
Supplementary Notes on
An Abstract Machine

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 9
Sep 28, 2004

In this lecture we introduce a somewhat lower-level semantics for MinML
in the form of an abstract machine [Ch. 11]. In this machine we make the con-
trol flow explicit, rather than encoding it in the search rules as in the first
operational semantics. Besides getting closer to an actual implementation,
it will allow us to easily define constructs to capture the current continua-
tion [Ch. 12].

Abstract machines have recently gained in popularity through the as-
cendency of the Java programming language. The standard model is that
we compile Java source to Java bytecode, which may be transmitted over
networks (for example, as an “applet”), and then interpreted via the Java
abstract machine. The use of an abstract machine here plays two important
roles: (1) the byte code is portable to any architecture with an interpreter,
and (2) the received code can be easily checked for illegal operations. This
is type-checking of the abstract machine code goes hand in hand with some
residual checking that has to go on while the code is interpreted. Note that
traditional type-checking as we have discussed it so far needs to be aug-
mented significantly, for example, to prevent the normally type-safe oper-
ation of reformatting the hard disk.

The kind of abstract machine we present here is a variant of the C-
machine [Ch. 11.1] with two kinds of states: those that attempt to evaluate
an expression, and those that return a value that has been computed. Its
main component, however, is the same: a run-time stack that records what
remains to be done after the current subexpression has been fully evalu-
ated. The stack consists of frames which represent the action to be taken by
the abstract machine once the current expression has been evaluated. We
treat here the fragment with pairs, functions, and booleans (see [Ch. 11.1]

SUPPLEMENTARY NOTES SEP 28, 2004

L9.2 An Abstract Machine

for a treatment of primitive operators).
We begin by defining the syntax in the form of (abstract syntax) gram-

mar. As we have seen before, this can also be written in the form of judg-
ments. When we use v we imply that v must be a value.

States s : : = k > e evaluate e under k
| k < v return v to k

Stacks k : : = • empty stack
| k . f stack k with top f

Frames f : : = o(�, e2) | o(v1,�) primops
| pair (�, e2) | pair (v1,�) pairs
| fst (�) | snd (�) projections
| apply (�, e2) | apply (v1,�) applications
| if (�, e1, e2) conditional

A hole � in the top stack frame is intended to hold the value returned
by evaluation of the current expression. It corresponds to the place in an
expression where evaluation can take place and thus implements the search
rules of the structured operational semantics.

The main judgment defining the abstract machine is

s 7→c s′

expressing that state s makes a transition to state s′ in one step. The initial
state of the machine has the form • > e, a final state has the form • < v. In
general, we define our machine so that if

e = e1 7→ · · · 7→ en = v

according to our operational semantics then for any stack k which should
have

k > e 7→c · · · 7→c k < v

As we will see, the operational semantics and the abstract machine do not
take the same number of steps. This is because the operational semantics
does not step at all for values, while the abstract machine will take some
steps to go from k > v to k < v.

Before we give the transitions of the C-machine, it is useful to think
about typing and which properties besides the operational ones above we
want to hold. First, we need to type states. A state k > e should require
that (1) e is closed (since we are evaluating it), (2) that e is well-typed, say, of

SUPPLEMENTARY NOTES SEP 28, 2004

An Abstract Machine L9.3

type τ , and (3) that k is a stack that expects a value of type τ to be returned
to it. We also keep track of the type of the final result returned when both e
and k are finished. Finally, a frame accepts a value (to be placed in its hole)
and eventually passes value to the rest of the stack. These considerations
yields the following typing judgments

s : σ state s returns a final answer of type σ
k : τ ⇒ σ stack k expects a value of type τ and returns a final answer of type σ
f : τ ⇒ σ frame r expects a value of type τ and computes a value of type σ

We use the notation τ ⇒ σ as a suggestive notation, but you should keep in
mind that frames f are not formally functions in our semantics. However,
frames and stack can be formally related to functions, but we will not make
this relationship explicit here.

With these definition, we can write out the rules. We have added some
parentheses to make the reading of the judgments less ambiguous.

k : τ ⇒ σ · ` e : τ
(k > e) : σ

k : τ ⇒ σ · ` v : τ v value
(k < v) : σ

• : τ ⇒ τ

k : τ ′ ⇒ σ f : τ ⇒ τ ′

(k . f) : τ ⇒ σ

We show the typing rules for the individual frames as they are introduced
in the operational semantics below.

We now give the transitions, organized by the type structure of the lan-
guage.

