
Part X

Dynamic Typing

WORKING DRAFT NOVEMBER 4, 2002

Chapter 24

Dynamic Typing

The formalization of type safety given in Chapter 9 states that a language
is type safe iff it satisfies both preservation and progress. According to this
account, “stuck” states — non-final states with no transition — must be
rejected by the static type system as ill-typed. Although this requirement
seems natural for relatively simple languages such as MinML, it is not im-
mediately clear that our formalization of type safety scales to larger lan-
guages, nor is it entirely clear that the informal notion of safety is faithfully
captured by the preservation and progress theorems.

One issue that we addressed in Chapter 9 was how to handle expres-
sions such as 3 div 0 , which are well-typed, yet stuck, in apparent vio-
lation of the progress theorem. We discussed two possible ways to handle
such a situation. One is to enrich the type system so that such an expression
is ill-typed. However, this takes us considerably beyond the capabilities of
current type systems for practical programming languages. The alternative
is to ensure that such ill-defined states are not “stuck”, but rather make a
transition to a designated error state. To do so we introduced the notion
of a checked error, which is explicitly detected and signalled during exe-
cution. Checked errors are constrasted with unchecked errors, which are
ruled out by the static semantics.

In this chapter we will concern ourselves with question of why there
should unchecked errors at all. Why aren’t all errors, including type er-
rors, checked at run-time? Then we can dispense with the static semantics
entirely, and, in the process, execute more programs. Such a language is
called dynamically typed, in contrast to MinML, which is statically typed.

One advantage of dynamic typing is that it supports a more flexible
treatment of conditionals. For example, the expression

WORKING DRAFT NOVEMBER 4, 2002

220 Dynamic Typing

(if true then 7 else "7")+1

is statically ill-typed, yet it executes successfully without getting stuck or
incurring a checked error. Why rule it out, simply because the type checker
is unable to “prove” that the else branch cannot be taken? Instead we
may shift the burden to the programmer, who is required to maintain in-
variants that ensure that no run-time type errors can occur, even though
the program may contain conditionals such as this one.

Another advantage of dynamic typing is that it supports heterogeneous
data structures, which may contain elements of many different types. For
example, we may wish to form the “list”

[true, 1, 3.4, fn x=>x]

consisting of four values of distinct type. Languages such as ML preclude
formation of such a list, insisting instead that all elements have the same
type; these are called homogenous lists. The argument for heterogeneity is
that there is nothing inherently “wrong” with such a list, particularly since
its constructors are insensitive to the types of the components — they sim-
ply allocate a new node in the heap, and initialize it appropriately.

Note, however, that the additional flexibility afforded by dynamic typ-
ing comes at a cost. Since we cannot accurately predict the outcome of
a conditional branch, nor the type of a value extracted from a heteroge-
neous data structure, we must program defensively to ensure that nothing
bad happens, even in the case of a type error. This is achieved by turn-
ing type errors into checked errors, thereby ensuring progress and hence
safety, even in the absence of a static type discipline. Thus dynamic typing
catches type errors as late as possible in the development cycle, whereas
static typing catches them as early as possible.

In this chapter we will investigate a dynamically typed variant of MinML
in which type errors are treated as checked errors at execution time. Our
analysis will reveal that, rather than being opposite viewpoints, dynamic
typing is a special case of static typing! In this sense static typing is more
expressive than dynamic typing, despite the superficial impression created
by the examples given above. This viewpoint illustrates the pay-as-you-go
principle of language design, which states that a program should only in-
cur overhead for those language features that it actually uses. By viewing
dynamic typing as a special case of static typing, we may avail ourselves of
the benefits of dynamic typing whenever it is required, but avoid its costs
whenever it is not.

WORKING DRAFT NOVEMBER 4, 2002

24.1 Dynamic Typing 221

24.1 Dynamic Typing

The fundamental idea of dynamic typing is to regard type clashes as checked,
rather than unchecked, errors. Doing so puts type errors on a par with divi-
sion by zero and other checked errors. This is achieved by augmenting the
dynamic semantics with rules that explicitly check for stuck states. For ex-
ample, the expression true+7 is such an ill-typed, stuck state. By checking
that the arguments of an addition are integers, we can ensure that progress
may be made, namely by making a transition to error .

