
Lectures Notes on
Type Safety

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 6
September 16, 2004

Before we discuss type safety, we introduce recursion into the language.
Without recursion, the set of functions that can be defined on natural num-
bers is of course very limited. Rather than tying recursion to functions, the
way it is done in [Ch. 9], we introduce it here as a separate concept. In
concrete syntax, we write rec x:t => e for a recursive expression. The
same is represented in abstract syntax as rec (τ, x.e), which makes explicit
that x is a bound variable with scope e. The intuitive meaning of rec (τ, x.e)
is that it should be “equal” to its unfolding, that is, the result of substituting
the whole expressions for x in e. That is, in some sense we would like to
equate rec (τ, x.e) with {rec (τ, x.e)/x}e. In the operational semantics, this
is manifest in the rule

{rec (τ, x.e)/x}e ⇓ v

rec (τ, x.e) ⇓ v

As an example, consider the exponential function

20 = 1
2n = 2× 2n−1 for n > 0.

In order to express this with the recursion construction, we write

rec (arrow (int , int ), p.fn (int , n.
if (equals (n, num(0)),

num(1),
times (num(2), apply (p, minus (x, num(1))))).

or, in concrete syntax:

LECTURE NOTES SEPTEMBER 16, 2004



L6.2 Type Safety

rec p:int -> int => fn n:int =>
if n = 0

then 1
else 2 * p (x - 1)

You should convince yourself on the example above that unfolding yields
the correct behavior. As for the typing rule: the whole expression must
have the same type as x, so that the substitution {rec (τ, x.e)/x} makes
sense. The same type τ must also be the type of e, because the value of e is
returned as the value of the recursive expression.

Γ, x:τ ` e : τ

Γ ` rec (τ, x.e) : τ
RecTyp

As in function expressions, the type τ is recorded in the syntax so that type-
checking can be implemented in a simple manner.

In MinML, most useful recursions have the form

rec (arrow (τ1, τ2), f.fn (τ1, x.e)),

because most other recursive expressions will not terminate (try, for ex-
ample, rec (int , x.x)). We therefore introduce a new form of concrete
syntax, fun f(x: τ1): τ2 => e, as “syntactic sugar”. During parsing it
is expanded into rec (arrow (τ1, τ2), f.fn (τ1, x.e)). This means that a fun -
expression does not have first-class status. For example, we do not give
any typing or evaluation rules since we type-check and evaluate the result
of the syntactic expansion, not the original form.

At this point we can prove type preservation and value soundness for
our language in the following form:

1. (Preservation) If · ` e : τ and e ⇓ v then · ` v : τ .

2. (Value Soundness) If e ⇓ v then v value.

There are some other properties of interest, such as v ⇓ v for any value v.
Other natural properties do not hold. For example:

1. (Failure of Termination) There is an e such that · ` e : τ , but there is
no v such that e ⇓ v.

2. (Failure of Reverse Preservation) There are values v and expressions
e such that · ` v : τ and e ⇓ v but not · ` e : τ .

LECTURE NOTES SEPTEMBER 16, 2004



Type Safety L6.3

It is instructive to find such counterexamples and consider the reasons why
neither termination nor reverse preservation can be expected for a practical
programming language.

We will not prove either the positive or negative properties of our lan-
guage in the form given above. The reason is that preservation, while cer-
tainly expected to hold, is somewhat weak as a language property: It only
talks about expressions e that already are known to have a value. For ex-
ample, if we omit the rule for function application (which is at the very
heart of our language), then preservation would still hold! Moreover, any
non-terminating computation is not addressed in this theorem at all.