Integers.

k > num(n) 7→c k < num(n)

k > o(e1, e2) 7→c k . o(�, e2) > e1

k . o(�, e2) < v1 7→c k . o(v1,�) > e2

k . o(num(n1),�) < num(n2) 7→c k < num(n)
(n = fo(n1, n2))

· ` e2 : int
o(�, e2) : int ⇒ int

· ` v1 : int v1 value

o(v1,�) : int ⇒ int

SUPPLEMENTARY NOTES SEP 28, 2004

L9.4 An Abstract Machine

Products.

k > pair (e1, e2) 7→c k . pair (�, e2) > e1

k . pair (�, e2) < v1 7→c k . pair (v1,�) > e2

k . pair (v1,�) < v2 7→c k < pair (v1, v2)

k > fst (e) 7→c k . fst (�) > e
k . fst (�) < pair (v1, v2) 7→c k < v1

k > snd (e) 7→c k . snd (�) > e
k . snd (�) < pair (v1, v2) 7→c k < v2

· ` e2 : τ2

pair (�, e2) : τ1 ⇒ τ1 × τ2

· ` v1 : τ1 v1 value

pair (v1,�) : τ2 ⇒ τ1 × τ2

fst (�) : τ1 × τ2 ⇒ τ1 snd (�) : τ1 × τ2 ⇒ τ2

Functions.

k > fn (τ, x.e) 7→c k < fn (τ, x.e)

k > apply (e1, e2) 7→c k . apply (�, e2) > e1

k . apply (�, e2) < v1 7→c k . apply (v1,�) > e2

k . apply (v1,�) < v2 7→c k > {v2/x}e
(v1 = fn (τ, x.e))

· ` e2 : τ2

apply (�, e2) : (τ2 → τ1) ⇒ τ1

· ` v1 : τ2 → τ1 v1 value

apply (v1,�) : τ2 ⇒ τ1

Recursion.

k > rec (τ, x.e) 7→c k > {rec (τ, x.e)/x}e

Conditionals.

k > true 7→c k < true
k > false 7→c k < false
k > if (e, e1, e2) 7→c k . if (�, e1, e2) > e
k . if (�, e1, e2) < true 7→c k > e1

k . if (�, e1, e2) < false 7→c k > e2

· ` e1 : τ · ` e2 : τ

if (�, e1, e2) : bool ⇒ τ

SUPPLEMENTARY NOTES SEP 28, 2004

An Abstract Machine L9.5

As an example, consider the evaluation of

(fn x:int => x) 0

• > apply (fn (int , x.x), num(0))
7→c • . apply (�, num(0)) > fn (int , x.x)
7→c • . apply (�, num(0)) < fn (int , x.x)
7→c • . apply (fn (int , x.x),�) > num(0)
7→c • . apply (fn (int , x.x),�) < num(0)
7→c • > num(0)
7→c • < num(0)

Note that in the second-to-last step, {num(0)/x}x = num(0)
Before talking about the correctness of the C-machine, we state the progress

and preservation theorems we expect. We do not prove these properties
here, since they introduce no new techniques. Critical for progress is once
again the value inversion lemma, as it is for the structural operational se-
mantics.

Theorem 1 (Preservation and Progress for C-Machine)
(i) (Preservation) If s : σ and s 7→c s′ then s′ : σ.

(ii) (Progress) If s : σ then either

(a) s = (• < v) for some value v, or

(b) s 7→c s′ for some state s′.

Proving the correctness of the C-machine is complicated by the fact that
the two machines step at different rates. We further have to account for
the stack. However, in the overall statement of the correctness theorem,
these problems may not be apparent. In order to state the theorem, we
first define the multi-step versions of the two transition judgments. This is
just the reflexive and transitive closure of the single-step relation. We only
define this formally for the abstract machine; other transition relations can
similarly be extended to multiple steps [Ch. 2].

s 7→∗
c s′ s steps to s′ in zero or more steps

s 7→∗
c s

refl
s 7→c s′ s′ 7→∗

c s′′

s 7→∗
c s′′ step

We take certain elementary properties of the multi-step transition rela-
tion for granted and use them tacitly. We give here only one, as an example.

SUPPLEMENTARY NOTES SEP 28, 2004

L9.6 An Abstract Machine

Theorem 2 (Transitivity)
If s 7→∗

c s′ and s′ 7→∗
c s′′ then s 7→∗

c s′′.

Proof: By straightforward rule induction on the derivation of s 7→∗
c s′. �

Theorem 3 (Correctness of C-Machine)
e 7→∗ v if and only if • > e 7→∗

c • < v

As usual, we cannot prove this directly, but we need to generalize it. In
this case we also need two lemmas.

Lemma 4 (Determinism)
If s 7→c s′ and s 7→c s′′ then s′ = s′′.

Proof: By cases on the two given judgments. This is a degenerate case of
rule induction, since the 7→c judgment is defined only by axioms. �

Lemma 5 (Value Computation)
(i) k > v 7→∗

c k < v

(ii) If k > v 7→∗
c • < a then the computation decomposes into

k > v 7→∗
c k < v and k < v 7→∗

c • < a

Proof: Part (i) follows by induction on the structure of v.1 Part (ii) then
follows from part (i) by determinism. We show the proof of part (i) in detail.

Cases: v = num(n), v = true , v = false , or v = fn (τ, x.e). Then the
result is immediate by a single step of the abstract machine.

Case: v = pair (v1, v2). Then

k > pair (v1, v2)

7→c k . pair (�, v2) > v1 By rule

7→∗
c k . pair (�, v2) < v1 By i.h. on v1

7→c k . pair (v1,�) > v2 By rule

7→∗
c k . pair (v1,�) < v2 By i.h. on v2

7→c k < pair (v1, v2) By rule

1Equivalently, we could say: By rule induction on the derivation of v value.

