15-312 Recitation Notes #13

Joshua Dunfield
Carnegie Mellon University

November 20, 2002

Review of the m-calculus

m-calculus actions:

T ou= T(y) Send y on channel z
| z(y) Receive y on channel x
| T Silent action

Process expressions:

P .= xnP Take action 7, continue with P
| 0 Finished
| P+---+ P, Alternation
| (P | P) Parallel
| newa P Binding
| 1P Replication

Recall the structural equivalence |P = P | P.

Warm-up: Encoding booleans

Suppose we had to program in MinML without a boolean type (in fact,

without any base types), and therefore without an if-then-else construct.

Can we encode booleans using only functions? We need to encode the type

bool, the constructors true and false, and the construct if(e,el,e2).
The standard encoding is

bool =Vttt -t —t
true = At Af.L
false = M.Af.f

if(e,e1,e2) = eeg e

It’s not too far a leap from the above to an encoding in the m-calculus. Just
as At.Af.t selects its first argument, we can write £(t, f).t to select (write to)

the first component of the pair (¢, f) written to the channel £.

True(€) = £(t, f).t
False(t) = L(t, f).f
Iftt, P,Q) = new (t,) ((t, f) | (t-P + 1.Q))

Example:

Ifie, P,Q) | True(t) = (new (¢, f) (£t f) | (t.P + f.Q))) | £(t, f)-t
| ¢

Encoding the natural numbers

Just as bool is essentially the datatype

datatype bool =
true
| false

the natural numbers are essentially the datatype

datatype nat =
Z (* zero *)
| S of nat (* successor x*)

Like bool, nat has two constructors, so a process that “is” a natural
number will read two values—the first telling it what to do if it is zero, the
second what to do if it is the successor of something. The Z constructor,
like the constructors of bool, takes no arguments. Thus, its encoding is
analogous to the encoding of true and false.

On the other hand, the constructor S is not nullary. So instead of transmit-
ting nothing along the channel s, it transmits n, which is (a channel to) the
number it is the successor of.

Example. Suppose we have the following processes. Note that zero and
one are channel names; a natural number is manipulated by sending a z and
an s to one of these channels.

Z(zero)
| S(one, zero)
| one(p, q)
| p(). print "."
| q(n). (print "*"; 7(p, q))

By the definitions above, this is equivalent to

zero(z,s). z
| one(z, s).s(zero)
| one(p, q)
| p(). print "."
| q(n). (print "*"; n(p,q))

It’s quite easy to run this set of processes by hand; the result should be that
* . is printed.

What happens if we also have S(two, one) and do two(p, ¢)? We might
expect the output “x*x.”. However, the process receiving along ¢ is “used
up” the first time it’s run, so we will deadlock trying to send to a channel ¢
that has no receiver! The solution is to use replication:

lq(n). (print "*"; 7(p,q))

Now, by the rules of structural equivalence, we can make as many copies of
g(n). (print "*"; 7(p,q)) as we need.

Observe that a similar phenomenon arises if we try to use a number more
than once. In the example above, as soon as we send to one, that process
steps to 0 (strictly speaking we should have written one(z, s).s(zero).0), so
by the rules of structural equivalence, it vanishes into thin air. Again the
solution is simply to put a ! before any “object” we might wish to use more
than once.

As an interesting example of this, SML does not let you declare a number
n to be S(n) (the successor of itself), but we can easily do so in the m-calculus:

! S(inf, inf) Linf(z, s). 3(inf)

If we send p and ¢ (as above) to inf, we will forever print asterisks.

Given in second recitation but omitted here: succ and add (untested).