The idea is easily illustrated by example. Consider the rules for func-
tion application in MinML given in Chapter 8, which we repeat here for
convenience:

v value v1 value (v = fun f (x: τ1) : τ2 is e end)
apply (v, v1) 7→ {v, v1/f, x}e

e1 7→ e′1
apply (e1, e2) 7→ apply (e′1, e2)

v1 value e2 7→ e′2
apply (v1, e2) 7→ apply (v1, e

′
2)

In addition to these rules, which govern the well-typed case, we add
the following rules governing the ill-typed case:

v value v1 value (v 6= fun f (x: τ1) : τ2 is e end)
apply (v, v1) 7→ error

apply (error , e2) 7→ error

v1 value
apply (v1, error) 7→ error

The first rule states that a run-time error arises from any attempt to apply
a non-function to an argument. The other two define the propagation of
such errors through other expressions — once an error occurs, it propagates
throughout the entire program.

By entirely analogous means we may augment the rest of the semantics
of MinML with rules to check for type errors at run time. Once we have done
so, it is safe to eliminate the static semantics in its entirety.1 Having done

1We may then simplify the language by omitting type declarations on variables and
functions, since these are no longer of any use.

WORKING DRAFT NOVEMBER 4, 2002

222 Dynamic Typing

so, every expression is well-formed, and hence preservation holds vacu-
ously. More importantly, the progress theorem also holds because we have
augmented the dynamic semantics with transitions from every ill-typed
expression to error , ensuring that there are no “stuck” states. Thus, the
dynamically typed variant of MinML is safe in same sense as the statically
typed variant. The meaning of safety does not change, only the means by
which it is achieved.

24.2 Implementing Dynamic Typing

Since both the statically- and the dynamically typed variants of MinML are
safe, it is natural to ask which is better. The main difference is in how early
errors are detected — at compile time for static languages, at run time for
dynamic languages. Is it better to catch errors early, but rule out some
useful programs, or catch them late, but admit more programs? Rather
than attempt to settle this question, we will sidestep it by showing that
the apparent dichotomy between static and dynamic typing is illusory by
showing that dynamic typing is a mode of use of static typing. From this
point of view static and dynamic typing are matters of design for a par-
ticular program (which to use in a given situation), rather than a doctrinal
debate about the design of a programming language (which to use in all
situations).

To see how this is possible, let us consider what is involved in imple-
menting a dynamically typed language. The dynamically typed variant of
MinML sketched above includes rules for run-time type checking. For ex-
ample, the dynamic semantics includes a rule that explicitly checks for an
attempt to apply a non-function to an argument. How might such a check
be implemented? The chief problem is that the natural representations of
data values on a computer do not support such tests. For example, a func-
tion might be represented as a word representing a pointer to a region of
memory containing a sequence of machine language instructions. An in-
teger might be represented as a word interpreted as a two’s complement
integer. But given a word, you cannot tell, in general, whether it is an inte-
ger or a code pointer.

To support run-time type checking, we must adulterate our data rep-
resentations to ensure that it is possible to implement the required checks.
We must be able to tell by looking at the value whether it is an integer, a
boolean, or a function. Having done so, we must be able to recover the un-
derlying value (integer, boolean, or function) for direct calculation. When-

WORKING DRAFT NOVEMBER 4, 2002

24.2 Implementing Dynamic Typing 223

ever a value of a type is created, it must be marked with appropriate infor-
mation to identify the sort of value it represents.

There are many schemes for doing this, but at a high level they all
amount to attaching a tag to a “raw” value that identifies the value as an
integer, boolean, or function. Dynamic typing then amounts to checking
and stripping tags from data during computation, transitioning to error
whenever data values are tagged inappropriately. From this point of view,
we see that dynamic typing should not be described as “run-time type
checking”, because we are not checking types at run-time, but rather tags.
The difference can be seen in the application rule given above: we check
only that the first argument of an application is some function, not whether
it is well-typed in the sense of the MinML static semantics.

