
Lecture Notes on
Data Abstraction

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 12
October 7, 2004

One of the most important ideas in programming is data abstraction. It
refers to the property that clients of library code cannot access the internal
data structures of the library implementation. The implementation remains
abstract. Data abstraction is inherently a static property, that is, a property
that must be verified before the program is run. This is because during
execution the internal data structures of the library are, of course, present
and must be manipulated by the running code. Hence, data abstraction is
very closely tied to type-checking [Ch. 21].

Modern languages, such as ML and Java, support data abstraction, al-
though the degree to which it is supported (or how easy it is to achieve)
varies. Lower-level languages such as C do not support data abstraction
because various unsafe constructs can be exploited in order to expose repre-
sentations. This can have the undesirable effect that authors of widely used
library code cannot change their implementations because such a change
would break client code. Furthermore, ill-behaved clients can change the
representation of a data type, potentially breaking the internal invariants of
the library. Even the presence of a well-documented application program-
mers interface (API) is not much help if it can be easily circumvented due
to weaknesses in the programming language.

In ML, abstraction is supported primarily at the level of modules. This
can be justified in two ways: first, data abstraction is mostly a question of
program interfaces and therefore it arises naturally at the point where we
have to consider program composition and modules. Second, the ML core
language has been carefully designed so that no type information needs
to be supplied by the programmer: full type inference is decidable. In the
presence of data abstraction this no longer makes sense since, as we will

SUPPLEMENTARY NOTES OCTOBER 7, 2004



L12.2 Data Abstraction

see, an implementation does not uniquely determine its interface.
So how is data abstraction enforced in ML? Consider the following

skeletal signature, presenting a very simple interface to an implementation
of queues containing only integers.

signature QUEUE =
sig

type q
val empty : q
val enq : int * q -> q
val deq : q -> q * int (* may raise Empty *)

end;

This signature declares a type q which is abstract (no implementation
of q is given). It then presents three operations on elements of this type. An
implementation of this interface is a structure that matches the signature.
Here is an extremely inefficient one.

structure Q :> QUEUE =
struct

type q = int list
val empty = nil
fun enq (x,l) = x::l
fun deq l = deq’ (rev l)
and deq’ (y::k) = (rev k, y)

| deq’ (nil) = raise Empty
end;

Note that we use opaque ascription :> QUEUE, which is Standard ML’s
way to guarantee data abstraction. No client can see the definition of the
type Q.q . For example, the last line in the following example fails type-
checking.

val q21 = Q.enq (2, Q.enq (1, Q.empty));
val (q2, 1) = Q.deq q21;
val = hd q21; (* TYPE ERROR HERE *)

SUPPLEMENTARY NOTES OCTOBER 7, 2004



Data Abstraction L12.3

This is because hd can operate only on lists, while q21 is only known to
have type Q.q . The implementation of Q.q as int list is hidden from
the type-checker in order to ensure data abstraction. This means we can
replace Qwith a more efficient implementation by a pair of lists,

structure Q :> QUEUE =
struct

type q = int list * int list
val empty = (nil, nil)
fun enq (x, (back, front)) = (x::back, front)
fun deq (back, x::front) = ((back, front), x)

| deq (back as :: , nil) = deq (nil, rev back)
| deq (nil, nil) = raise Empty

end;

and any client code will continue to work (although it may now work much
faster).

In order to avoid the complications of a full module system, we intro-
duce existential types ∃t.τ , where t is a bound type variable. t represents the
abstract type and τ represents the type of the operations on t. Returning to
the example, the signature

signature QUEUE =
sig

type q
val empty : q
val enq : int * q -> q
val deq : q -> q * int (* may raise Empty *)

end;

is represented by the type

∃q.q × (int × q → q)× (q → q × int ).

Except for the missing names empty , enq , and deq , this carries the same
information as the signature.

A value of an existential type is a tuple whose first component is the im-
plementation of the type, and the second component is an implementation
of the operations on that type. We write this as pack (σ, e). For the sake of
brevity, we show only part of the example:

SUPPLEMENTARY NOTES OCTOBER 7, 2004



L12.4 Data Abstraction

structure Q :> QUEUE =
struct

type q = int list
val empty = nil
...

end;

is represented as

pack (int list , pair (nil , . . .)) : ∃q.q × · · ·

In contrast, the second implementation

structure Q :> QUEUE =
struct

type q = int list * int list
val empty = (nil, nil)
fun enq (x, (back, front)) = (x::back, front)
fun deq (back, x::front) = ((back, front), x)

| deq (back as :: , nil) = deq (nil, rev back)
| deq (nil, nil) = raise Empty

end;

looks like

pack (int list × int list , pair (pair (nil , nil ), . . .)) : ∃q.q × · · ·

From these examples we can deduce the typing rules. First, existential
types introduce a new bound type variable.

