
Lecture Notes on Inductive Definitions

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 2
September 2, 2004

These supplementary notes review the notion of an inductive definition
and give some examples of rule induction. References to Robert Harper’s
draft book on Programming Languages: Theory and Practice are given in square
brackets, by chapter or section.

Given our general goal to define and reason about programming lan-
guages, we will have to deal with a variety of description tasks. The first is
to describe the grammar of a language. The second is to describe its static
semantics, usually via some typing rules. The third is to describe its dy-
namic semantics, often via transitions of an abstract machine. On the sur-
face, these appear like very different formalisms (grammars, typing rules,
abstract machines) but it turns out that they can all be viewed as special
cases of inductive definitions [Ch. 1]. Following standard practice, inductive
definitions will be presented via judgments and inference rules providing
evidence for judgments.

The first observation is that context-free grammars can be rewritten in
the form of inference rules [Ch. 3.2]. The basic judgment has the form

s A

where s is a string and A is a non-terminal. This should be read as the
judgment that s is a string of syntactic category A.

As a simple example we consider the language of properly matched
parentheses over the alphabet Σ = {(,) }. This language can be defined by
the grammar

M : : = ε | (M) | M M

with the only non-terminal M . Recall that ε stands for the empty string.
Rewritten as inference rules we have:

LECTURE NOTES SEPTEMBER 2, 2004

L2.2 Inductive Definitions

ε M
m1

s M

(s) M
m2

s1 M s2 M

s1 s2 M
m3

As an example, consider a deduction of () () M .

ε M
m1

() M
m2

ε M
m1

() M
m2

() () M
m3

Our interpretation of these inference rules as an inductive definition of
the judgment s M for a string s means:

s M holds if and only if there is a deduction of s M using rules (m1),
(m2), and (m3).

Based on this interpretation we can prove properties of strings in the syn-
tactic category M by rule induction. To apply rule induction we have to
show that the property in question is preserved by every inference rule
of the judgment s M . That is, we have to show that for each rule, if all
premises satisfy the property then the conclusion also satisfies the prop-
erty. Here is a very simple example.

Theorem 1 (Counting Parentheses)
If s M then s has the same number of left and right parentheses.

Proof: By rule induction. We consider each case in turn.

(Rule m1) Then s = ε.

s has 0 left and 0 right parens Since s = ε

(Rule m2) Then s = (s′) .

s′ M Subderivation
s′ has n′ left and right parens for some n′ By i.h.
s has n′ + 1 left and right parens Since s = (s′)

LECTURE NOTES SEPTEMBER 2, 2004

Inductive Definitions L2.3

(Rule m3) Then s = s1 s2.

s1 M Subderivation
s2 M Subderivation
s1 has n1 left and right parens for some n1 By i.h.
s2 has n2 left and right parens for some n2 By i.h.
s has n1 + n2 left and right parens Since s = s1 s2

�

The grammar we gave, unfortunately, is ambiguous [Ch. 3.3]. For ex-
ample, there are infinitely many derivations that ε M , because

ε = ε ε = ε ε ε = · · ·

In the particular example of this grammar we would be able to avoid rewrit-
ing it if we can show that the abstract syntax tree [Ch. 4] we construct will
be the same, independently of the derivation of a particular judgment.

An alternative is to rewrite the grammar so that it defines the same
language of strings, but the derivation of any particular string is uniquely
determined. The following grammar accomplishes this: 1

L : : = ε | (L) L

One can think of L as a (possibly empty) list of parenthesized expres-
sions, terminated by the empty string. This readily translates into an in-
ductive definition via inference rules.

ε L
l1

s1 L s2 L

(s1) s2 L
l2

Now there are two important questions to ask: (1) is the new grammar
really equivalent to the old one in the sense that it generates the same set of

1An alternative solution, suggested in lecture in 2003, exemplifies the idea of a simul-
taneous inductive definition. It uses two non-terminals L and N , where the category L
corresponds to M , while N is an auxiliary non-terminal.

L : : = ε | N L
N : : = (L)

Note that the new definition arises from substituting out the definition of N in the alterna-
tion for L.

LECTURE NOTES SEPTEMBER 2, 2004

L2.4 Inductive Definitions

strings, and (2) is the new grammar really unambiguous. The latter is left
as a (non-trivial!) exercise; the first one we discuss here.

At a high level we want to show that for any string s, s M iff s L. We
break this down into two lemmas. This is because “if-and-only-if” state-
ments can rarely be proven by a single induction, but require different con-
siderations for the two directions.

