Lecture Notes on
A Functional Language

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 5
September 14, 2004

We now introduce MinML, a small fragment of ML that serves to illus-
trates key points in its design and key techniques for verifying its prop-
erties. The treatment here is somewhat cursory; see [Ch. 9] for additional
material. Roughly speaking, MinML arises from the arithmetic expression
language by adding booleans, functions, and recursion. Functions are (al-
most) first-class in the sense that they can occur anywhere in an expres-
sion, rather than just at the top-level as in other languages such as C. This
has profound consequences for the required implementation techniques (to
which we will return later), but it does not affect typing in an essential way.

First, we give the grammar for the higher-order abstract syntax. For the
concrete syntax, please refer to Assignment 2.

Types T ::= int |bool |arrow (r,72)
Integers n o= ...|—=1|0]1]...
Primops o ::= plus |minus |times | negate

| equals |lessthan

Expressions e ::= num(n)|o(ei,...,en)
| true |false |if (e,e1,e2)
| let (ej,x.e2)
| fn (7,z.e) | apply (e1,e2)
| rec (1,z.e)
| =z

Our typing judgment that sorts out the well-formed expressions has the
form I' - e : 7, where a context I' has the form -, z1:7, ..., 2,:7,. Itis a hy-

LECTURE NOTES SEPTEMBER 14, 2004

L5.2 A Functional Language

pothetical judgment as explained in the previous lecture. Our assumption
that all variables z; declared in a context must be distinct is still in force,
which means that the rule

T el

Tra:r oW

is unambiguous since there can be at most one declaration for z in I'.

We have already discussed arithmetic expressions; booleans constitute
a similar basic type. Unlike languages such as C, integers and booleans
are strictly separate types, avoiding some common confusions and errors.
Below are the typing rules related to booleans.

FFelzint P|—62:int
I' - equals (ep,ez) : bool

EqualsTyp

TrueTyp FalseTyp

I' - true : bool T false : bool

I'te:bool T'kFe:7 T'kFey:T
CHif (e e e2): 7

IfTyp

Perhaps the only noteworthy point here is that the two branches of a con-
ditional must have the same type. This is because we cannot know at type-
checking time which branch will be taken at run-time. We are therefore
conservative, asserting only that the result of the conditional will definitely
have type 7 if each branch has type 7. Later in this class, we will see a
type system that can more accurately analyze conditionals so that, for ex-
ample, if true then 1 else false could be given a type (which is
impossible here).

A more important extension from our first language of arithmetic ex-
pressions is the addition of functions. In mathematics we are used to de-
scribe functions in the form f(z) = e, for example f(z) = 2 + 1. In a func-
tional language we want a notation for the function f itself. The abstract
(mathematical) notation for this concept is A-abstraction, written f = Ax.e.
The above example would be written as f = Az.x? + 1.

In the concrete syntax of MinML we express Az:7.e as fn xit => e ;
in our abstract syntax it is written as fn (7,z.e). This is an illustration of
the unfortunate situation that we generally have to deal with at least three
ways of expressing the same concepts. One is the mathematical notation,
one is the concrete syntax, and one is the abstract syntax. In research pa-
pers, one mostly uses mathematical notation or pseudo-concrete syntax

LECTURE NOTES SEPTEMBER 14, 2004

A Functional Language L5.3

that really stands for abstract syntax but is easier to read. Inevitably, we
will also start sliding between levels of discourse which is acceptable as
long as we always know what we really mean.

Returning to functions, the typing rules are rather straightforward.

TembFe:n
' (11, z.e):arrow (71, 72)

FnTyp

I'kep:arrow (m2,7) T'heg:m
' apply (ej,e2):7

AppTyp

Keep in mind that in the rule FnTyp, the variable x must not already be de-
clared in I'. We can always rename z in fn (7, z.¢) to satisfy this condition,
because we treat abstract syntax as a-equivalence classes, that is, modulo
variable renaming.

Functions defined with the language given so far are rather limited. For
example, there is no way to define the exponential function from multipli-
cation and addition, because there is no way to express recursion implicit
in the definition

20 =1
2" = 2x2"! forn > 0.

We address this problem in the next lecture when we introduce the concept
of recursion.

