
15-312 Foundations of Programming Languages

Recitation 5: Closures

Daniel Spoonhower
spoons+@cs

September 24, 2003

1 Closures in Action

To see why closures are necessary, consider evaluation of the following expression
in detail (using the original set of evaluation rules given in lecture).

· | · > apply(apply(fn(int, x.fn(int, y.x)), 7), 3)
7→e apply(�, 3) | · > apply(fn(int, x.fn(int, y.x)), 7)
7→e apply(�, 3) . apply(�, 7) | · > fn(int, x.fn(int, y.x))
7→e apply(�, 3) . apply(�, 7) | · > fn(int, x.fn(int, y.x))
7→e apply(�, 3) . apply(�, 7) | · < fn(int, x.fn(int, y.x))
7→e apply(�, 3) . apply(fn(int, x.fn(int, y.x)),�) | · > 7
7→e apply(�, 3) . apply(fn(int, x.fn(int, y.x)),�) | · < 7
7→e apply(�, 3) . · | ·, x = 7 > fn(int, y.x)
7→e apply(�, 3) . · | ·, x = 7 < fn(int, y.x)
7→e apply(�, 3) | · < fn(int, y.x)

(You should be quite skeptical at this point!)
7→e apply(fn(int, y.x),�) | · > 3
7→e apply(fn(int, y.x),�) | · < 3
7→e · | ·, y = 3 > x

With even a very simple example, we are able to show how things go wrong.
(Do you see how to modify the above evaluation sequence to include closures

for the functions?)

2 Suspensions

The look-up rule for ordinary variables was

k | η > x 7→e k | η < v

when (x = v) ∈ η.

1

Think about how this rule would be applied in expression such as

rec(int→ int, f.fn(int, x.apply(f, x)))

Using an ordinary binding and the above look-up rule, we would arrive a machine
state such as

k | η < rec(int→ int, f.fn(int, x.apply(f, x)))

However, rec is not a value! Pushing this expression back into an evaluation
frame will not maintain the semantics we have previously presented. How do we
go about fixing our machine semantics to preserve the meaning of our program?

(An alternative semantics of rec in a call-by-value language is to bind the
recursive variable to a thunk. That is

k | η > rec(τ, x.e) 7→ k . η | η, x = 〈〈η; fn(unit, .e)〉〉 > e

with all occurrences of x in e rewritten as apply(x, unitel). How does this
compare to our semantics?)

3 Closure Conversion

Rather than build closures as part of the dynamic semantics, we can ensure that
all values are closed statically, using a process known as closure conversion. The
general idea is to determine the free variables of an expression and then build a
record mapping each of the variables to a value. Then we wrap the expression
in a new function abstraction (a function whose parameter is this record) and
replace uses of free variables with projections of the record.1 Let’s consider this
in a bit more detail.

Take our example from above:

fn(int, x.fn(int, y.x))

Call this expression f. Note that g itself is closed, though it contains a subex-
pression with a free variable. We will take that subexpression and add an explicit
environment parameter.

fn(?, env.fn(int, y.x))

Then we replace occurrences of the free variable with projections from env

fn(?, env.fn(int, y.proj(x, env)))

and pair this new (closed) function with a record that binds exactly those records
that are necessary.

pair(fn(?, env.fn(int, y.proj(x, env))), {x = x})

We then could do the same for g itself, though in this case the environment
record would be empty. Applications g4 would be written as follows.

apply(apply(fst(g), snd(g)), 4)
1That said, we’ll discuss closure conversion in a language with pairs and records.

2

3.1 Typing

Consider the following example before

let w = 5 in
let x = true in
if true then
fn y : int => w

else
fn z : int => if x then z else 7 fi

fi
end

end : int -> int

and after closure conversion:

let w = 5 in
let x = true in
if true then
(fn env : ? => fn y : int => #w env, {w = w})

else
(fn env : ? => fn z : int => if #x env then z else 7 fi, {x = x})
fi

end
end : ?

What type can we assign to the if statement – perhaps something such as
? → int → int? Think about how we would use the result of this expression.
Call the entire (closure converted) expression above g. g has a product type
(?→ int→ int) ∗ ? where the two “?” are the same. How can we enforce this
constraint? As we will see in an upcoming lecture, existential types are exactly
what we need.

3.2 A Look Ahead

Another way to describe what we’ve done here would be to say that we’ve bound
up the code of our program together with the data relevant to that code. In our
discussion above, we only considered pairing a single function with its closure,
but there’s no reason not to consider functions that share data. In fact, we will
do exactly that when we add objects to MinML a few weeks from now.

3

