
Lecture Notes on
Static and Dynamic Semantics

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 4
September 9, 2004

In this lecture we illustrate the basic concepts underlying the static and
dynamic semantics of a programming language on a very simple example:
the language of arithmetic expression augmented by variables and defini-
tions.

The static and dynamic semantics are properties of the abstract syntax
(terms) rather than the concrete syntax (strings). Therefore we will deal
exclusively with abstract syntax here.

The static semantics can further be decomposed into two parts: variable
scope and rules of typing. They determine how to interpret variables, and
discern the meaningful expressions. As we saw in the last lecture, variable
scope is encoded directly into the terms representing the abstract syntax.
In this lecture we further discuss the laws governing variable binding on
terms. The second step will be to give the rules of typing in the form of an
inductively defined judgment. This is not very interesting for arithmetic
expressions, comprising only a single type, but it serves to illustrate the
ideas.

The dynamic semantics varies more greatly between different languages
and different levels of abstraction. We will only give a very brief introduc-
tion here and continue the topic in the next lecture.

The basic principle of variable binding called lexical scoping is that the
name of a bound variable should not matter. In other words, consistently
renaming a variable in a program should not affect its meaning. Everything
below will follow from this principle.

We now make this idea of “consistent renaming of variables” more pre-
cise. The development in [Ch. 5.3] takes simultaneous substitution as a

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004



L4.2 Static and Dynamic Semantics

primitive; we avoid the rather heavy notation by only dealing with a single
substitution at a time. This goes hand in hand with the decision that bind-
ing prefixes such as x.t only ever bind a single variable, and not multiple
ones. We use the notation {y/x}t to denote the result of substituting y for x
in t, yet to be defined. With that we will define renaming of x to y with the
equation

x.t =α y.{y/x}t
which can be applied multiple times, anywhere in a term. For this to pre-
serve the meaning, y most not already occur free in x.t, because otherwise
the free occurrence of y would be captured by the new binder.

As an example, consider the term

let (num(1), x.let (plus (x, num(1)), y.plus (y, x)))

which should evaluate to num(3). It should be clear that renaming y to x
should be disallowed. The resulting term

let (num(1), x.let (plus (x, num(1)), x.plus (x, x)))

means something entirely different and would evaluate to num(4).
To make this side condition more formal, we define the set of free vari-

ables in a term.

FV(x) = {x }
FV(o(t1, . . . , tn)) =

⋃
1≤i≤n FV(ti)

FV(x.t) = FV(t) \ {x }

So before defining the substitution {y/x}t we restate the rule defining
variable renaming, also called α-conversion, with the proper side condi-
tion:

x.t =α y.{y/x}t provided y /∈ FV(t)

Now back to the definition of substitution of one variable y for another
variable x in a term t, {y/x}t. The definition recurses over the structure of
a term.1

{y/x}x = y
{y/x}z = z provided x 6= z

{y/x}o(t1, . . . , tn) = o({y/x}t1, . . . , {y/x}tn)
{y/x}x.t = x.t
{y/x}z.t = x.{y/x}t provided x 6= z and y 6= z
{y/x}y.t undefined provided x 6= y

1It can in fact be seen as yet another form of inductive definition, but we will not formal-
ize this here.

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004



Static and Dynamic Semantics L4.3

Note that substitution is a partial operation. The reason the last case must
be undefined is because any occurrence of x in t would be replaced by y and
thereby captured. As an example while this must be ruled out, reconsider

let (num(1), x.let (plus (x, num(1)), y.plus (y, x)))

which evaluates to num(3). If we were allowed to rename x to y we would
obtain

let (num(1), y.let (plus (y, num(1)), y.plus (y, y)))

which once again means something entirely different and would evaluate
to num(4).

In the operational semantics we need a more general substitution, be-
cause we need to substitute one term for a variable in another term. We
generalize the definition above, taking care to rewrite the side condition
on substitution in a slightly more general, but consistent form, in order to
prohibit variable capture.

{u/x}x = u
{u/x}z = z provided x 6= z

{u/x}o(t1, . . . , tn) = o({u/x}t1, . . . , {u/x}tn)
{u/x}x.t = x.t
{u/x}z.t = z.{u/x}t provided x 6= z and z /∈ FV(u)
{u/x}z.t undefined provided x 6= z and z ∈ FV(u)

In practice we would like to treat substitution as a total operation. This
cannot be justified on terms, but, surprisingly, it works on α-equivalence
classes of terms! Since we want to identify terms that only differ in the
names of their bound variables, this is sufficient for all purposes in the
theory of programming languages. More formally, the following theorem
(which we will not prove) justifies treating substitution as a total operation.