SUPPLEMENTARY NOTES SEP 28, 2004

An Abstract Machine L9.7

�

Now we are in a position to prove the generalization that directly relates
a single step in the original semantics to possibly several steps in the C-
machine. The easiest way to arrive at the particular generalization we have
below it to try to prove our overal theorem directly and then allow for
a general stack k (instead of forcing the empty stack •). Looking ahead
at how this (and the value computation) lemma are used in the proof of
Theorem 7 is quite instructive.

We express that if e 7→ e′, then under any stack k, if the evaluation of
e′ yields the final answer a, then the evaluation of e also yields the final
answer a.

Lemma 6 (Completeness Lemma for the C-Machine)
If e 7→ e′ and k > e′ 7→∗

c • < a then k > e 7→∗
c • < a.

Proof: The proof is by rule induction on the derivation of e 7→ e′.
Below, when we claim a step follow “by inversion” it is because exactly

one of the rules could be applied as the first step. Technically, this is an
inversion on the definition of 7→∗

c (rule step must have been applied), fol-
lowed by an second inversion on the (single) first step that could have been
taken.

We show only the cases for products, since all other cases follow a sim-
ilar pattern.

For the search rules, we apply inversion until we have uncovered a sub-
computation of the abstract machine to which we can apply the induction
hypothesis. Then we reconstitute the full computation.

For the reduction rules, we directly construct the needed computation,
possibly applying to the value computation lemma, part (i).

Case:

e1 7→ e′
1

pair (e1, e2) 7→ pair (e′
1, e2)

e1 7→ e′
1 Subderivation

k > pair (e′
1, e2) 7→∗

c • < a Assumption
k > pair (e′

1, e2) 7→c k . pair (�, e2) > e′
1 7→∗

c • < a By inversion
k . pair (�, e2) > e1 7→∗

c • < a By i.h.
k > pair (e1, e2) 7→c k . pair (�, e2) > e1 7→∗

c • < a By rule

SUPPLEMENTARY NOTES SEP 28, 2004

L9.8 An Abstract Machine

Case:

v1 value e2 7→ e′
2

pair (v1, e2) 7→ pair (v1, e
′
2)

e1 7→ e′
1 Subderivation

k > pair (v1, e
′
2) 7→∗

c • < a Assumption
k > pair (v1, e

′
2) 7→c k . pair (�, e′

2) > v1 7→∗
c • < a By inversion

k . pair (�, e′
2) > v1 7→∗

c k . pair (�, e′
2) < v1 7→∗

c • < a
By value computation (ii)

k . pair (�, e′
2) < v1 7→c k . pair (v1,�) > e′

2 7→∗
c • < a By inversion

k . pair (v1,�) > e2 7→∗
c • < a By i.h.

k . pair (�, e2) < v1 7→∗
c • < a By rule

k . pair (�, e2) > v1 7→∗
c • < a By value computation (i)

k > pair (v1, e2) 7→c k . pair (�, e2) > v1 7→∗
c • < a By rule

Case:

e1 7→ e′
1

fst (e1) 7→ fst (e′
1)

e1 7→ e′
1 Subderivation

k > fst (e′
1) 7→∗

c • < a Assumption
k > fst (e′

1) 7→c k . fst (�) > e′
1 7→∗

c • < a By inversion
k . fst (�) > e1 7→∗

c • < a By i.h.
k > fst (e1) 7→c k . fst (�) > e1 7→∗

c • < a By rule

Case:

v1 value v2 value

fst (pair (v1, v2)) 7→ v1

k < v1 7→∗
c • < a Assumption

k > fst (pair (v1, v2))
7→c k . fst (�) > pair (v1, v2) By rule
7→∗

c k . fst (�) < pair (v1, v2) By value computation (i)
7→c k < v1 By rule
7→∗

c • < a By assumption

SUPPLEMENTARY NOTES SEP 28, 2004

An Abstract Machine L9.9

Case:

v1 value v2 value

snd (pair (v1, v2)) 7→ v2

k < v2 7→∗
c • < a Assumption

k > snd (pair (v1, v2))
7→c k . snd (�) > pair (v1, v2) By rule
7→∗

c k . snd (�) < pair (v1, v2) By value computation (i)
7→c k < v2 By rule
7→∗

c • < a By assumption

�

We do not show the proof in the other direction, which is a minor vari-
ant of the one in [Ch. 11.1]. We now return to the overall correctness theo-
rem.

Theorem 7 (Correctness of C-Machine)
(i) If e 7→∗ v then • > e 7→∗

c • < v.

(ii) If • > e 7→∗
c • < v then e 7→∗ v.

Proof: We show part (i) and omit part (ii) (see [Ch. 11.1]). The proof of
part (i) is by induction on the derivation of e 7→∗ v.

Case:

v 7→∗ v
refl

• > v 7→∗
c • < v By value computation (i)

Case:

e 7→ e′ e′ 7→∗ v
e 7→∗ v

step

• > e′ 7→∗
c • < v By i.h.

• > e 7→∗
c • < v By completeness lemma

�

SUPPLEMENTARY NOTES SEP 28, 2004

