 := e2〉 7→ 〈M ′, e′1 := e2〉

v1 value 〈M, e2〉 7→ 〈M ′, e′2〉
〈M,v1 := e2〉 7→ 〈M ′, v1 := e′2〉

M = (M1, l=v1,M2) and M ′ = (M1, l=v2,M2)
〈M, loc(l) := v2〉 7→ 〈M ′, v2〉

〈M, e〉 7→ 〈M ′, e′〉
〈M, !e〉 7→ 〈M ′, !e′〉

M = (M1, l=v,M2)
〈M, !loc(l)〉 7→ 〈M,v〉

In order to state type preservation and progress we need to define well-
formed machine states which in turn requires validity for the memory con-
figuration. For that, we need to check that each cell contains a value of
the type prescribed by the store typing. The value stored in each cell can
reference other cells which can in turn refer back to the first cell. In other
words, the pointer structure of memory can be cyclic. We therefore need
to check the contents of each cell knowing the typing of all locations. The
judgment has the form Λ0; · ` M : Λ, where we intend Λ0 to range over the
whole store typing will we verify on the right-hand side that each cell has
the prescribed type.

Λ0; · ` (·) : (·)
Λ0; · ` M : Λ Λ0; · ` v : τ v value

Λ0; · ` (M, l=v) : (Λ, l:τ)

With this defined, we can state appropriate forms of type preservation
and progress theorems. We write Λ′ ≥ Λ if Λ′ is an extension of the store
typing Λ with some additional locations. In this particular case, for a single
step, we need at most one new location so that if Λ′ ≥ Λ then either Λ′ = Λ
or Λ′ = Λ, l:τ for a new l and some τ .

Theorem 1 (Type Preservation)
If Λ; · ` e : τ and Λ; · ` M : Λ and 〈M, e〉 7→ 〈M ′, e′〉 then for some Λ′ ≥ Λ
and memory M ′ we have Λ′; · ` e′ : τ and Λ′; · ` M ′ : Λ′.

Proof: By induction on the derivation of the computation judgment, ap-
plying inversion on the typing assumptions. �

LECTURE NOTES OCTOBER 26, 2004



L16.4 Mutable Storage

Theorem 2 (Progress)
If Λ; · ` e : τ and Λ; · ` M : Λ then either

(i) e value, or

(ii) 〈M, e〉 7→ 〈M ′, e′〉 for some M ′ and e′.

Proof: By induction on the derivation of the typing judgment, analyzing
all possible cases. �

We assume the reader is already familiar with the usual programming
idioms using references and assignment. As an example that illustrates one
of the difficulties of reasoning about programs with possibly hidden effect,
consider the following ML code.

signature COUNTER =
sig

type c
val new : int -> c (* create a counter *)
val inc : c -> int (* inc and return new value *)

end;
structure C :> COUNTER =
struct

type c = int ref
fun new(n):c = ref(n)
fun inc(r) = (r := !r+1; !r)

end;
val c = C.new(0);
val 1 = C.inc(c);
val 2 = C.inc(c);

Here the two calls to C.inc(c) are identical but yield different re-
sults. This is the intended behavior, but clearly not exposed in the type
of the expressions involved. There are many pitfalls in programming with
ephemeral data structures that most programmers are all too familiar with.

The way we have extended MinML with mutable storage has several
drawbacks. The principal difficulty with programming with effects is that
the type system does not track them properly. So when we examine the
type of a function τ1 → τ2 we cannot tell if the function simply returns a
value of type τ2 or if it could also have an effect. This complicates reasoning
about programs and their correctness tremendously.

LECTURE NOTES OCTOBER 26, 2004



Mutable Storage L16.5

An alternative is to try to express in the type system that certain func-
tions may have effects, while others do not have effects. This is the purpose
of monads that are quite popular in the Haskell community. Haskell is a
lazy1 functional language in which all effects are isolated in a monad. We
will see that monadic programming has its own drawbacks. The last word
in the debate on how to integrate imperative and pure functional program-
ming has not yet been spoken.

We introduce monads in two steps. The first step is the generic frame-
work, which can be instantiated to different kinds of effects. In this lecture
we introduce mutable storage as an effect, just as we did in the previous
lecture on mutable storage in ML.

In the generic framework, we extend MinML by adding a new syntactic
category of monadic expressions, denoted by m.2 Correspondingly, there is a
new typing judgment

Γ ` m ÷ τ

expressing that the monadic expression m has type τ in context Γ. We think
of a monadic expression as one whose evaluation returns not only a value
of type τ , but also may have an effect. We introduce this separate category
so that the ordinary expressions we have used so far can remain pure, that
is, free of effects.

Any particular use of the monadic framework will add particular new
monadic expressions, and also possibly new pure expressions. But first
the constructs that are independent of the kind of effect we want to con-
sider. The first principle is that a pure expression e can be considered as a
monadic expression e which happens to have no effect.

Γ ` e : τ
Γ ` e ÷ τ

The second idea is that we can quote a monadic expression and thereby
turn it into a pure expression. It has no effects because the monadic expres-
sion will not be executed. We write the quotation operator as comp(m), and
the type of quoted computations of type τ as ©τ .

Γ ` m ÷ τ
Γ ` comp(m) : ©τ comp(m) value

1Lazy here means call-by-name with memoization of the suspension.
2In lecture, we did not use a separate syntactic category, but just as writing v for val-

ues aids understanding, writing m for potentially effectful expressions makes it easier to
interpret some rules.