Theorem 1 (Substitution and α-Conversion)
(i) If u =α u′, t =α t′, and {u/x}t and {u′/x}t′ are both defined, then

{u/x}t =α {u′/x}t′.

(ii) Given u, x, and t, then there always exists a t′ =α t such that {u/x}t′
is defined.

We sketch the proof of part (ii), which proceeds by induction on the size
of t. If {u/x}t is defined we choose t′ to be t. Otherwise, then somewhere
the last clause in the definition of substitution applies and there is a binder

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004



L4.4 Static and Dynamic Semantics

z.t1 in t such that z ∈ FV(u). Then we can rename z to a new variable z′

which occurs neither in free in u nor free in z.t1 to obtain z′.t′1. Now we can
continue with z′.{u/x}t′1. by an appeal to the induction hypothesis.

The algorithm described in this proof is in fact the definition of capture-
avoiding substitution which makes sense whenever we are working modulo
α-equivalence classes of terms. Fortunately, this will always be the case for
the remainder of this course.

With the variable binding, renaming, and substitution understood, we
can now formulate a first version of the typing rules for this language. Be-
cause there is only one type, nat , the rules are somewhat trivialized. Their
only purpose for this small language is to verify that an expression e is
closed, that is, FV(e) = { }.

A first judgmental way to express this would be the following2:

k nat
num(k) : nat

e1 : nat e2 : nat
plus (e1, e2) : nat

e1 : nat e2 : nat
times (e1, e2) : nat

e1 : nat {e1/x}e2 : nat

let (e1, x.e2) : nat

While this is perfectly correct, it has the potential problem that it re-checks
e1 for every occurrence of x in e2. This could be avoided by substituting a
fixed value such as num(0) for x and checking the result.

A more common (and more scalable) alternative is to use a new judg-
ment form, a so-called hypothetical judgment. We write it as

J1, . . . , Jn ` J

which means that J follows from assumptions J1, . . . , Jn. Its most basic
property is that

J1, . . . , Ji, . . . Jn ` Ji

always holds, which should be obvious: if an assumption is identical to the
judgment we are trying to derive, we are done. We will nonetheless restate
instances of this general principle for each case.

The particular form of hypothetical judgment we consider is

x1:nat , . . . , xn:nat ` e : nat

which should be read:
2suggested by a student in class

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004



Static and Dynamic Semantics L4.5

Under the assumption that variables x1, . . . , xn stand for natural num-
bers, e has the type of natural number.

We usually abbreviate a whole sequence of assumptions with the letter Γ.3

We write ‘·’ for an empty collection of assumptions, and we abbreviate
·, x:nat by x:nat . In order to avoid ambiguities, we always assume that
all variables declared in a context are distinct.

The typing judgment is defined by the following rules.

x:nat ∈ Γ
Γ ` x : nat

k nat
Γ ` num(k) : nat

Γ ` e1 : nat Γ ` e2 : nat
Γ ` plus (e1, e2) : nat

Γ ` e1 : nat Γ ` e2 : nat
Γ ` times (e1, e2) : nat

Γ ` e1 : nat Γ, x:nat ` e2 : nat

Γ ` let (e1, x.e2) : nat

In the last rule some care has to be taken to make sure that x is not declared
twice in the context. If the variable x bound in let (e1, x.e2) is already de-
clared, we use the assumption that we work modulo α-equivalence classes
and rename the variable x to a fresh variable x′ before applying the rule.

The point of being interested in typing for this small language is only
to guarantee that there are no free variables in a term to the evaluation will
not get stuck. This property can easily be verified.

Theorem 2
If · ` e : nat then FV(e) = { }.

Proof: We cannot prove this directly by rule induction, since the second
premise of the rule for let introduces an assumption. So we generalizing
to

If x1:nat , . . . , xn:nat ` e : nat then FV(e) ⊆ {x1, . . . , xn}.

This generalized statement can be proved easily by rule rule induction. �

Next we would like to give the operational semantics, specifying the
value of an expression. We represent values also as expressions, although
they are restricted to have the form num(k). Generally, when we write an

3In [Ch. 6] this is written instead as Γ ` e ok, where Γ is a set of variables. Since there is
only one type, the two formulations are clearly equivalent.

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004



L4.6 Static and Dynamic Semantics

expression as v we imply that it is a value and therefore has the form num(k)
for some k.

