
Lecture Notes on
Bidirectional Type Checking

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 17
October 21, 2004

At the beginning of this class we were quite careful to guarantee that
every well-typed expression has a unique type. We relaxed our vigilance a
bit when we came to constructs such as universal types, existential types,
and recursive types, essentially because the question of unique typing be-
came less obvious or, as in the case of existential types, impossible without
excessive annotations.

In this lecture we first recall the notion of modes and mode correctness
that allow us to interpret inference rules as an algorithm. We then apply
this idea to develop an algorithm that propagates type information through
an abstract syntax tree in two directions, allowing for a more natural type-
checking algorithm we call bidirectional.

In either case, it is convenient to think of type checking as the process
of bottom-up construction of a typing derivation. In that way, we can inter-
pret a set of typing rules as describing an algorithm, although some restric-
tion on the rules will be necessary (not every set of rules naturally describes
an algorithm).

The idea behind modes is to label the constituents of a judgment as
either input or output. For example, the typing judgment Γ ` e : τ should
be such that Γ and e are input and τ is output (if it exists). We then have to
check each rule to see if the annotations as input and output are consistent
with a bottom-up reading of the rule. This proceeds as follows, assuming at
first a single-premise inference rule. We refer to constituents of a judgment
as either known or free during a particular stage of proof construction.

1. Assume each input constituent of the conclusion is known.

LECTURE NOTES OCTOBER 21, 2004



L17.2 Bidirectional Type Checking

2. Show that each input constituent of the premise is known, and each
output constituent of the premise is still free (unknown).

3. Assume that each output constituent of the premise is known.

4. Show that each output constituent of the conclusion is known.

Given the intuitive interpretation of an algorithm as proceeding by bottom-
up proof construction, this method of checking should make some sense
intuitively. As an example, consider the rule for functions.

Γ, x:τ1 ` e : τ2

Γ ` fn (τ1, x.e) : τ1 → τ2
FnTyp

with the mode
Γ+ ` e+ : τ−

where we have marked inputs with + and outputs with - .

1. We assume that Γ, τ1, and x.e are known.

2. We show that Γ, x:τ1 and e are known and τ2 is free, all of which
follow from assumptions made in step 1.

3. We assume that τ2 is also known.

4. We show that τ1 and τ2 are known, which follows from the assump-
tions made in steps 1 and 3.

Consequently our rule for function types is mode correct with respect
to the given mode. If we had omitted the type τ1 in the syntax for function
abstraction, then the rule would not be mode correct: we would fail in step
2 because Γ, x:τ1 is not known because τ1 is not known.

For inference rules with multiple premises we analyze the premises
from left to right. For each premise we first show that all inputs are known
and outputs are free, then assume all outputs are known before checking
the next premise. After the last premise has been checked we still have
to show that the outputs of the conclusion are all known by now. As an
example, consider the rule for function application.

Γ ` e1 : τ2 → τ Γ ` e2 : τ2

Γ ` apply (e1, e2) : τ
AppTyp

Applying our technique, checking actually fails:

LECTURE NOTES OCTOBER 21, 2004



Bidirectional Type Checking L17.3

1. We assume that Γ, e1 and e2 are known.

2. We show that Γ and e1 are known and τ2 and τ are free, all which
holds.

3. We assume that τ2 and τ are known.

4. We show that Γ and e2 are known and τ2 is free. This latter check
fails, because τ2 is known at this point.

Consequently have to rewrite the rule slightly. This rewrite should be
obvious if you have implemented this rule in ML: we actually first generate
a type τ ′2 for e2 and then compare it to the domain type τ2 of e1.

Γ ` e1 : τ2 → τ Γ ` e2 : τ ′2 τ ′2 = τ2

Γ ` apply (e1, e2) : τ
AppTyp

We consider all constitutents of the equality check to be input (τ+ = σ+).
This now checks correctly as follows:

1. We assume that Γ, e1 and e2 are known.

2. We show that Γ and e1 are known and τ2 and τ is free, all which holds.

3. We assume that τ2 and τ are known.

4. We show that Γ and e2 are known and τ ′2 is free, all which holds.

5. We assume that τ ′2 is known.

6. We show that τ2 and τ ′2 are known, which is true.

7. We assume the outputs of the equality to be known, but there are no
output so there are no new assumption.

8. We show that τ (output in the conclusion) is known, which is true.

Now we can examine other language constructs and typing rules from
the same perspective to arrive at a bottom-up inference system for type
checking. We forego this exercise here, and instead consider what can be
gained by introducing two mutually recursive judgments: one for expres-
sions that have enough information to synthesize a type, and one for situ-
ations where we know what type to expect so we propagate it downward
in the tree.