This means we should look for stronger properties to characterize not
only the relationship of an expression to its final value, but the process of
computation itself. This requires a different form of operational semantics
in which the steps of a computation are made explicit. We write e 7→ e′

for the judgment that e steps to e′, yet to be defined. It is related to the
evaluation judgment in that

e 7→ e1 7→ · · · 7→ en 7→ v for some e1, . . . , en iff e ⇓ v

Before we give the rules, we state the properties we expect the language
to satisfy in the end. This is a useful strategy which can prevent us from
going astray and discovering potential problems with our judgments and
rules early. The main properties are:

1. (Preservation) If · ` e : τ and e 7→ e′ then · ` e′ : τ

2. (Progress) If · ` e : τ then either

(i) e 7→ e′ for some e′, or

(ii) e value

3. (Determinism) If · ` e : τ and e 7→ e′ and e 7→ e′′ then e = e′′.

Usually, preservation and progress together are called type safety. Not
all these properties are of equal importance, and we may have perfectly
well-designed languages in which some of these properties fail. However,
we want to clearly classify languages based on these properties and under-
stand if they hold, or fail to hold.

Preservation. This is the most fundamental property, and it would be dif-
ficult to see how one could accept a type system in which this would fail.

LECTURE NOTES SEPTEMBER 16, 2004



L6.4 Type Safety

Failure of this property amounts to a missing connection between the type
system and the operational semantics, and it is unclear how we would even
interpret the statement that e : τ . If preservation holds, we can usually
interpret a typing judgment as a partial correctness assertion about the ex-
pression:

If expression e has type τ and e evaluates to a value v, then v also has
type τ .

Progress. This property tells us that evaluation of an expression does not
get stuck in any unexpected way: either we have a value (and are done), or
there is a way to proceed. If a language is to satisfy progress it should not
have any expressions whose operational meaning is undefined. For exam-
ple, if we added division to MinML we could simply not specify any transi-
tion rule that would apply for the expression divide (num(k), num(0)). Not
specifying the results of such a computation, however, is a bad idea because
presumably an implementation will do something, but we can no longer
know what. This means the behavior is implementation-dependendent
and code will be unportable. To describe the behavior of such partial ex-
pressions we usually resort to introducing error states or exceptions into
the language.

There are other situations where progress may be violated. For exam-
ple, we may define a non-deterministic language that includes failure (non-
deterministic choice between zero alternatives) as an explicit outcome.

Determinism. There are many languages, specifically those with concur-
rency or explicit non-deterministic choice, for which determinism fails, and
for which it makes no sense to require it. On the other hand, we should al-
ways be aware whether our language is indeed deterministic or not. There
are also situations where the language semantics explicitly violates deter-
minism in order to give the language implementor the freedom to choose
convenient strategies. For example, the Revised5 Definition of Scheme1 states
that the arguments to a function may be evaluated in any order. In fact, the
order of evaluation for every single procedure call may be chosen differ-
ently!

While every implementation conforming to such a specification is pre-
sumably deterministic (and the language satisfies both preservation and
progress), code which accidentally or consciously relies on the order of

1http://www.swiss.ai.mit.edu/˜jaffer/r5rs_toc.html

LECTURE NOTES SEPTEMBER 16, 2004



Type Safety L6.5

evaluation of a particular compiler will be non-portable between Scheme
implementations. Moreover, the language provides absolutely no help in
discovering such inadvisable implementation-dependence. While one is
easily willing to accept this for concurrent languages, where different in-
terleavings of computation steps are an unavoidable fact of life, it is un-
fortunate for a language which could quite easily be deterministic, and is
intended to be used deterministically.

Small-step semantics. An operational semantics that specifies computa-
tion step by step is usually called a small-step semantics. We also call it
structural operational semantics. We retain the value judgment defined in the
last lecture and add the new judgment e 7→ e′, as indicated above. When
presenting the operational semantics, we proceed type by type.

Integers This is straightforward. We evaluate the arguments to a primi-
tive operation from left to right, and apply the operation once all arguments
have been evaluated.

e1 7→ e′1
equals (e1, e2) 7→ equals (e′1, e2)

v1 value e2 7→ e′2
equals (v1, e2) 7→ equals (v1, e

′
2)

(k1 = k2)
equals (num(k1), num(k2)) 7→ true

(k1 6= k2)
equals (num(k1), num(k2)) 7→ false

We refer to the first two as search rules, since they traverse the expression
to “search” for the subterm where the actual computation step takes place.
The latter two are reduction rules.