To clarify these points, we will make explicit the manipulation of tags
required to support dynamic typing. To begin with, we revise the gram-
mar of MinML to make a distinction between tagged and untagged values, as
follows:

Expressions e : : = x | v | o(e1, . . . , en) | if e then e1 else e2 fi |
apply (e1, e2)

TaggedValues v : : = Int (n) | Bool (true) | Bool (false) |
Fun (fun x (y: τ1) : τ2 is e end)

UntaggedValues u : : = true | false | n | fun x (y: τ1) : τ2 is e end

Note that only tagged values arise as expressions; untagged values are used
strictly for “internal” purposes in the dynamic semantics. Moreover, we do
not admit general tagged expressions such as Int (e) , but only explicitly-
tagged values.

Second, we introduce tag checking rules that determine whether or not
a tagged value has a given tag, and, if so, extracts its underlying untagged
value. In the case of functions these are given as rules for deriving judge-
ments of the form v is fun u, which checks that v has the form Fun (u) , and
extracts u from it if so, and for judgements of the form v isnt fun, that checks
that v does not have the form Fun (u) for any untagged value u.

Fun (u) is fun u

Int () isnt fun Bool () isnt fun

Similar judgements and rules are used to identify integers and booleans,
and to extract their underlying untagged values.

WORKING DRAFT NOVEMBER 4, 2002

224 Dynamic Typing

Finally, the dynamic semantics is re-formulated to make use of these
judgement forms. For example, the rules for application are as follows:

v1 value v is fun fun f (x: τ1) : τ2 is e end

apply (v, v1) 7→ {v, v1/f, x}e

v value v isnt fun
apply (v, v1) 7→ error

Similar rules govern the arithmetic primitives and the conditional ex-
pression. For example, here are the rules for addition:

v1 value v2 value v1 is intn1 v2 is intn2 (n = n1 + n2)
+(v1, v2) 7→ Int (n)

Note that we must explicitly check that the arguments are tagged as inte-
gers, and that we must apply the integer tag to the result of the addition.

v1 value v2 value v1 isnt int

+(v1, v2) 7→ error

v1 value v2 value v1 is intn1 v2 isnt int

+(v1, v2) 7→ error

These rules explicitly check for non-integer arguments to addition.

24.3 Dynamic Typing as Static Typing

Once tag checking is made explicit, it is easier to see its hidden costs in
both time and space — time to check tags, to apply them, and to extract
the underlying untagged values, and space for the tags themselves. This is
a significant overhead. Moreover, this overhead is imposed whether or not
the original program is statically type correct. That is, even if we can prove
that no run-time type error can occur, the dynamic semantics nevertheless
dutifully performs tagging and untagging, just as if there were no type
system at all.

This violates a basic principle of language design, called the pay-as-you-
go principle. This principle states that a language should impose the cost
of a feature only to the extent that it is actually used in a program. With
dynamic typing we pay for the cost of tag checking, even if the program
is statically well-typed! For example, if all of the lists in a program are

WORKING DRAFT NOVEMBER 4, 2002

24.3 Dynamic Typing as Static Typing 225

homogeneous, we should not have to pay the overhead of supporting het-
erogeneous lists. The choice should be in the hands of the programmer, not
the language designer.

It turns out that we can eat our cake and have it too! The key is a simple,
but powerful, observation: dynamic typing is but a mode of use of static
typing, provided that our static type system includes a type of tagged data!
Dynamic typing emerges as a particular style of programming with tagged
data.

The point is most easily illustrated using ML. The type of tagged data
values for MinML may be introduced as follows:

(* The type of tagged values. *)
datatype tagged =

Int of int |
Bool of bool |
Fun of tagged -> tagged

Values of type tagged are marked with a value constructor indicating their
outermost form. Tags may be manipulated using pattern matching.

Second, we introduce operations on tagged data values, such as addi-
tion or function call, that explicitly check for run-time type errors.

exception TypeError

fun checked add (m:tagged, n:tagged):tagged =
case (m,n) of

(Int a, Int b) => Int (a+b)
| (,) => raise TypeError

fun checked apply (f:tagged, a:tagged):tagged =
case f of

Fun g => g a
| => raise TypeError

Observe that these functions correspond precisely to the instrumented dy-
namic semantics given above.

Using these operations, we can then build heterogeneous lists as values
of type tagged list .

WORKING DRAFT NOVEMBER 4, 2002

226 Dynamic Typing

val het list : tagged list =
[Int 1, Bool true, Fun (fn x => x)]

val f : tagged = hd(tl(tl het list))

val x : tagged = checked apply (f, Int 5)

The tags on the elements serve to identify what sort of element it is: an
integer, a boolean, or a function.