LECTURE NOTES OCTOBER 21, 2004



L17.4 Bidirectional Type Checking

Γ+ ` e+ ↑ τ− e synthesizes τ
Γ+ ` e+ ↓ τ+ e checks against τ
τ+ v σ+ τ is a subtype of σ

The subtype judgment is the same as τ ≤ σ, except that we omit the rule
of transitivity which is not mode correct; the other two look significantly
different from a pure synthesis judgment.

Generally, for constructors of a type we can propagate the type informa-
tion downward into the term, which means it should be used in the analysis
judgment e+ ↓ τ+. Conversely, the destructors generate a result of a smaller
type from a constituent of larger type and can therefore be used for synthe-
sis, propagating information upward.

We consider some examples. First, functions. A function constructor
will be checked, and application synthesizes, in accordance with the rea-
soning above.

Γ, x:τ1 ` e ↓ τ2

Γ ` fn (τ1, x.e) ↓ τ1 → τ2

Γ ` e1 ↑ τ2 → τ1 Γ ` e2 ↓ τ2

Γ ` apply (e1, e2) ↑ τ1

Careful checking against the desired modes is required. In particular,
the order of the premises in the rule for application is critical so that τ2 is
available to check e2. Note that unlike in the case of pure synthesis, no
subtype checking is required at the application rule. Instead, this must be
handled implicitly in the definition of Γ ` e2 ↓ τ2. In fact, we will need a
general rule that mediates between the two directions. This rule replaces
subsumption in the general system.

Γ ` e ↑ τ τ v σ

Γ ` e ↓ σ

Note that the modes are correct: Γ, e, and σ are known as inputs in
the conclusion. This means that Γ and e are known and τ is free, so the
first premise is mode-correct. This yields a τ as output (if successful). This
means we can now check if τ v σ, since both τ and σ are known.

For sums, the situation is slightly trickier, but not much. Again, the
constructors are checked against a given type.

Γ ` e ↓ τ1

Γ ` inl (e) ↓ τ1+τ2

Γ ` e ↓ τ2

Γ ` inr (e) ↓ τ1+τ2

LECTURE NOTES OCTOBER 21, 2004



Bidirectional Type Checking L17.5

For the destructor, we go from e ↑ τ1+τ2 to the two assumptions x1:τ1

and x2:τ2 in the two branches. These assumptions should be seen as syn-
thesis, variable synthesize their type from the declarations in Γ (which are
given).

Γ1, x:τ,Γ2 ` x ↑ τ

Γ ` e ↑ τ1+τ2 Γ, x:τ1 ` e1 ↓ σ Γ, x:τ2 ` e2 ↓ σ

Γ ` case (e, x1.e1, x2.e2) ↓ σ

Here, both branches are checked against the same type σ. This avoids
the need for computing the least upper bound, because one branch might
synthesize σ1, the other σ2, but they are checked separately against σ. So σ
must be an upper bound, but since we don’t have to synthesize a principal
type we never need to compute the least upper bound.

Finally, we consider recursive types. The simple idea that construc-
tors (here: roll ) should be checked against a type and destructors (here:
unroll ) should synthesize a type avoids any annotation on the type.

Γ ` e ↓ {µt.σ/t}σ
Γ ` roll(e) ↓ µt.σ

Γ ` e ↑ µt.σ

Γ ` unroll(e) ↑ {µt.σ/t}σ

This seems too good to be true, because so far we have not needed any
type information in the terms! However, there are still a multitude of situ-
ations where we need a type, namely where an expression requires a type
to be checked, but we are in synthesis mode. Because of our general phi-
losophy, this happens precisely where a destructor is meets a constructors,
that is, where we can apply reduction in the operational semantics! For
example, in the expression

(fn x => x) 3

the function part of the application is required to synthesize, but fn x =>
x can only be checked.

