
Lecture Notes on Aggregate Data Structures

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 8
September 23, 2004

In this lecture we discuss various language extensions which make MinML
a more realistic language without changing its basic character. In the sec-
ond part of the lecture we also consider an environment-based semantics
in which we avoid explicit application of substitution to give the semantics
a more realistic character and discuss some common mistakes in language
definition.

Products. Introducing products just means adding pairs and a unit ele-
ment to the language [Ch. 19.1]. We could also directly add n-ary prod-
ucts, but we will instead discuss records later when we talk about object-
oriented programming. MinML is a call-by-value language. For consistency
with the basic choice, the pair constructor also evaluates its arguments—
otherwise we would be dealing with lazy pairs.1 In addition to the pair
constructor, we can extract the first and second component of a pair.2

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` pair (e1, e2) : cross (τ1, τ2)

Γ ` e : cross (τ1, τ2)
Γ ` fst (e) : τ1

Γ ` e : cross (τ1, τ2)
Γ ` snd (e) : τ2

We often adopt a more mathematical notation according to the table
at the end of these notes. However, it is important to remember that the

1See Assignment 3
2An alternative treatment is given in [Ch. 19.1], where the destructor provides access to

both components of a pair simultaneously.

LECTURE NOTES SEPTEMBER 23, 2004

L8.2 Aggregate Data Structures

mathematical shorthand is just that: it is just a different way to shorten
higher-order abstract syntax or make it easier to read.

A pair is a value if both components are values. If not, we can use the
search rules to reduce, using a left-to-right order. Finally, the reduction
rules extract the corresponding component of a pair.

e1 value e2 value

pair (e1, e2) value

e1 7→ e′
1

pair (e1, e2) 7→ pair (e′
1, e2)

v1 value e2 7→ e′
2

pair (v1, e2) 7→ pair (v1, e
′
2)

e 7→ e′

fst (e) 7→ fst (e′)
e 7→ e′

snd (e) 7→ snd (e′)

v1 value v2 value

fst (pair (v1, v2)) 7→ v1

v1 value v2 value

snd (pair (v1, v2)) 7→ v2

Since it is at the core of the progress property, we make the value inversion
property explicit.

If · ` v : cross (τ1, τ2) and v value then v = pair (v1, v2) for
some v1 value and v2 value.

Unit Type. For the unit type we only have a constructor but no destructor,
since there are no components to extract.3

Γ ` unitel : unit

The unit types does not yield any new search or reduction rules, only a new
value. At first it may not seem very useful, but we will see an application
when we add references to the language.

unitel value

The value inversion property is also simple.

If · ` v : unit then v = unitel .
3A so-called check construct is possible but not necessary; see [Ch. 19.1].

LECTURE NOTES SEPTEMBER 23, 2004

Aggregate Data Structures L8.3

Sums. Unions, as one might know them from the C programming lan-
guage, are inherently not type safe. They can be abused in order to access
the underlying representations of data structures and intentionally violate
any kind of abstraction that might be provided by the language. Consider,
for example, the following snippet from C.

union {
float f;
int i;

} unsafe;

unsafe.f = 5.67e-5;
printf("%d", unsafe.i);

Here we set the member of the union as a floating point number and then
print the underlying bit pattern as if it represented an integer. Of course,
much more egregious examples can be imagined here.

In a type-safe language we replace unions by disjoint sums. In the im-
plementation, the members of a disjoint sum type are tagged with their
origin so we can safely distinguish the cases. In order for every expression
to have a unique type, we also need to index the corresponding injection
operator with their target type. We avoid this complication here, postpon-
ing the issue of how to perform type-checking to a future lecture.

Γ ` e1 : τ1

Γ ` inl (e1) : sum(τ1, τ2)
Γ ` e2 : τ2

Γ ` inr (e2) : sum(τ1, τ2)

Γ ` e : sum(τ1, τ2) Γ, x1:τ1 ` e1 : σ Γ, x2:τ2 ` e2 : σ

Γ ` case (e, x1.e1, x2.e2) : σ

Note that we require both branches of a case -expression to have the same
type σ, just as for a conditional, because we cannot be sure at type-checking

LECTURE NOTES SEPTEMBER 23, 2004

L8.4 Aggregate Data Structures

time which branch will be taken at run time.

e1 value

inl (e1) value

e2 value

inr (e2) value

e 7→ e′

case (e, x1.e1, x2.e2) 7→ case (e′, x1.e1, x2.e2)

v1 value

case (inl (v1), x1.e1, x2.e2) 7→ {v1/x1}e1

v2 value

case (inr (v2), x1.e1, x2.e2) 7→ {v2/x2}e2

We also state the value inversion property.

If · ` v : sum(τ1, τ2) then either v = inl (v1) with v1 value or
v = inr (v2) with v2 value.

Void type. The empty type void can be thought of as a zero-ary sum. It
has no values, and can only be given to expressions that do not terminate.
For example,

Γ, x:void ` x : void

Γ ` rec (void , x.x) : void

The value inversion property here just expresses that there are no values
of void type.

If · ` v : void then we have a contradiction.

In this lecture we did not explicitly revisit the cases in the proof of the
preservation and progress theorem, but the cases follow exactly the previ-
ously established patterns.

Environment-Based Semantics. So far, most of our semantic specifica-
tions rely on substitution as a primitive operation. From the point of view
of implementation, this is impractical, because a program would be copied
many times. So we seek an alternative semantics in which substitutions are
not carried out explicitly, but an association between variables and their
values is maintained. Such a data structure is called an environment. Care
has to be taken to ensure that the intended meaning of the program (as

LECTURE NOTES SEPTEMBER 23, 2004

Aggregate Data Structures L8.5

given by the specification with substitution) is not changed. We have al-
ready discussed such a semantics in Lecture 4 for arithmetic expressions.