Below is a summary of the typing rules for the language. We show only
the case of one operator—the others are analogous.

zr el
= NumT
F'Fax:7 VarTyp I'F num(n) :int Hmiyp
I'eq:int I'teq:int
EqualsT
'+ equals (ep,ez) : bool S TYp
TrueTyp FalseTyp

I' - true : bool I'+false : bool

I'e:bool T'kFe:7 T'hey:T
]
LHif (e,er,e9) 7 fTyp

'ter:mm Tyomber:m
T'Flet (61,1‘.62) I Ty

LetTyp

LECTURE NOTES SEPTEMBER 14, 2004

L5.4 A Functional Language

Izrmbe:n
C'Efn (r,2z.€):arrow (71, 72)

FnTyp

ke :arrow (1o,7) T'heg:m
't apply (ej,e2):7

AppTyp

We specify the operational semantics as a natural semantics also called a
big-step semantics. As the semantics for our small language of expressions, it
relates an expression to its final value (if it has one), but it does not directly
specify each step of evaluation. We use substitution instead of environ-
ments for simplicity, so the judgment has the form e || v where we assume
that - - e : 7. We also define the judgment e value which expresses that e is
a value (written v).

Integers This is quite simple and as for arithmetic expressions. First, only
numbers are values.

num(k) value

Then the rules for evaluations; we only show the rules for the primitive
equality operator.

num(k) J num(k)

e1 | num(kl) es || num(kg) (k‘l =]432)
equals (e, eq) | true

e1 | num(kl) es || num(krg) (k‘l 75 k‘Q)
equals (ej,e2) | false

Booleans First, true and false are values.

true value false value

LECTURE NOTES SEPTEMBER 14, 2004

A Functional Language L5.5

Then, the decision on which branch of a conditional to evaluate is based on
the return value of the condition.

true | true false | false

eltrue e Jvg e | false eo { v9
if (e,e1,ea) | vy if (e,e1,e2) | vo

Definitions This remains unchanged from the arithmetic expression lan-

guage.
er v {vi/z}es | v2

let (e1,x.e2) | v

Functions Itis often claimed that functions are “first-class”, but this is not
quite true, since we cannot observe the structure of functions in the same
way we can observe booleans or integers. Therefore, there is no need to
evaluate the body of a function, and in fact we could not since it is not
closed and we would get stuck when encountering the function parameter.
So, any function by itself is a value.

fn (7, x.e) value

The second question is if we have to evaluate the argument in a function
call before performing the call. Both answers are sensible. In languages like
C, Java, or ML, function arguments are evaluated. This also corresponds to
mathematical practice. For example, a function from integers to integers
takes integers as arguments, not expressions. Of course, we may perform
reasoning to deduce equations involving functions, but this is quite distinct
from computation. In other languages like Haskell, function arguments are
not evaluated. We will discuss this possibility and its applications in more
detail later in this course. Given that we evaluate arguments, we call our
language call-by-value and define it by the following rules.

fn (r,z.e) | fn (7,z.€)

e1 fn (2, x.€)) exdva {vo/x}el v
apply (e1,e2) I v

LECTURE NOTES SEPTEMBER 14, 2004

L5.6 A Functional Language

Which theorems regarding the operational semantics make sense in this
setting? First, we can state that evaluation, if it terminates, should always
result in a value. Second, we can state that evaluation preserves the type
of the expression all the way to its value. Finally, we want to claim that the
language is deterministic, that is, the value of an expression (if it exists) is
uniquely determined.

1. (Evaluation) If - e : 7 and e |} v then v value.
2. (Preservation) If -Fe:7ande | v, then-Fv: T

3. (Determinism) If - -e:7and e || v and e |} v” then v’ = v”.

We will return to the problem of proving these and similar theorems in
the next lecture. Note that this does not exhaust the possibilities of possible
theorems, and there are many other properties which may be of interest for
specific purposes in the implementation or use of a language.

We conclude the lecture with some discussion on how these inference
rules may be viewed as specifications of algorithms. Interestingly, the eval-
uation judgment can be viewed as an algorithm for evaluating an expres-
sion, and the typing judgment can be viewed as an algorithm for type-
checking. However, not every judgment can be interpreted in this way, so
we must take some care to ensure this kind of reading is meaningful. The
kind of reasoning we apply here is also the kind of reasoning required to
turn the judgments and rules into functional implementations (say, using
ML or Haskell as an implementation language). This sort of analysis is rou-
tine for programming language researchers, but it is rarely made explicit.