LECTURE NOTES OCTOBER 26, 2004



L16.6 Mutable Storage

Finally, we must be able to unwrap and thereby actually execute a quoted
monadic expression. However, we cannot do this anywhere in a pure ex-
pression, because evaluating such a supposedly pure expression would
then have an effect. Instead, we can only do this if we are within an ex-
plicit sequence of monadic expressions! This yields the following construct

Γ ` e : ©τ Γ, x:τ ` m ÷ σ

Γ ` letcomp(e, x.m) ÷ σ

We will use the concrete syntax let compx = e inm end for letcomp(e, x.m).
Note that m and letcomp(e, x.m) are monadic expressions and therefore
may have an effect, while e is a pure expression of monadic type. We think
of the effects are being staged as follows:

(1) We evaluate e which should yield a value comp(m′).

(2) We execute the monadic expression m′, which will have some effects
but also return a value v.

(3) Substitute v for x in m and then execute the resulting monadic expres-
sion.

In order to specify this properly we need to be able to describe the effect
that may be engendered by executing a monadic expression. The judgment
for executing monadic expressions then has the form

〈M,m〉 7→ 〈M ′,m′〉

where the store changes from M to M ′ and the expression steps from m
to m′. According to the considerations above, we obtain first the follow-
ing rules, where we use a pure expression as a (trivial) form of monadic
expression.

e pure e 7→ e′

〈M, e〉 7→ 〈M, e′〉

Here we have used e pure for the judgment that e can be classified by the
typing rules as e : τ . Just like the property of being a value, this is a purely
syntactic property of e. Furthermore, it is shallow: letcomp, allocation, as-
signment, and dereference are monadic expressions while all others are
pure.

We can see that the transition judgment on ordinary expressions looks
the same as before and that it can have no effect. Contrast this with the

LECTURE NOTES OCTOBER 26, 2004



Mutable Storage L16.7

situation in ML from the previous lecture where we needed to change every
transition rule to account for possible effects.

The next sequence of three rules implement items (1), (2), and (3) above.

e 7→ e′

〈M, letcomp(e, x.m)〉 7→ 〈M, letcomp(e′, x.m)〉

〈M,m1〉 7→ 〈M ′,m′
1〉

〈M, letcomp(comp(m1), x.m)〉 7→ 〈M ′, letcomp(comp(m′
1), x.m)〉

v value
〈M, letcomp(comp(v), x.m)〉 7→ 〈M, {v/x}m〉

Note that the substitution in the last rule is appropriate. The substitution
principle for pure values into monadic expressions is straightforward pre-
cisely because v is cannot have effects.

We will not state here the generic forms of the preservation and progress
theorems. They are somewhat trivialized because our language, while de-
signed with effects in mind, does not yet have any actual effects.

In order to define the monad for mutable storage we introduce a new
form of type, τ ref and three new forms of monadic expressions, namely
ref(e), e1 := e2 and !e. In addition we need one new form of pure expres-
sion, namely locations l which are declared in a store typing Λ with their
type. Recall the form of store typings.

Store Typings Λ : := · | Λ, l:τ

Locations can be pure because creating, assigning, or dereferencing them
is an effect, and the types prevent any other operations on them. The store
typing must now be taking into account when checking expressions that
are created a runtime. They are, however, not needed for compile-time
checking because the program itself, before it is started, cannot directly
refer to locations. We just uniformly add “Λ;” to all the typing judgments—
they are simply additional hypotheses of a slightly different form than what
is recorded in Γ.

Λ; Γ ` e : τ

Λ; Γ ` ref(e) ÷ τ ref

Λ; Γ ` e1 : τ ref Λ; Γ ` e2 : τ

Λ; Γ ` e1 := e2 ÷ τ

Λ; Γ ` e : τ ref

Λ; Γ ` !e ÷ τ
l:τ in Λ

Λ; Γ ` loc(l) : τ ref

LECTURE NOTES OCTOBER 26, 2004



L16.8 Mutable Storage

Note that the constituents of the new monadic expressions are pure ex-
pressions. This guarantees that they cannot have effects: all effects must be
explicitly sequenced using the letcomp form.

Now the additional rules for new expressions are analogous to those
we had when effects where not encapsulated in the monad.

e 7→ e′

〈M, ref(e)〉 7→ 〈M, ref(e′)〉
v value

〈M, ref(v)〉 7→ 〈(M, l=v), loc(l)〉 l value

e1 7→ e′1
〈M, e1 := e2〉 7→ 〈M, e′1 := e2〉

v1 value e2 7→ e′2
〈M,v1 := e2〉 7→ 〈M,v1 := e′2〉

M = (M1, l=v1,M2) and M ′ = (M1, l=v2,M2) v2 value

〈M, loc(l) := v2〉 7→ 〈M ′, v2〉

e 7→ e′

〈M, !e〉 7→ 〈M, !e′〉
M = (M1, l=v,M2)
〈M, !loc(l)〉 7→ 〈M,v〉

We complete this lecture with a simple example. In the next lecture
we discuss the progress and preservation properties and other forms of
effects. In MinML with pervasive effects, we might write the following,
which allocates a cell initialized with 3 and then increments it.

let x = ref 3
in x := !x + 1 end;

In MinML with effects encapsulated in a monad, we would rewrite this
as follows.

let comp x = comp (ref 3) in
let comp y = comp (!x) in
let comp z = comp (x := y+1) in
z end end end

Note that the arguments to assignment must be pure expressions, so we
must explicitly sequence the computation into two assignments.

It is this rewriting of expressions which is often required that can make
programming with effects in monadic style tedious (although some syn-
tactic sugar can clearly help). Another problem is that operations such
as input/output are also effects and therefore must be inside the monad.

LECTURE NOTES OCTOBER 26, 2004



Mutable Storage L16.9

This means that inserting a print statement into a function changes its type,
which can complicate debugging.

LECTURE NOTES OCTOBER 26, 2004