Because we are in a call-by-value language, environments η bind vari-
ables to values.

Environments η : : = · | η, x=v

The basic intuition regarding typing is that if Γ ` e : τ , then e should
be evaluated in an environment which supplies bindings of appropriate
type for all the variables declared in Γ. We therefere formalize this as a
judgment, writing η : Γ if the bindings of variables to values in η match
the context Γ. We make the general assumption that a variable x is bound
only once in an environment, which corresponds to the assumption that a
variable x is declared only once in a context. If necessary, we can rename
bound variables in order to maintain this invariant.

· : ·
η : Γ · ` v : τ v value

(η, x=v) : (Γ, x:τ)

Note that the values v bound in an environment are closed, that is, they
contain no free variables. This means that expressions are evaluated in an
environment, but the resulting values must be closed. This creates a dif-
ficulty when we come to the evaluation of function expressions. Relaxing
this restriction, however, causes even more serious problems.4

We start with integers and let-bindings, the latter of which is an explicit
motivation for the introduction of environments. Here we assume some
primitive operators o (such as plus and times) and their mathematical
counterparts fo. For simplicity, we just write binary operators here.

x⇓v ∈ η

η ` x ⇓ v
e.var

η ` num(k) ⇓ num(k)
e.num

η ` e1 ⇓ num(k1) η ` e2 ⇓ num(k2) (fo(k1, k2) = k)
η ` o(e1, e2) ⇓ num(k)

e.o

η ` e1 ⇓ v1 η, x⇓v1 ` e2 ⇓ v2

η ` let (e1, x.e2) ⇓ v2
e.let (x not declared in η)

Next we come to functions. Before we state these rules let’s explicitly
state the preservation property we expect to hold at the end. Note that
there is no progress property, because it cannot be formulated very easily
on the big-step semantics.

4This is known in the Lisp community as the upward funarg problem.

LECTURE NOTES SEPTEMBER 23, 2004

L8.6 Aggregate Data Structures

Preservation. If Γ ` e : τ and η : Γ and η ` e ⇓ v then · ` v : τ .

Note in particular here the formal expression of the intuition above that
the output v must be closed. The following rule

η ` fn (τ, x.e) ⇓ fn (τ, x.e)
e.fn?

would be incorrect because fn (τ, x.e) can refer to variables defined in η
which would “leak” into the output value, violating the closedness con-
dition of the preservation theorem. Instead we need to create a so-called
closure which pairs up a function with its environment, representing a new
form of value. We write

〈〈η; fn (τ, x.e)〉〉

for the closure of fn (τ, x.e) over the environment η.
There are no evaluation rules for closures (they are values), and the

typing rules have to “guess” a context that matches the environment. Note
that we always type values in the empty environment.

〈〈η; fn (τ, x.e)〉〉 value

η : Γ Γ ` fn (τ, x.e) : τ ′

· ` 〈〈η; fn (τ, x.e)〉〉 : τ ′

Note that function expressions like fn (τ, x.e) are no longer values–only
function closures are values. We now modify the incorrect rule by build-
ing a closure instead and write down the right evaluation rule for function
application.

η ` fn (τ, x.e) ⇓ 〈〈η; fn (τ, x.e)〉〉 e.fn

η ` e1 ⇓ 〈〈η′; fn (τ2, x.e′
1)〉〉 η ` e2 ⇓ v2 η′, x=v2 ` e′

1 ⇓ v

η ` apply (e1, e2) ⇓ v
e.app

Note that every aspect of this rule is critical: evaluation of e1 returns
a closure instead of a function expression, and the body of the function is
evaluated in environment found in the closure extended by the binding
for x. By our general convention about variables, x may not already be
declared in the environment η′ so the new one is well-formed. This can al-
ways be achieved by the tacit renaming of the bound variable so it differens
from the variables in η′.

One interesting problems that arises in this context is the treatment of
recursion. There are a number of ways to avoid explicit substitutions, such

LECTURE NOTES SEPTEMBER 23, 2004

Aggregate Data Structures L8.7

as creating recursive environments, or allowing bindings of variables to un-
evaluated expressions, to be evaluated when they are looked up. The solu-
tion taken in Standard ML is to syntactically restrict recursion to functional
expressions and declare the resulting functions rec (arrow (τ1, τ2), f.fn (τ1, x.e))
to be values. This is the solution taken in the notes [Ch. 9].

LECTURE NOTES SEPTEMBER 23, 2004

L8.8 Aggregate Data Structures

Higher-Order
Abstract Syntax Concrete Syntax Mathematical Syntax

arrow (τ1, τ2) τ1 -> τ2 τ1 → τ2

cross (τ1, τ2) τ1* τ2 τ1 × τ2

unit unit 1
sum(τ1, τ2) τ1+τ2 τ1 + τ2

void void 0

pair (e1, e2) (e1, e2) 〈e1, e2〉
fst (e) #1 e π1 e
snd (e) #2 e π2 e
unitel () 〈 〉
inl (e1) inl (e1) inlτ1+τ2(e1)
inr (e2) inr (e2) inrτ1+τ2(e2)
case (e, x1.e1, x2.e2) case e

of inl (x1) => e1

| inr (x2) => e2

esac

case(e, x1.e1, x2.e2)

abort (e) abort (e) abortτ (e)

LECTURE NOTES SEPTEMBER 23, 2004

