
Supplementary Notes on
Parametric Polymorphism

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 11
September 30, 2003

After an excursion into advanced control constructs, we return to the
basic questions of type systems in the next couple of lectures. The first
one addresses a weakness of the language we have presented so far: every
expression has exactly one type. Some functions (such as the identity func-
tion fn x => x) should clearly be applicable at more than one type. We
call such function polymorphic. We later distinguish two principal forms of
polymorphism, namely parameteric and ad hoc polymorphism.

Briefly, a polymorphic construct is said to be parametric if it behaves the
same at all its types. The identity function is an example of a function that
is parametric in this sense. A function such as addition also has more than
one type, at least + : int * int -> int and + : float * float
-> float , but the function behaves differently at these two types: one
implementation manipulates floating point representations the other inte-
gers.

Besides pure functions, there are many data structure (such as lists)
whose element types should be arbitrary. We achieved this so far by mak-
ing lists primitive in the language, but this trick does not extend when we
try to write interesting programs over lists. For example, the following map
function is clearly too specalized.

SUPPLEMENTARY NOTES SEPTEMBER 30, 2003

L11.2 Parametric Polymorphism

rec map : (int -> bool) -> int list -> bool list =>
fn f : int -> bool =>

fn l : int list =>
case l

of nil => nil[bool]
| cons(x,l’) => cons(f(x),map f l’)

It should work for any f : τ → σ, l : τ list and return a result of type
σ list . The importance of this kind of generic programming varies from
language to language and application to application. It has always been
considered central in functional programming in order to avoid unneces-
sary code duplication. In object-oriented programming it does not appear
as critical, because subtyping and the class hierarchy allow some form of
polymorphic programming. Nonetheless, the Java language has recently
decided to add “generics” to its next revision—we will discuss later how
this relates to parametric polymorphism as we present it here.

There are different ways to approach polymorphism. In its intrinsic
form we allow polymorphic functions, but we are careful to engineer the
language so that every function still has a unique type. This may sound
contradictory, but it is in fact possible with a suitable extension of the ex-
pression language. In its extrinsic form, we allow an expresson to have
multiple types, but we ensure that there is a principal type that subsumes
(in a suitable sense) all other types an expression might have. The poly-
morphism of ML is extrinsic; nonetheless, we present it in its intrinsic form
first.

The idea is to think of the map function above not only takes f and l
as arguments, but also the type τ and σ. Fortunately, this does not mean
we actually have to pass them at run-time, as we discuss later. We write
Fn t => e for a function that take a type as an argument. The (bound) type
variable t stands for that argument in the body, e. The type of such a func-
tion is written a ∀t.τ , where τ is the type of the body. To apply a function
e to a type argument τ (called instantiation), we write e [τ] . We also in-
troduce a short, mathematical notation for functions that are not recursive,
called λ-abstraction.

SUPPLEMENTARY NOTES SEPTEMBER 30, 2003

Parametric Polymorphism L11.3

Concrete Abstract Mathematical

All t. τ All (t.τ) ∀t.τ
Fn t => e Fn(t.e) Λt.e
e [τ] Inst (e, τ) e[τ]

fn x: τ => e fn (τ, x.e) λx:τ. e

Using this notation, we can rewrite the example above.

Fn t => Fn s =>
rec map : (t -> s) -> t list -> s list =>

fn f : t -> s =>
fn l : t list =>

case l
of nil => nil[s]

| cons(x,l’) => cons(f(x),map f l’)

In order to formalize the typing rules, recall the judgment τ type. So far,
this judgment was quite straightforward, with rules such as

τ1 type τ2 type

arrow (τ1, τ2) type

τ type

list (τ) type int type

Now, types may contain type variables. An example is the type of the
identity function, which is ∀t.t → t, or the type of the map function, which
is ∀t.∀s.(t → s) → list (t) → list (s). So the typing judgment becomes
hypothetical, that is, we may reason from assumption t type for variables t.
In all the rules above, they are simply propagated (we show the example of
the function type). In addition, we have new rule for universal quantifica-
tion.

τ1 type τ2 type

arrow (τ1, τ2) type

Γ, t type ` τ type

Γ ` All (t.τ) type

In addition, the notion of hypothetical judgments yields the rule for
type variables

Γ1, t type,Γ2 ` t type

and a substitution property.

SUPPLEMENTARY NOTES SEPTEMBER 30, 2003

L11.4 Parametric Polymorphism

Lemma 1 (Type Substitution in Types)
If Γ1 ` τ type and Γ1, t type,Γ2 ` σ type then Γ1, {τ/t}Γ2 ` {τ/t}σ type.

This is the idea behind higher-order abstract syntax and hypothetical
judgments, applied now to the language of types. Note that even though
we wrote Γ above, only assumptions of the form t type will actually be
relevant to the well-formedness of types.

Now we can present the typing rules proper.