It is enlightening to consider a dynamically typed version of the facto-
rial function:

fun dyn fact (n : tagged) =
let fun loop (n, a) =

case n
of Int m =>

(case m
of 0 => a

| m => loop (Int (m-1),
checked mult (m, a)))

| => raise RuntimeTypeError
in loop (n, Int 1)

end

Notice that tags must be manipulated within the loop, even though we
can prove (by static typing) that they are not necessary! Ideally, we would
like to hoist these checks out of the loop:

fun opt dyn fact (n : tagged) =
let fun loop (0, a) = a

| loop (n, a) = loop (n-1, n*a)
in case n

of Int m => Int (loop (m, 1))
| => raise RuntimeTypeError

end

It is very hard for a compiler to do this hoisting reliably. But if you consider
dynamic typing to be a special case of static typing, as we do here, there is
no obstacle to doing this optimization yourself, as we have illustrated here.

WORKING DRAFT NOVEMBER 4, 2002

Chapter 25

Featherweight Java

We will consider a tiny subset of the Java language, called Featherweight
Java, or FJ, that models subtyping and inheritance in Java. We will then
discuss design alternatives in the context of FJ. For example, in FJ, as
in Java, the subtype relation is tightly coupled to the subclass relation. Is
this necessary? Is it desirable? We will also use FJ as a framework for
discussing other aspects of Java, including interfaces, privacy, and arrays.

25.1 Abstract Syntax

The abstract syntax of FJ is given by the following grammar:

Classes C : : = class c extends c {c f ; k d}
Constructors k : : = c(c x) {super (x) ; this. f=x; }
Methods d : : = cm(c x) {return e; }
Types τ : : = c
Expressions e : : = x | e. f | e. m(e) | new c(e) | (c) e

The variable f ranges over a set of field names, c over a set of class names, m
over a set of method names, and x over a set of variable names. We assume
that these sets are countably infinite and pairwise disjoint. We assume that
there is a distinguished class name, Object , standing for the root of the
class hierarchy. It’s role will become clear below. We assume that there
is a distinguished variable this that cannot otherwise be declared in a
program.

As a notational convenience we use “underbarring” to stand for se-
quences of phrases. For example, d stands for a sequence of d’s, whose

WORKING DRAFT NOVEMBER 4, 2002

228 Featherweight Java

individual elements we designate d1, . . . , dk, where k is the length of the se-
quence. We write c f for the sequence c1 f1, . . . , ck fk, where k is the length
of the sequences c and f . Similar conventions govern the other uses of
sequence notation.

The class expression

class c extends c′ {c f ; k d}

declares the class c to be a subclass of the class c′. The subclass has addi-
tional fields c f , single constructor k, and method suite d. The methods of
the subclass may override those of the superclass, or may be new methods
specific to the subclass.

The constructor expression

c(c′ x′, c x) {super (x′) ; this. f=x; }

declares the constructor for class c with arguments c′ x′, c x, corresponding
to the fields of the superclass followed by those of the subclass. The vari-
ables x′ and x are bound in the body of the constructor. The body of the
constructor indicates the initialization of the superclass with the arguments
x′ and of the subclass with arguments x.

The method expression

cm(c x) {return e; }

declares a method m yielding a value of class c, with arguments x of class c
and body returning the value of the expression e. The variables x and this
are bound in e.

The set of types is, for the time being, limited to the set of class names.
That is, the only types are those declared by a class. In Java there are more
types than just these, including the primitive types integer and boolean
and the array types.

The set of expressions is the minimal “interesting” set sufficient to illus-
trate subtyping and inheritance. The expression e. f selects the contents of
field f from instance e. The expression e. m(e) invokes the method m of in-
stance e with arguments e. The expression new c(e) creates a new instance
of class c, passing arguments e to the constructor for c. The expression (c) e
casts the value of e to class c.

The methods of a class may invoke one another by sending messages
to this , standing for the instance itself. We may think of this as a bound
variable of the instance, but we will arrange things so that renaming of
this is never necessary to avoid conflicts.