We first consider the direction where we assume s M and try to show
s L. When writing out the cases we notice we need an additional lemma.
As is often the case, the presentation of the proof is therefore different from
its order of discovery. To read this proof in a more natural order, skip ahead
to Lemma 3 and pay particular attention to the last step in the case of rule
(m3). That step motivates the following lemma.

Lemma 2 (Concatenation)
If s1 L and s2 L then s1 s2 L.

Proof: By induction on the derivation of s1 L. Note that induction on the
derivation on s2 L will not work in this case!

(Rule l1) Then s1 = ε.

s2 L Assumption
s1 s2 L Since s1 s2 = ε s2 = s2

(Rule l2) Then s1 = (s11) s12.

s11 L Subderivation
s12 L Subderivation
s2 L Assumption
s12 s2 L By i.h.
(s11) s12 s2 L By rule (l2)

�

Now we are ready to prove the left-to-right implication.

Lemma 3
If s M then s L.

Proof: By induction on the derivation of s M .

LECTURE NOTES SEPTEMBER 2, 2004

Inductive Definitions L2.5

(Rule m1) Then s = ε.

s L By rule (l1) since s = ε

(Rule m2) Then s = (s′) .

s′ M Subderivation
s′ L By i.h.
ε L By rule (l1)
(s′) L By rule (l2) and (s′) ε = (s′)

(Rule m3) Then s = s1 s2.

s1 M Subderivation
s2 M Subderivation
s1 L By i.h.
s2 L By i.h.
s1 s2 L By concatenation (Lemma 2)

�

The right-to-left direction presents fewer problems.

Lemma 4
If s L then s M .

Proof: By rule induction on the derivation of s L. There are two cases to
consider.

(Rule l1) Then s = ε.

s M By rule (m1), since s = ε

(Rule l2) Then s = (s1) s2.

s1 L Subderivation
s2 L Subderivation
s1 M By i.h.
(s1) M By rule (m2)
s2 M By i.h.
(s1) s2 M By rule (m3)

LECTURE NOTES SEPTEMBER 2, 2004

L2.6 Inductive Definitions

�

Now we can combine the preceding lemmas into the theorem we were
aiming for.

Theorem 5
s M if and only if s L.

Proof: Immediate from Lemmas 3 and 4. �

Some advice on inductive proofs. Most of the proofs that we will carry
out in the class are by induction. This is simply due to the nature of the
objects we study, which are generally defined inductively. Therefore, when
presented with a conjecture that does not follow immediately from some
lemmas, we first try to prove it by induction as given. This might involve a
choice among several different given objects or derivations over which we
may apply induction. If one of them works we are, of course, done. If not,
we try to analyse the failure in order to decide if (a) we need to seperate out
a lemma to be proven first, (b) we need to generalize the induction hypothesis,
or (c) our conjecture might be false and we should look for a counterexample.

Finding a lemma is usually not too difficult, because it can be suggested
by the gap in the proof attempt you find it impossible to fill. For example, in
the proof of Lemma 3, case (Rule m3), we obtain s1 L and s2 L by induction
hypothesis and have to prove s1 s2 L. Since there are no inference rules
that would allow such a step, but it seems true nonetheless, we prove it as
Lemma 2.

Generalizing the induction hypothesis can be a very tricky balancing
act. The problem is that in an inductive proof, the property we are trying
to establish occurs twice: once as an inductive assumption and once as
a conclusion we are trying to prove. If we strengthen the property, the
induction hypothesis gives us more information, but conclusion becomes
harder to prove. If we weaken the property, the induction hypothesis gives
us less information, but the conclusion is easier to prove. Fortunately, there
are easy cases in which the nature of the mutually recursive judgments
suggested a generalization.

Finding a counterexample greatly varies in difficulty. Mostly, in this
course, counterexamples only arise if there are glaring deficiencies in the
inductive definitions, or rather obvious failure of properties such as type
safety. In other cases it might require a very deep insight into the nature

LECTURE NOTES SEPTEMBER 2, 2004

Inductive Definitions L2.7

of a particular inductive definition and cannot be gleaned directly from a
failed proof attempt. An example of a difficult counterexample is given by
the extra credit Question 2.2 in Assignment 1 of this course. The conjecture
might be that every tautology is a theorem. However, there is very little in
the statement of this theorem or in the definition of tautology and theorem
which would suggest means to either prove or refute it.