Γ, t type ` e : σ

Γ ` Fn(t.e) : All (t.σ)

Γ ` e : All (t.σ) Γ ` τ type

Γ ` Inst (e, τ) : {τ/t}σ

Let us consider the example of the polymorphic identity function to
understand the substitution taking place in the last rule. You should read
this derivation bottom-up to understand the process of type-checking.

t type, x:t ` x : t
t type ` fn (t, x.x) : arrow (t, t)

· ` Fn(t.fn (t, x.x)) : All (t.arrow (t, t))

If we abbreviate the identity function by id then it must be instantiated
by (apply to) a type before it can be applied to an expression argument.

· ` id : ∀t.t → t
· ` id [int] : int → int
· ` id [int] 3 : int

· ` id : ∀t.t → t
· ` id [bool] : bool → bool
· ` id [bool] true : bool

· ` id : ∀t.t → t
· ` id [int] : int → int
· 6` id [int] true : int

Using mathematical notation:

t type, x:t ` x : t
t type ` λx:t. x : t → t

· ` Λt. λx:t. x : ∀t.t → t

SUPPLEMENTARY NOTES SEPTEMBER 30, 2003

Parametric Polymorphism L11.5

As should be clear from these rules, assumptions of the form t type
also must appear while typing expression, since expressions contain types.
Therefore, we need a second substitution property:

Lemma 2 (Type Substitution in Expressions)
If Γ1 ` τ type and Γ1, t type,Γ2 ` e : σ then Γ1, {τ/t}Γ2 ` {τ/t}e : {τ/t}σ.

Note that we must substitute into Γ2, because the type variable t may
occur in some declaration x:σ in Γ2.

In the operational semantics we have a choice on whether to declare a
type abstraction Fn t => e to be a value, or to reduce e. Intuitively, the latter
cannot get stuck because t is a type variable not an ordinary variable, and
therefore is never needed in evaluation. Even though it seems consistent,
we know if now language that supports such evaluation in the presence of
free type variables. This decision yields the following rules:

Fn(t.e) value

Inst (Fn(t.e), τ) 7→ {τ/t}e
e 7→ e′

Inst (e, τ) 7→ Inst (e′, τ)

From this it is routine to prove the progress and preservation theorems.
For preservation, we need the type substitution lemmas stated earlier in
this lecture. For progress, we need a new value inversion property.

Lemma 3 (Polymorphic Value Inversion)
If · ` v : All (t.τ) and v value then v = Fn(t.e′) for some e′.

Theorem 4 (Preservation)
If · ` e : τ and e 7→ e′ then · ` e′ : τ .

Proof: By rule induction on the transition derivation for e. In the case of
the reduction of a polymorphic function to a type argument, we need the
type substitution property. �

Theorem 5 (Progress)
If · ` e : τ then either

(i) e value, or

(ii) e 7→ e′ for some e′

SUPPLEMENTARY NOTES SEPTEMBER 30, 2003

L11.6 Parametric Polymorphism

Proof: By rule induction on the typing derivation for e. We need poly-
morphic value inversion to show that all cases for a type instantiation are
covered. �

In our language the polymorphism is parametric, which means that the
operation of a polymorphic function is independent of the type that it is ap-
plied to. Formalizing this observation requires some advanced techniques
that we will not discuss in this course.

This can be contrasted with ad hoc polymorphism, in which the func-
tion may compute differently at different types. For example, if the func-
tion + is overloaded, so it has type int × int → int and also type
float × float → float , then we need to have two different implemen-
tations of the function. Another example may be a toString function
whose behavior depends on the type of the argument.

Parametric polymorphism can often be implemented in a way that avoids
carrying types at run-time. This is important because we do not want poly-
morphic functions to be inherently less efficient than ordinary functions.
ML has the property that all polymorphic functions are parametric with
polymorphic equality as the only exception. Ignoring polymorphic equal-
ity, this means we can avoid carrying type information at run-time. In prac-
tice, some time information is usually retained in order to support garbage
collection or some optimization. How to best implement polymorphic lan-
guages is still an area of active research.

ML-style polymorphism is not quite as general as the one described
here. This is so that polymorphic type inference remains decidable and has
principal types. See [Ch 20.2] for a further discussion. We will return to the
issue of type inference later in this course.

Parametric polymorphism, even in the restricted form in which it is
present in ML, can be dangerous when the language also has effects such
as mutable references. The most straightforward rules for polymorphism
in its extrinsic form (where expressions have multiple types) are

Γ, t type ` e : σ e value

Γ ` e : All (t.σ)

Γ ` e : All (t.σ) Γ ` τ type

Γ ` e : {τ/t}σ

The only change to the previous system is that we do not allow types in
expressions, and that the expression e remains the same for type abstraction

SUPPLEMENTARY NOTES SEPTEMBER 30, 2003

Parametric Polymorphism L11.7

and application. In this system, when the language includes effects, the
generalization rule must be restricted to values or it will be unsound. The
prototypical example is the following ML code:

let val r = ref (fn x => x)
in

r := (fn x => x + 1);
(!r) true

end

Even though (fn x => x) : α → α we can not conclude that r :
∀α.(α → α)ref. If that were allowed, both the assignment to r and the
dereferencing of r would be well-typed, even though the code obviously
violates types safety. In our rule above, the restriction of e to values would
rule out this generalation (ref (fn x => x) is not a value).

SUPPLEMENTARY NOTES SEPTEMBER 30, 2003