WORKING DRAFT NOVEMBER 4, 2002

25.1 Abstract Syntax 229

class Pt extends Object {
int x;
int y;

Pt (int x, int y) {
super(); this.x = x; this.y = y;

}
int getx () { return this.x; }
int gety () { return this.y; }

}

class CPt extends Pt {
color c;

CPt (int x, int y, color c) {
super(x,y);
this.c = c;

}
color getc () { return this.c; }

}

Figure 25.1: A Sample FJ Program

A class table T is a finite function assigning classes to class names. The
classes declared in the class table are bound within the table so that all
classes may refer to one another via the class table.

A program is a pair (T, e) consisting of a class table T and an expression
e. We generally suppress explicit mention of the class table, and consider
programs to be expressions.

A small example of FJ code is given in Figure 25.1. In this example we
assume given a class Object of all objects and make use of types int and
color that are not, formally, part of FJ.

WORKING DRAFT NOVEMBER 4, 2002

230 Featherweight Java

25.2 Static Semantics

The static semantics of FJ is defined by a collection of judgments of the
following forms:

τ <: τ ′ subtyping
Γ ` e : τ expression typing
d ok in c well-formed method
C ok well-formed class
T ok well-formed class table
fields(c) = c f field lookup
type(m, c) = c → c method type

The rules defining the static semantics follow.
Every variable must be declared:

Γ(x) = τ

Γ ` x : τ (25.1)

The types of fields are defined in the class table.

Γ ` e0 : c0 fields(c0) = c f

Γ ` e0. fi : ci (25.2)

The argument and result types of methods are defined in the class table.

Γ ` e0 : c0 Γ ` e : c
type(m, c0) = c′ → c c <: c′

Γ ` e0. m(e) : c (25.3)

Instantiation must provide values for all instance variables as argu-
ments to the constructor.

Γ ` e : c c <: c′ fields(c) = c′ f

Γ ` new c(e) : c (25.4)

All casts are statically valid, but must be checked at run-time.

Γ ` e0 : d
Γ ` (c) e0 : c (25.5)

WORKING DRAFT NOVEMBER 4, 2002

25.2 Static Semantics 231

The subtyping relation is read directly from the class table. Subtyping
is the smallest reflexive, transitive relation containing the subclass relation:

τ <: τ (25.6)

τ <: τ ′ τ ′ <: τ ′′

τ <: τ ′′ (25.7)

T (c) = class c extends c′ {. . . ; . . . }
c <: c′ (25.8)

A well-formed class has zero or more fields, a constructor that initial-
izes the superclass and the subclass fields, and zero or more methods. To
account for method override, the typing rules for each method are relative
to the class in which it is defined.

k = c(c′ x′, c x) {super (x′) ; this. f=x; }
fields(c′) = c′ f ′ c′′ ok in c

class c extends c′ {c f ; k c′′} ok (25.9)

Method overriding takes account of the type of the method in the su-
perclass. The subclass method must have the same argument types and
result type as in the superclass.

T (c) = class c extends c′ {. . . ; . . . }
type(m, c′) = c → c0 x:c, this :c ` e0 : c0

c0 m(c x) {return e0; } ok in c (25.10)

A method table is well-formed iff all of its classes are well-formed:

∀c ∈ dom(T) T (c) ok

T ok (25.11)

Note that well-formedness of a class is relative to the method table!
A program is well-formed iff its method table is well-formed and the

expression is well-formed:

T ok ∅ ` e : τ
(T, e) ok (25.12)

WORKING DRAFT NOVEMBER 4, 2002

232 Featherweight Java

The auxiliary lookup judgments determine the types of fields and meth-
ods of an object. The types of the fields of an object are determined by the
following rules:

fields(Object) = • (25.13)

T (c) = class c extends c′ {c f ; . . . } fields(c′) = c′ f ′

fields(c) = c′ f ′, c f (25.14)

The type of a method is determined by the following rules:

T (c) = class c extends c′ {. . . ; . . . c′′}
c′′i = ci m(ci x) {return e; }

type(mi, c) = ci → ci (25.15)

T (c) = class c extends c′ {. . . ; . . . c′′}
m /∈ c′′ type(m, c′) = ci → ci

type(m, c) = ci → ci (25.16)

25.3 Dynamic Semantics

The dynamic semantics of FJ may be specified using SOS rules similar to
those for MinML. The transition relation is indexed by a class table T , which
governs the semantics of casting and dynamic dispatch (which see below).
In the rules below we omit explicit mention of the class table for the sake
of brevity.