Booleans For if-then-else we have only one search rule for the condition,
since we never evaluate in the branches before we know which one to take.

e 7→ e′

if (e, e1, e2) 7→ if (e′, e1, e2)

if (true , e1, e2) 7→ e1 if (false , e1, e2) 7→ e2

LECTURE NOTES SEPTEMBER 16, 2004



L6.6 Type Safety

Definitions We proceed as in the expression language with the substitu-
tion semantics. There are no new values, and only one search rule.

e1 7→ e′1
let (e1, x.e2) 7→ let (e′1, x.e2)

v1 value

let (v1, x.e2) 7→ {v1/x}e2

Functions Applications are evaluated from left-to-right, until both the
function and its argument are values. This means the language is a call-
by-value language with a left-to-right evaluation order.

e1 7→ e′1
apply (e1, e2) 7→ apply (e′1, e2)

v1 value e2 7→ e′2
apply (v1, e2) 7→ apply (v1, e

′
2)

v2 value

apply (fn (τ2, x.e), v2) 7→ {v2/x}e

Recursion A recursive expression is evaluated simply by unfolding it.

rec (τ, x.e) 7→ {rec (τ, x.e)/x}e

A recursive expression is never a value, but in a typical use of the form

rec (arrow (τ1, τ2), f.fn (τ1, x.e))

we can make only one step before reaching a value, because unfolding the
rec exposes an fn -abstraction which is always a value. In [Ch. 9], the
recursive expression fun (τ1, τ2, f.x.e) which corresponds to the above is
directly a value. This is appropriate in the case of MinML, but would lead
to difficulties in a more general setting later in the course where we study
recursively defined lists, trees, and other data structures.

Preservation. For the proof of preservation we need two properties about
the substitution operation as it occurs in the cases of let -expressions and
function application. We state them here in a slightly more general form
than we need, but a slightly less general form than what is possible.

LECTURE NOTES SEPTEMBER 16, 2004



Type Safety L6.7

Theorem 1 (Properties of Typing)
(i) (Weakening) If Γ1,Γ2 ` e′ : τ ′ the Γ1, x:τ,Γ2 ` e′ : τ ′.

(ii) (Substitution)
If Γ1, x:τ,Γ2 ` e′ : τ ′ and · ` e : τ then Γ1,Γ2 ` {e/x}e′ : τ ′.

Proof: Property (i) follows directly by rule induction on the given deriva-
tion: we can insert the additional hypothesis in every hypothetical judg-
ment occuring in the derivation without invalidating any rule applications.

Property (ii) allso follows by a rule induction on the given derivation of
Γ1, x:τ,Γ2 ` e′ : τ ′. Since typing and substitution are both compositional
over the structure of the term, the only interesting cases is where e′ is the
variable x.

Case: (Rule VarTyp) with e′ = x. Then τ ′ = τ and {v/x}e′ = {v/x}x = v.
So we have to show Γ1,Γ2 ` v : τ . But our assumption is · ` v : τ so we can
conclude this by weakening (Property (i)). �

Both the weakening and substitution properties arise directly from the
nature of reasoning from assumption. They are special cases of very gen-
eral properties of hypothetical judgments.

Weakening is a valid principle, because when we reason from assump-
tion nothing compels us to actually use any given assumption. Therefore
we can always add more assumptions without invalidating our conclusion.

Substitution is a valid principle, because we can always replace the use
of an assumption by its derivation.