There are multiple ways to specify the operational semantics, for exam-
ple as a structured operational semantics [Ch. 7.1] or as an evaluation se-
mantics [Ch. 7.2]. We give two forms of evaluation semantics here, which
directly relate an expression to its value.

The first way employs a hypothetical judgment in which we make as-
sumptions about the values of variables. It is written as

x1⇓v1, . . . , xn⇓vn ` e ⇓ v.

We call x1⇓v1, . . . , xn⇓vn an environment and denote an environment by η.
It is important that all variables xi in an environment are distinct so that
the value of a variable is uniquely determined.

x⇓v ∈ η

η ` x ⇓ v η ` num(k) ⇓ num(k)

η ` e1 ⇓ num(k1) η ` e2 ⇓ num(k2)
η ` plus (e1, e2) ⇓ num(k1 + k2)

η ` e1 ⇓ num(k1) η ` e2 ⇓ num(k2)
η ` times (e1, e2) ⇓ num(k1 × k2)

η ` e1 ⇓ v1 η, x⇓v1 ` e2 ⇓ v2

η ` let (e1, x.e2) ⇓ v2
(x not declared in η)

In the rule for let we make the assumption that the value of x is v1 while
evaluating e2. One may be concerned that this operational semantics is
partial, in case bound variables with the same name occur nested in a term.
However, since we working with α-equivalences classes of terms we can
always rename the inner bound variable to that the rule for let applies. We
will henceforth not make such a side condition explicit, using the general
convention that we rename bound variables as necessary so that contexts
or environment declare only distinct variables.

An alternative semantics uses substitution instead of environments. For
this judgment we evaluate only closed terms, so no hypothetical judgment
is needed.

No rule for variables x num(k) ⇓ num(k)

e1 ⇓ num(k1) e2 ⇓ num(k2)
plus (e1, e2) ⇓ num(k1 + k2)

e1 ⇓ num(k1) e2 ⇓ num(k2)
times (e1, e2) ⇓ num(k1 × k2)

e1 ⇓ v1 {v1/x}e2 ⇓ v2

let (e1, x.e2) ⇓ v2

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004



Static and Dynamic Semantics L4.7

We postpone a discussion on the relationship between the two forms
of semantics, but we will considered how typing is related to the opera-
tional semantics. Clearly, we cannot pick rules arbitrarily, but typing must
reflect the operational behavior of programs and, conversely, the opera-
tional semantics must reflect typing. As first example of this relationship
we show that well-typed and closed arithmetic expressions always evalu-
ate to a value.

If · ` e : nat then · ` e ⇓ num(k) for some k.

We cannot prove this directly by induction, since the second premise in the
case of the typing rule for let (e1, x.e2) would have the form ·, x:nat ` e2 :
nat . This does not match the induction hypothesis where the context is
required to be empty.

If we look at the rules for typing and evaluation side-by-side, we see
that if we start with an empty context and environment, the set of variables
in the derivations always correspond. We define that η matches Γ if η defines
values for the same variables as are declared in Γ.

Lemma 3 (Evaluation in Environment)
If Γ ` e : nat and η matches Γ then η ` e ⇓ num(k) for some k.

Proof: By rule induction on the derivation of Γ ` e : nat .

(Rule for num(k)) Then

η ` num(k) ⇓ num(k) By rule

(Rule for plus (e1, e2)) Then

Γ ` e1 : nat Subderivation
Γ ` e2 : nat Subderivation
η matches Γ Assumption
η ` e1 ⇓ num(k1) for some k1 By i.h.
η ` e2 ⇓ num(k2) for some k2 By i.h.
η ` plus (e1, e2) ⇓ num(k1 + k2) By rule

(Rule for times (e1, e2)) Analogous to previous case.

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004



L4.8 Static and Dynamic Semantics

(Rule for variable x) Then

x:nat ∈ Γ Subderivation
η matches Γ Assumption
x⇓num(k) for some k By defn. of matching
η ` x ⇓ num(k) By rule

(Rule for let (e1, x.e2)) Then

Γ ` e1 : nat Subderivation
η matches Γ Assumption
η ` e1 ⇓ num(k) By i.h.
η, x⇓num(k) matches Γ, x:nat By defn. of matching
Γ, x:nat ` e2 : nat Subderivation
η, x⇓num(k) ` e2 ⇓ num(k2) By i.h.
η ` let (e1, x.e2) ⇓ num(k2) By rule

�

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004