Three pitfalls to avoid. The difficulty with inductive proofs is that one
is often blinded by the fact that the proposed conjecture is true. Similarly,
if set up correctly, it will be true that in each case the induction hypothesis
does in fact imply the desired conclusion, but the induction hypothesis may
not be strong enough to prove it. So you must avoid the temptation to
declare something as “clearly true” and prove it instead.

The second kind of mistake in an inductive proof that one often encoun-
ters is a confusion about the direction of an inference rule. If you reason
backwards from what you are trying to prove, you are thinking about the
rules bottom up: “If I only could prove J1 then I could conclude J2, because I
have an inference rule with premise J1 and conclusion J2.” Nonetheless, when
you write down the proof in the end you must use the rule in the proper
direction. If you reason forward from your assumptions using the infer-
ence rules top-down then no confusion can arise. The only exception is the
proof principle of inversion, which you can only employ if (a) you have
established that a derivation of a given judgment J exists, and (b) you con-
sider all possible inference rules whose conclusion matches J . We will see
examples of this form of reasoning later in the course. In no other case can
you use an inference rule “backwards”.

The third mistake to avoid is to apply the induction hypothesis to a
derivation that is not a subderivation of the one you are given. Such rea-
soning is circular and unsound. You must always verify that when you
claim something follows by induction hypothesis, it is in fact legal to apply
it!

How much to write down. Finally, a word on the level of detail in the
proofs we give and the proofs we expect you to provide in the homework
assignments. The proofs in this handout are quite pedantic, but we ask
you to be just as pedantic unless otherwise specified. In particular, you
must show any lemmas you are using, and you must show the generalized
induction hypothesis in an inductive proof (if you need a generalization).
You also must consider all the cases and justify each line carefully. As we

LECTURE NOTES SEPTEMBER 2, 2004

L2.8 Inductive Definitions

gain a certain facility with such proofs, we may relax these requirements
once we are certain you know how to fill in the steps that one might omit,
for example, in a research paper.

Specifications vs. implementations. The grammar of our language of prop-
erly balanced parentheses (and also its formulation as an inductive def-
inition) must be seen as a specification. That is, we define a language of
strings (in the case of the grammar) or the judgment s M (in the case of a
judgment), but we do not immediately provide an implementation. In this
case, such an implementation would be an algorithm for recognizing if a
given string is a properly balanced string of parentheses. Ambiguity in
the grammar, as noted in class, is one obstacle to deriving a parser from
the specification of a grammar. In general, there are large classes of lan-
guages (including those specified by a context-free grammars) for which
we can uniformly generate a parser from a grammar. Here, we will pursue
a different direction, namely writing a parser for this specific language and
proving that it is correct.

Interpreting inference rules as algorithms. To implement a parser, one
would normally pick a programming language and simply write a pro-
gram. However, then we would be faced with the problem of proving the
correctness of that program, which depends on the details of the definition
of the underlying implementation language.

Here we exploit instead that it is also possible to present some algo-
rithms in the form of inference rules. Performing the algorithm corre-
sponds to the search for a deduction of a judgment, as we will see shortly
below. In programming language terminology this approach is called logic
programming.

But first we have to decide on an algorithm for recognizing if a given
string consists of properly matched parentheses. The informal idea of the
parsing process for matching parentheses is quite straightforward: we keep
an integer counter, initialized to zero, and increment it when we see an
opening parenthesis and decrement it when we see a closing parenthe-
sis. We need to check two conditions: (a) the counter never becomes neg-
ative (otherwise there would be too many closing parentheses) and (b)
the counter is zero at the end (otherwise there would be unmatched open
parentheses).

The process of parsing then corresponds to the bottom-construction of

LECTURE NOTES SEPTEMBER 2, 2004

Inductive Definitions L2.9

a derivation for a judgment
k B s

which means that s is a valid string with respect to counter k. More specif-
ically, s is a valid string, given that we have already seen k left parentheses
that have not yet been matched by right parentheses. We assume that k ≥ 0
is an integer. The symbol B has no special meaning here—it is simply used
to separate the integer k from the string s. We now develop the rules for
this two-place (binary) judgment.

First, if the string s is empty then we accept if the counter is 0. This
corresponds to condition (b) mentioned above.