The proof below requires the use of the proof principle of inversion. Say
in the course of a proof you have established that a certain judgment J
has a derivation. If you can see, purely syntactically, that there is only one
possible inference rule that could have been used to conclude J , then we
know the premises of the rule must also be hold. It is called inversion
because in a strange way we go from a derivation of the conclusion to a
derivation of the premises. The proof of preservation below uses inversion
essentially in each case, applying it to the given typing derivation for e.
Since the typing judgment is syntax-directed, and there is exactly one rule
for each kind of expression, it is usually straightforward to apply inversion.

A word of caution: many mistakes arise in proofs because inversion is
used incorrectly. Remember: you can only apply it if you already know, ei-
ther from and assumption or the induction hypothesis, that a certain jnudg-
ment must have a derivation.

LECTURE NOTES SEPTEMBER 16, 2004



L6.8 Type Safety

Theorem 2 (Preservation)
If · ` e : τ and e 7→ e′ then · ` e′ : τ .

Proof: By rule induction on the derivation of e 7→ e′. In each case we
apply inversion to the given typing derivation and then apply either the
induction hypothesis or directly construct a typing derivation for e′.

Critical in this proof is the syntax-directed nature of the typing rules: for
each construct in the language there is exactly one typing rule. Preservation
is significantly harder for languages that do not have this property, and
there are many advanced type systems that are not a priori syntax-directed.

We only show the cases for booleans and functions, leaving integers
and let -expressions to the reader.

Case

e1 7→ e′1
if (e1, e2, e3) 7→ if (e′1, e2, e3)

This case is typical for search rules, which compute on some subexpression.

e1 7→ e′1 Subderivation
· ` if (e1, e2, e3) : τ Assumption
· ` e1 : bool and · ` e2 : τ and · ` e3 : τ By inversion
· ` e′1 : bool By i.h.
· ` if (e′1, e2, e3) : τ By rule

Case

if (true , e2, e3) 7→ e2

· ` if (true , e2, e3) : τ Assumption
· ` true : bool and · ` e2 : τ and · ` e3 : τ By inversion
· ` e2 : τ In line above

Case

if (false , e2, e3) 7→ e3

Symmetric to the previous case.

LECTURE NOTES SEPTEMBER 16, 2004



Type Safety L6.9

Case

e1 7→ e′1
apply (e1, e2) 7→ apply (e′1, e2)

e1 7→ e′1 Subderivation
· ` apply (e1, e2) : τ Assumption
· ` e1 : arrow (τ ′, τ) and · ` e2 : τ ′ for some τ ′ By inversion
· ` e′1 : arrow (τ ′, τ) By i.h.
· ` apply (e′1, e2) : τ By rule

Case

v1 value e2 7→ e′2
apply (v1, e2) 7→ apply (v1, e

′
2)

Analogous to the previous case.

Case

v2 value

apply (fn (τ2, x.e1), v2) 7→ {v2/x}e1

· ` apply (fn (τ2, x.e1), v2) : τ Assumption
· ` fn (τ2, x.e1) : arrow (τ ′, τ) and · ` v2 : τ ′ for some τ ′ By inversion
·, x:τ ′ ` e1 : τ and τ2 = τ By inversion
· ` {v2/x}e1 : τ By substitution property

Case

rec (τ ′, x.e′) 7→ {rec (τ ′, x.e′)/x}e′

· ` rec (τ ′, x.e′) : τ Assumption
·, x:τ ` e′ : τ and τ ′ = τ By inversion
· ` {rec (τ, x.e′)/x}e′ By substitution property

�

In summary, in MinML preservation comes down to two observations:
(1) for the search rules, we just use the induction hypothesis, and (2) for
reduction rules, the interesting cases rely on the substitution property. The
latter states that substuting a (closed) expression of type τ for a variable of

LECTURE NOTES SEPTEMBER 16, 2004



L6.10 Type Safety

type τ in an expression of type τ ′ preserves the type of that expression as
τ ′.

In the next lecture we show the proof of the progress theorem and also
extend our language with more type constructors that will be necessary to
represent more complex data types.

LECTURE NOTES SEPTEMBER 16, 2004