An instance of a class has the form new c(e) , where each ei is a value.

e value

new c(e) value (25.17)

Since we arrange that there be a one-to-one correspondence between in-
stance variables and constructor arguments, an instance expression of this
form carries all of the information required to determine the values of the
fields of the instance. This makes clear that an instance is essentially just a
labelled collection of fields. Each instance is labelled with its class, which
is used to guide method dispatch.

WORKING DRAFT NOVEMBER 4, 2002

25.3 Dynamic Semantics 233

Field selection retrieves the value of the named field from either the
subclass or its superclass, as appropriate.

fields(c) = c′ f ′, c f e′ value e value

new c(e′, e) . f ′
i 7→ e′i (25.18)

fields(c) = c′ f ′, c f e′ value e value

new c(e′, e) . fi 7→ ei (25.19)

Message send replaces this by the instance itself, and replaces the
method parameters by their values.

body(m, c) = x → e0 e value e′ value

new c(e) . m(e′) 7→ {e′/x}{new c(e) /this }e0 (25.20)

Casting checks that the instance is of a sub-class of the target class, and
yields the instance.

c <: c′ e value

(c′) new c(e) 7→ new c(e) (25.21)

These rules determine the order of evaluation:

e0 7→ e′0
e0. f 7→ e′0. f (25.22)

e0 7→ e′0
e0. m(e) 7→ e′0. m(e) (25.23)

e0 value e 7→ e′

e0. m(e) 7→ e0. m(e′) (25.24)

e 7→ e′

new c(e) 7→ new c(e′) (25.25)

e0 7→ e′0
(c) e0 7→ (c) e′0 (25.26)

WORKING DRAFT NOVEMBER 4, 2002

234 Featherweight Java

Dynamic dispatch makes use of the following auxiliary relation to find
the correct method body.

T (c) = class c extends c′ {. . . ; . . . d}
di = ci m(ci x) {return e; }

body(mi, c) = x → e (25.27)

T (c) = class c extends c′ {. . . ; . . . d}
m /∈ d type(m, c′) = x → e

body(m, c) = x → e (25.28)

Finally, we require rules for evaluating sequences of expressions from
left to right, and correspondingly defining when a sequence is a value (i.e.,
consists only of values).

e1 value . . . ei−1 value ei 7→ e′i
e1, . . . , ei−1, ei, ei+1, . . . , en 7→ e1, . . . , ei−1, e

′
i, ei+1, . . . , en (25.29)

e1 value . . . en value
e value (25.30)

This completes the dynamic semantics of FJ.

25.4 Type Safety

The safety of FJ is stated in the usual manner by the Preservation and
Progress Theorems.

Since the dynamic semantics of casts preserves the “true” type of an
instance, the type of an expression may become “smaller” in the subtype
ordering during execution.

Theorem 80 (Preservation)
Assume that T is a well-formed class table. If e : τ and e 7→ e′, then e′ : τ ′

for some τ ′ such that τ ′ <: τ .

The statement of Progress must take account of the possibility that a cast
may fail at execution time. Note, however, that field selection or message
send can never fail — the required field or method will always be present.

WORKING DRAFT NOVEMBER 4, 2002

25.5 Acknowledgement 235

Theorem 81 (Progress)
Assume that T is a well-formed class table. If e : τ then either

1. v value, or

2. e contains an instruction of the form (c) newd(e0) with e0 value and
d 6<: c, or

3. there exists e′ such that e 7→ e′.

It follows that if no casts occur in the source program, then the second
case cannot arise. This can be sharpened somewhat to admit source-level
casts for which it is known statically that the type of casted expression is a
subtype of the target of the cast. However, we cannot predict, in general,
statically whether a given cast will succeed or fail dynamically.

Lemma 82 (Canonical Forms)
If e : c and e value, then e has the form newd(e0) with e0 value and d <: c.

25.5 Acknowledgement

This chapter is based on “Featherweight Java: A Minimal Core Calculus
for Java and GJ” by Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.

WORKING DRAFT NOVEMBER 4, 2002

