Review of the π-calculus

π-calculus actions:

\[
\begin{align*}
\pi & ::= \pi(y) & \text{Send } y \text{ on channel } x \\
& | x(y) & \text{Receive } y \text{ on channel } x \\
& | \tau & \text{Silent action}
\end{align*}
\]

Process expressions:

\[
\begin{align*}
P & ::= \pi.P & \text{Take action } \pi, \text{ continue with } P \\
& | 0 & \text{Finished} \\
& | P_1 + \cdots + P_n & \text{Alternation} \\
& | (P_1 \mid P_2) & \text{Parallel} \\
& | \text{new } a \ P & \text{Binding} \\
& | !P & \text{Replication}
\end{align*}
\]

Recall the structural equivalence $!P \equiv P \mid !P$.

Warm-up: Encoding booleans

Suppose we had to program in MinML without a boolean type (in fact, without any base types), and therefore without an if-then-else construct. Can we encode booleans using only functions? We need to encode the type bool, the constructors true and false, and the construct $\text{if}(e, e_1, e_2)$.

The standard encoding is

\[
\begin{align*}
\text{bool} &= \forall t. t \to t \to t \\
\text{true} &= \lambda t. \lambda f. t \\
\text{false} &= \lambda t. \lambda f. f \\
\text{if}(e, e_1, e_2) &= e \ e_1 \ e_2
\end{align*}
\]

It’s not too far a leap from the above to an encoding in the π-calculus. Just as $\lambda t. \lambda f. t$ selects its first argument, we can write $\ell(t, f). t$ to select (write to)
the first component of the pair \((t, f)\) written to the channel \(\ell\).

\[
\begin{align*}
\text{True}(\ell) & = \ell(t, f).\overline{1} \\
\text{False}(\ell) & = \ell(t, f).\overline{0} \\
\text{If}(\ell, P, Q) & = \text{new } (t, f) \ (\overline{1}(t, f) \mid (t.P + f.Q))
\end{align*}
\]

Example:

\[
\begin{align*}
\text{If}(\ell, P, Q) \mid \text{True}(\ell) & = \left(\text{new } (t, f) \ (\overline{1}(t, f) \mid (t.P + f.Q))\right) \mid \ell(t, f).\overline{1} \\
& \rightarrow^* (t.P + f.Q) \mid \overline{1} \\
& \rightarrow^* P
\end{align*}
\]

Encoding the natural numbers

Just as \texttt{bool} is essentially the datatype

\[
\text{datatype bool =}
\begin{align*}
& \text{true} \\
& \mid \text{false}
\end{align*}
\]

the natural numbers are essentially the datatype

\[
\text{datatype nat =}
\begin{align*}
& Z \quad \text{(* zero *)} \\
& \mid S \text{ of nat} \quad \text{(* successor *)}
\end{align*}
\]

Like \texttt{bool}, \texttt{nat} has two constructors, so a process that “is” a natural number will read two values—the first telling it what to do if it is zero, the second what to do if it is the successor of something. The \texttt{Z} constructor, like the constructors of \texttt{bool}, takes no arguments. Thus, its encoding is analogous to the encoding of \texttt{true} and \texttt{false}.

\[
\begin{align*}
Z(\ell) & = \ell(z, s).\overline{3} \\
S(\ell, n) & = \ell(z, s).\overline{s}(n)
\end{align*}
\]

On the other hand, the constructor \texttt{S} is not nullary. So instead of transmitting nothing along the channel \(s\), it transmits \(n\), which is (a channel to) the number it is the successor of.

Example. Suppose we have the following processes. Note that \texttt{zero} and \texttt{one} are channel names; a natural number is manipulated by sending a \texttt{z} and an \texttt{s} to one of these channels.

\[
\begin{align*}
& Z(\text{\texttt{zero}}) \\
& \mid S(\text{\texttt{one}}, \text{\texttt{zero}}) \\
& \mid \overline{\text{\texttt{and}}}(p, q) \\
& \mid p().\text{print } "." \\
& \mid q(n).\text{(print } "*": \overline{n}(p, q))
\end{align*}
\]
By the definitions above, this is equivalent to
\[
\begin{align*}
\text{zero}(z, s) &. \overline{z} \\
\text{one}(z, s) &. \pi(\text{zero}) \\
\text{one}(p, q) & \\
p(.). \text{print } "." \\
q(n). (\text{print } "\ast"; \pi(p, q))
\end{align*}
\]

It’s quite easy to run this set of processes by hand; the result should be that
\ast. is printed.

What happens if we also have \(S(\text{two}, \text{one})\) and do \(\text{two}(p, q)\)? We might expect the output "\ast\ast.". However, the process receiving along \(q\) is “used up” the first time it’s run, so we will deadlock trying to send to a channel \(q\) that has no receiver! The solution is to use replication:
\[
!q(n). (\text{print } "\ast"; \pi(p, q))
\]

Now, by the rules of structural equivalence, we can make as many copies of
\(q(n). (\text{print } "\ast"; \pi(p, q))\) as we need.

Observe that a similar phenomenon arises if we try to use a number more than once. In the example above, as soon as we send to \text{one}, that process steps to 0 (strictly speaking we should have written \(\text{one}(z, s). \pi(\text{zero}). 0\)), so by the rules of structural equivalence, it vanishes into thin air. Again the solution is simply to put a ! before any “object” we might wish to use more than once.

As an interesting example of this, SML does not let you declare a number \(n\) to be \(S(n)\) (the successor of itself), but we can easily do so in the π-calculus:
\[
!S(\text{inf}, \text{inf}) = !\text{inf}(z, s). \pi(\text{inf})
\]

If we send \(p\) and \(q\) (as above) to \text{inf}, we will forever print asterisks.

Given in second recitation but omitted here: \(\text{succ}\) and \(\text{add}\) (untested).