15-312 Foundations of Programming Languages

Midterm Examination

October 16, 2003

Name:

Andrew User ID:

This is a closed-book exam; only one double-sided sheet of notes is permitted.
Write your answer legibly in the space provided.

There are 11 pages in this exam, including 3 worksheets.

It consists of 3 questions worth a total of 100 points.

You have 85 minutes for this exam.

Problem 1 | Problem 2 | Problem 3 Total

45 30 25 100

1. Static and Dynamic Semantics (45 pts)

So far in this course, expressions have been decorated with types that have been main-
tained in the operational semantics. This may tempt us to add a typecase construct to the
language. In this question we consider a particularly simple version of typecase that al-
lows us to recognize base types, but not compound types. For example, in a version of
MinML with primitive types bool and string (omitting integers for simplicity) we might
write a generic function

toString : All t => t -> string
=Fnt=>1fn xt =
typecase t
of bool => (if x then "true" else "false")
| string => x
| _ => "<unprintable>"

The general form of typecase is

typecase 7 of bool => ¢, | string => e | _ => e3
with abstract syntax typecase(7, e1, €2, €3).

1. (15 pts) Show the typing rule(s) for typecase. Make sure that the above example is
type-correct with your rule(s). [Hint: you may need more than one rule.]

2. (10 pts) Show the new transition rule(s) for typecase in a structured operational se-
mantics.

3. (5 pts) State the type preservation theorem in its form appropriate for the judgments
considered here. It is proved by rule induction over which derivation?

4. (10 pts) Show the case(s) for typecase in the proof of the type preservation theorem.

5. (5 pts) In a language with existential types, typecase breaks data abstraction, that is,
client code can sometimes tell the implementation of a supposedly abstract type.
Demonstrate this with a simple example.

2. Environments and Closures (30 pts)

We have focused on a small-step operational semantics as a way of specifying the mean-
ing of program constructs. However, early in the course, we discussed an alternative
called big-step semantics. In a big-step semantics, a single judgment describes how an
expression evaluates all the way down to a value.

Consider the following big-step environment-based semantics for a language with
functions and integers. The judgments are of the form

nkFelwv

which can be read, “In the environment 7, expression e evaluates to value v.” The rules
below are actually unsound; your job will be to find out why and fix the problem.

n Fnum(k) | num(k)

n,e=v,n' Fx v

nkEt (r,z.e) | fn (7,2.€)

nkedfn(rm,ze)) nhelvy n z=vke v
ntapply (e, e) v

1. (5 pts) State the preservation theorem in the form appropriate for the rules given
above. That is, state the preservation property that these rules should have if they
were correct. You may assume that expression typing is the same as in MinML.

2. (10 pts) Give a program that, when executed using the rules above, would violate
type preservation.

3. (15 pts) Show how to fix the rules to ensure soundness. Your solution should obey
the preservation theorem you stated in part 1, although there is no need to prove
this. Your solution should retain the environment-based, big-step character of the
semantics, i.e. do not use a substitution {v/x}e to express what happens at a func-
tion call.

3. Recursive Types (25 pts)
Consider the ML data type

datatype U = Int of int | Fun of U -> U

1. (5 pts) Give a definition of Uas a recursive type using the pt.7 construct.

2. (5 pts) Give the definition of the constructors Int and Fun.

3. (5 pts) On your representation, write a function apply : U — U — Uthat applies a
function to its argument or raises an exception Error if the first argument does not
represent a function (in which case it must represent an integer).

4. (5 pts) Give a definition of U as an abstract type 3¢.7. Your operations on the ab-
stract type should just be the two constructors and a destructor in the form of a case
expression for U. You do not need to give an implementation of the abstract type.

5. (5 pts) Given a new implementation of apply in the scope of an open of Unaming
the abstract type ¢ and its implementation z, or explain why such an implementation
is impossible. Note that in this context, apply would have typet — t — t rather
thanU — U — U.

Worksheet

Worksheet

10

Worksheet

11