The general solution is to allow a type annotation at the place where
synthesis and analysis judgments meet in the opposite direction from the
subsumption rule shown before. This means we require a new form of
syntax, e : τ , and this is the only place in an expression where a type needs
to occur. Then the example above becomes

LECTURE NOTES OCTOBER 21, 2004



L17.6 Bidirectional Type Checking

(fn x => x : int -> int) 3

From this example it should be clear that bidirectional checking is not
necessarily advantageous over pure synthesis, at least with the simple strat-
egy we have employed so far.

Γ ` e ↓ τ

Γ ` (e : τ) ↑ τ

Looking back at our earlier example, we obtain:

nat = µt.1+t
zero = roll (inl (unitel )) : nat
succ = fn (x.roll (inr (x))) : nat → nat

One reason this seems to work reasonably well in practice that code
rarely contains explicit redexes. Programmers instead tend to turn them
into definitions, which then need to be annotated. So the rule of thumb is
that in typical programs one needs to annotate the outermost functions and
recursions, and the local functions and recursions, but not much else.

With these ideas in place, one can prove a general soundness and com-
pleteness theorem with respect to the original subtyping system. We will
not do this here, but move on to discuss the form of subtyping that is
amenable to an algorithmic interpretation. In other words, we want to
write out a judgment τ v σ which holds if and only if τ ≤ σ, but which is
mode-correct when both τ and σ are given.

The difficulty in the ordinary subtyping rules is transitivity

τ ≤ σ σ ≤ ρ
τ ≤ ρ Trans

which is not well-moded: σ is an input in the premise, but unknown. So
we have to design a set of rules that get by without the rule of transitivity.
We write this new judgment as τ v σ. The idea is to eliminate transitivity
and reflexivity and just have decomposition rules except for the primitive
coercion from int to float.1 We will not write the coercions explicitly for the

1In Assignment 6, a slightly different choice has been made to account for type variables
which we ignore here.

LECTURE NOTES OCTOBER 21, 2004



Bidirectional Type Checking L17.7

sake of brevity.

int v float

int v int float v float bool v bool

σ1 v τ1 τ2 v σ2

τ1 → τ2 v σ1 → σ2

τ1 v σ1 τ2 v σ2

τ1 × τ2 v σ1 × σ2 1 v 1

τ1 v σ1 τ2 v σ2

τ1 + τ2 v σ1 + σ2 0 v 0

Note that these are well-moded with τ+ v σ+. We have ignored here uni-
versal, existential and recursive types: adding them requires some poten-
tially difficult choices that we would like to avoid for now.

Now we need to show that the algorithmic formulation of subtyping
(τ v σ) coincides with the original specification of subtyping (τ ≤ σ). We
do this in several steps.

Lemma 1 (Soundness of algorithmic subtyping)
If τ v σ then τ ≤ σ.

Proof: By straightforward induction on the structure of the given deriva-
tion. �

Next we need two properties of algorithmic subtyping. Note that these
arise from the attempt to prove the completeness of algorithmic subtyping,
but must nonetheless be presented first.

Lemma 2 (Reflexivity and transitivity of algorithmic subtyping)
(i) τ v τ for any τ .

(ii) If τ v σ and σ v ρ then τ v ρ.

Proof: For (i), by induction on the structure of τ .
For (ii), by simultaneous induction on the structure of the two given

derivations D of τ v σ and E of σ v ρ. We show one representative cases;
all others are similar or simpler.

LECTURE NOTES OCTOBER 21, 2004



L17.8 Bidirectional Type Checking

Case: D =
σ1 v τ1 τ2 v σ2

τ1 → τ2 v σ1 → σ2
and E =

ρ1 v σ1 σ2 v ρ2

σ1 → σ2 v ρ1 → ρ2
. Then

ρ1 v τ1 By i.h.
τ2 v ρ2 By i.h.
τ1 → τ2 v ρ1 → ρ2 By rule

�

Now we are ready to prove the completeness of algorithmic subtyping.

Lemma 3 (Completeness of algorithmic subtyping)
If τ ≤ σ then τ v σ.

Proof: By straightforward induction over the derivation of τ ≤ σ. For
reflexivity, we apply Lemma 2, part (i). For transitivity we appeal to the
induction hypothesis and apply Lemma 2, part (ii). In all other cases we
just apply the induction hypothesis and then the corresponding algorith-
mic subtyping rule. �

Summarizing the results above we obtain:

Theorem 4 (Correctness of algorithmic subtyping)
τ ≤ σ if and only if τ v σ.

LECTURE NOTES OCTOBER 21, 2004