We begin with the evaluation judgment. We would like to read the rules
for evaluation as an algorithm for computing the value of an expression. So
we commit to saying that in the judgment e || v, e is the input (given) and v
is the output (to be computed). Now we analyze each rule to see if we can
see how to compute v given e.

Integers For integers, the analysis is entirely straightforward.

num(k) J num(k)

LECTURE NOTES SEPTEMBER 14, 2004

A Functional Language L5.7

Given the input num(k) we can indeed compute the (identical) output num(k).

el l} num(k:l) €9 lL num(kg) (k}l = kg)
equals (e, e2) || true

el U num(kl) €9 lL num(kg) (kl 7'é kQ)
equals (ej,e9) | false

Given the input equals (e;, e2) we know both e; and e;. Since e; is known,
by induction hypothesis' we can compute k;. From the second premise we
can obtain ky. Then we can compare these values and return either true
or false , depending on which rule applies.

We skip Booleans and definitions, and go right to the most complicated
case of functions.

Functions Function expression evaluate to themselves, so if we know the
input we can return the output.

fn (r,z.e) | fn (1,2.€)

er 4 fn (mo,x.e)) ex vy {va/a}e] Jo
apply (e1,e2) 4 v

For function application, the reasoning is more complex.

We are given apply (e1,e2).

Hence we know e; and es.

By i.h. we know fn (7, z.€)).

By i.h. we know vs.

We therefore can calculate {ve/x}e)
By i.h. we can compute v

Therefore we can return v

For the typing judgment, we can perform a similar analysis. But first we
have to decide what are the inputs, and what are the outputs of the judg-
ment I' - e : 7. We might try? to use both I, ¢, and 7 as inputs and decide

!This reasoning could be formally set up as an induction, showing that if e is given then
v can be computed (assuming it exists at all). Even though we do not formalize this, we still
refer to the “induction hypothesis” when analyzing the premises.

Zsuggested in lecture by a student

LECTURE NOTES SEPTEMBER 14, 2004

L5.8 A Functional Language

if the judgments holds or not (that is, either succeed or fail). Unfortunately,
this does not work for function application apply (e, e2): we cannot deter-
mine the type of the argument e.

I'kep:arrow (1o,7) T'Fey:m
't apply (ej,e2):7

AppTyp

We assume that I', apply (e, e2) and 7 are known. But we cannot apply the
induction hypothesis to the first premise, because 73 is unknown. Similarly,
we cannot apply the induction hypothesis to the second premise, since 7
is unknown. We are therefore stuck, which means that we cannot easily
interpret the typing rules for checking a given expression against a given
type.

Fortuntely, we can assume I" and e as inputs and generate 7 as output,
or fail (if the expression is not well-typed). In that case we analyze the rule
as follows.

I', apply (e1,e2) are given.

Therefore, e; and ey are known.

By ih.a 7 such thatI' - e; : 7y can be computed (or we fail).
By i.h. 7 can be computed from the second premise (or we fail).
Now we check if 7 = arrow (72, 7) for some 7.

If no, we fail.

If yes, we return 7.

Finally, we consider functional abstraction.

Teornbe:n
' (71, z.e):arrow (71, 72)

FnTyp

T, fn (71, x.e) are given.

Hence 7, z, and e are known.

By i.h. 75 can be computed (or we may fail).

If we succeed, we can construct arrow (7, 72).

This reasoning required that the type 7; be present in the expression,
otherwise we could not apply the induction hypothesis. This is precisely
the reason why 7 in in fact required in the syntax. ML does not require
this type, because it performs a much more complicated analysis of expres-
sions called type inference. Briefly, does not compute exact types but creates
placeholders and generates a potentially large set of equational constraints

LECTURE NOTES SEPTEMBER 14, 2004

A Functional Language L5.9

between types and placeholders which must be satisfied for the expression
to be well-typed. It then solves these constraints by an algorithm that re-
sembles Gaussian elimination for solving linear arithmetic equalities. We
will come back to this process in a later lecture.

LECTURE NOTES SEPTEMBER 14, 2004