0 B ε
B1

Second, if the string s starts with an opening parenthesis, we increment
the counter by 1. A less operational reading is: if s is a valid string with
respect to k + 1, then (s is a valid string in stack k.

k + 1 B s

k B (s
B2

Finally, if we see a closing parenthesis at the beginning of the string,
then we subtract one from the counter. It is important to check that the
counter remains non-negative; otherwise we might be accepting incorrectly
formed strings. A less operational reading is: if s is a valid string with
counter k > 0 then) s is a valid string with counter k − 1.

k − 1 B s (k > 0)

k B) s
B3

Since these are all the rules, the bottom-up construction of a derivation
will get stuck if the string s begins with a closing parentheses and k is zero.
That is, there is no rule with which we could infer 0 B) s, no matter what
s is. This corresponds to condition (a) mentioned at the beginning of this
discussion.

It is easy to see that this parser is inherently unambiguous. That is,
when we start to construct a derivation of 0 B s in order to parse s, then
at each stage there is at most one rule that can be applied, depending on
whether s is empty (rule B1), starts with an opening parenthesis (rule B2),
or starts with a closing parenthesis (rule B3). Therefore, we can think of the
judgment as describing a deterministic algorithm for parsing a string.

LECTURE NOTES SEPTEMBER 2, 2004

L2.10 Inductive Definitions

This judgment can be related to a push-down automaton. Instead of a
counter k, we would have a stack ((· · · (consisting of k opening parenthe-
ses. It is easy to rewrite the rules above into this form. As an aside, it turns
out that every context-free grammar can be accepted by a (possibly non-
deterministic) pushdown automaton, although the general construction of
a pushdown automaton from a context-free grammar is more complex than
in this particular example.

But does the judgment above really accept the language of properly bal-
anced parentheses? We would like to prove that s M if and only if 0 B s. As
usual, we break this up into two separate lemmas, one for each direction.

For the first direction, we need one further lemma that captures the
essence of the left-to-right processing of the input string and the use of k as
a counter of unmatched open parentheses. This lemma would typically be
conjectured (and then proven) only in reaction to a gap in the proof of the
main theorem, but when written up it should be presented in the opposite
order.

Lemma 6 (Stack)
If k1 B s1 and k2 B s2 then k1 + k2 B s1 s2

Proof: By rule induction on the derivation of k1 B s1.

(Rule B1) Then k1 = 0 and s1 = ε.

k2 B s2 Assumption
k1 + k2 B s1 s2 Since k1 = 0 and s1 = ε

(Rule B2) Then s1 = (s′
1.

k1 + 1 B s′
1 Subderivation

k2 B s2 Assumption
k1 + k2 + 1 B s′

1 s2 By i.h.
k1 + k2 B (s′

1 s2 By rule (B2)

(Rule B3) Then s1 =) s′
1 and k1 > 0.

k1 − 1 B s′
1 Subderivation

k2 B s2 Assumption
k1 + k2 − 1 B s′

1 s2 By i.h.
k1 + k2 > 0 Since k1 > 0, k2 ≥ 0
k1 + k2 B) s′

1 s2 By rule (B3)

LECTURE NOTES SEPTEMBER 2, 2004

Inductive Definitions L2.11

�

Now we can prove the first direction of the correctness theorem for the
parser.

Lemma 7
If s M then 0 B s.

Proof: By rule induction on the derivation of s M .

(Rule m1) Then s = ε.

0 B ε By rule (B1)

(Rule m2) Then s = (s′) .

s′ M Subderivation
0 B s′ By i.h.
0 B ε By rule (B1)
1 B) By rule (B3)
1 B s′) By Lemma 6
0 B (s′) By rule (B2)

(Rule m3) Then s = s1 s2.

s1 M Subderivation
0 B s1 By i.h.
s2 M Subderivation
0 B s2 By i.h.
0 B s1 s2 By Lemma 6

�

In order to prove the other direction (if 0 B s then s M) we first gener-
alize to:

If k B s then (· · · (︸ ︷︷ ︸
k

s M .

This proof (which is left to the reader) requires another lemma, this time
about the M judgment. Finally, putting the two directions together proves
the correctness of our parser.

LECTURE NOTES SEPTEMBER 2, 2004

L2.12 Inductive Definitions

Summary. In this lecture, we introduced the concept of an inductive defi-
nition of a judgment, presented in the form of inference rules. As examples,
we used inductive presentations of grammars and showed how to prove
their equivalence via rule induction. We also sketched how algorithms can
be presented via inference rules, using a parsing algorithm as an example.
This form of presentation for algorithms, where computation is modeled
by search for a deduction, is called logic programming,

LECTURE NOTES SEPTEMBER 2, 2004