Γ, t type ` τ type

Γ ` ∃t.τ type

Second, the package that implements an existential type requires that the
operations on the type respect the definition of the type. This is modeled
in the rule by substituting the implementation type for the type variable in
the body of the existential.

Γ ` σ type Γ ` e : {σ/t}τ
Γ ` pack (σ, e) : ∃t.τ

SUPPLEMENTARY NOTES OCTOBER 7, 2004



Data Abstraction L12.5

For example, if we take the first implementation above, the first two
lines below justify the third.

· ` int list type
· ` pair (nil , . . .) : int list × · · ·
· ` pack (int list , pair (nil , . . .)) : ∃q.q × · · ·

In the second implementation, we need the implementation of q to have
type int list × int list .

· ` int list × int list type
· ` pair (pair (nil , nil ), . . .) : (int list × int list )× · · ·
· ` pack (int list × int list , pair (pair (nil , nil ), . . .)) : ∃q.q × · · ·

Next we have to consider how make the implementation of an abstract
type available. In ML, a structure is available when a definition structure
S = ... is made at the top level. Here, we need an explicit construct to
open a package to make it available to a client. Given a package e : ∃t.τ , we
write open (e, t.x.e′) to make e available to the client e′. Here, t is a bound
type variable that refers to the abstract type (and remains abstract in e′) and
x is a bound variable that stands for the implementation of the operations
on the type. In our example, fst (e) denotes the implementation of empty ,
fst (snd (e)) stands for the implementation of enq , etc.

This leads us to the following rule:

Γ ` e : ∃t.τ Γ, t type, x:τ ` e′ : σ Γ ` σ type

Γ ` open (e, t.x.e′) : σ

We have added the explicit premise that Γ ` σ type to emphasize that t
must not occur already in Γ or σ: every time we open a package, or multi-
ple package, we obtain a new type, different from all types already known.
This generativity means that even multiple instances of the exact same struc-
ture are not recognized to have the same implementation type: any one of
them could be replaced by another one without affecting the correctness of
the client code.

The property of data abstraction can be seen in the rule above: the code
e′ can use the library code e, but during type-checking only a type vari-
able t is visible, not the implementation type. This means the code in e′ is
parametric in t, which guarantees data abstraction.

The operational semantics is straightforward and does not add any new
ideas to those previously discussed. This confirms that the importance

SUPPLEMENTARY NOTES OCTOBER 7, 2004



L12.6 Data Abstraction

of data abstraction lies in compile-time type-checking, not in the runtime
properties of the language.

e 7→ e′

pack (τ, e) 7→ pack (τ, e′)
v value

pack (τ, v) value

e1 7→ e′
1

open (e1, t.x.e2) 7→ open (e′
1, t.x.e2)

v1 value

open (pack (τ, v1), t.x.e2) 7→ {v1/x}{τ/t}e2

Observe that before the evaluation of the body of an open expression,
we substitute τ for t, making the abstract type concrete. However, we know
that e2 was type-checked without knowing τ , so this does not violate data
abstraction.

The progress and preservation theorems do not introduce any new ideas.
For the type substitution we need a type substitution property that was
given in Lecture 11 on Parametric Polymorphism.

Combining parametric polymorphism and data abstraction, that is, uni-
versal and existential types can be interesting and fruitful. For example,
assume we would like to allows queues to have elements of arbitrary type
s. This would be specified as

∀a.∃q.q × (a× q → q)× (q → q × a).

For example, the implementation of a queue by a single list would then
have the form

Fn(a.pack (a list , 〈Inst (nil , a), . . .〉))

Note that the type

∃q.∀a.q × (a× q → q)× (q → q × a)

would be incorrect, because we cannot choose the implementation type for
q before we know the type a.

As another example, assume we want to widen the interface to also
export double-ended queues q’ with some additional operations that we
leave unspecified here. Then the type would have the form

∃q.∃q′.q × q′ × · · · .

SUPPLEMENTARY NOTES OCTOBER 7, 2004



Data Abstraction L12.7

The implementation would provide definitions for both q and q′, as in

pack (int list , pack (int list , . . .)).

Next we return to the question of type-checking. Consider1

pack (int , pair (fn (int , x.x + 1), fn (int , x.x− 1))).

This package has 16 different types; we show four of them here:

∃t.(t → t)× (t → t)
∃t.(int → t)× (t → int )
∃t.(t → int )× (int → t)
∃t.(int → int )× (int → int )

While not all of these are meaningful, they are all different and the type-
checker has no way of guessing which one the programmer may have
meant. This is inherent: an implementation does not determine its inter-
face. However, we can check an implementation against an interface, which
is precisely what bi-directional type-checking achieves. We have not for-
mally presented the technique in these notes and postpone its discussion
for now.

1using infix notation for addition and subtraction

SUPPLEMENTARY NOTES OCTOBER 7, 2004


