Supplementary Notes on
Objects

15-312: Foundations of Programming Languages
Jonathan Aldrich

Lecture 20-21
November 4-6, 2003

In this lecture we examine the design goals and technical properties of
object-oriented languages. It is possible to study some features of objects
by encoding them in terms of constructs we already know; however, real-
istic encodings of objects are so complex that it is often simpler to study
objects as first-class constructs. Rather than study objects in the context of
a completely different language (such as Java) we will look at how objects
can be added naturally to already powerful functional languages like ML.

A Brief History of Objects.

The first object-oriented language was Simula 67, developed by Ole-Johan
Dahl and Kristen Nygaard (who won the 2002 Turing award for this work).
Simula 67 had many of the same concepts as modern object-oriented pro-
gramming languages, including objects, classes, virtual methods, and in-
heritance. The motivation for the Simula languages came due to Kristen
Nygaard’s work on operational research. Nygaard needed a tool for the
precise description and simulation of complex systems involving both peo-
ple and machines. Simula 67 was designed to support both a description
of complex systems and a simulation or execution of these systems.

The design goal of modeling real-world systems influenced the features
of Simula 67, as well as more recent object-oriented languages. Real-world
systems are built of entities that have state and behave in certain ways;
these entities are modeled as objects. We often classify real-world entities
into hierarchical categories. Each category provides a partial description
of the state and behavior of entities in that category: for example, animals

SUPPLEMENTARY NOTES NOVEMBER 4-6, 2003

L20-21.2 Objects

typically move, while plants typically photosynthesize. These classification
structures are modeled with classes that describe the state and behavior of
object instances. Our classification structures are often hierarchical, so that
mammals are a particular kind of animal that is warm-blooded, furry, gives
birth to live young, etc. Similarly, object-oriented programming languages
allow one class to inherit from another, so that the state and behavior spec-
ifications in one class can be reused in its subclasses. Virtual methods are
provided so that subclasses can refine the behavior defined in their super-
classes.

Most object-oriented languages are imperative. This is not strictly necessary—
a number of purely functional object-oriented languages have been de-
fined. However, imperative objects form a natural model of the world,
because we usually think of the world as having state that changes from
moment to moment. As in the real world, the behavior of an object-oriented
system are derived from the interactions between objects, as described by
their methods.

The design goals of object-oriented langauges also provide insight into
the software engineering tradeoffs in using object-oriented languages. For
example, in order to build a useful program, you need to both verify it
(build the system right) and validate it (build the right system). Func-
tional languages are based closely on the mathematical theory of computa-
tion; thus, they facilitate verification, or building the system right. Object-
oriented languages are “messier” in a sense: functions are split into meth-
ods, references are all over the place, and object-oriented dispatch makes
it hard to tell what code is running. Therefore, it is often harder to verify
that an object-oriented system is built right. However, object-oriented lan-
guages are very good at modeling the world using abstractions that are
close to real-world concepts. Thus, it is often easier to validate object-
oriented systems systems—ensuring that the programmers wrote the right
system, one that fulfills the needs of users. In practice, of course, we need
both verification and validation, and the relative benefits and drawbacks of
different languages may depend on the domain in which they are used, as
well as many other factors.

Object-Oriented and Functional Programming.

In many ways, objects are similar to features provided by other languages.
For example, a class is a lot like a constructor in a datatype, and a method
in class C is a lot like the case for datatype constructor C in a ML function
definition. However, object-oriented languages provide several properties

SUPPLEMENTARY NOTES NOVEMBER 4-6, 2003

Objects L20-21.3

not found in ML or other functional langauges.

First, classes and methods are extensible, unlike datatype and function
declarations. In object-oriented languages, you can add a new class at any
time. One important benefit of this property is that you can extend or build
on top of a system by adding new classes even when you cannot modify
the system’s source code. Each class can include its own implementation
for methods inherited from superclasses. In contrast, when you declare a
datatype in ML, you have to give all of the constructors in one place, and
for each function declared over the datatype, a case must be given for each
constructor at the same location in the source code. Thus, in order to add a
new datatype case in ML you have to modify the datatype declaration and
all functions over the datatype, which can be a major problem if the source
code is not available.

Second, class extension is hierarchical. If class C extends another class
B, then C inherits all of the fields and methods from its superclass. Any
code written for class B can be customized and reused by class C-and this
is true whether or not the author of B intended for the code to be reused.
Functional languages like ML also provide support for customized reuse
through first-class functions and functors. Compared to these mechanisms,
inheritance is more structured than passing around first-class functions, but
more lightweight and flexible than writing a functor. Inheritance also typi-
cally requires less advanced planning for reuse, since extensibility is “built
in” to the language construct.

The hierarchical nature of class extension is also useful in that sub-
classes can define methods that are not present in their superclasses. In
functional languages, this is equivalent to writing a function that is defined
on some constructors in a datatype but not others. As we will see, a primary
benefit of object-oriented languages is that the type system can ensure that
such partial functions are never called on classes on which the function is
not defined. Current CMU research on refinement types is focused in part
on providing this benefit in the context of functional languages.

EML: Objects in ML.

Unfortunately many object-oriented languages do not take advantage of
the benefits of advanced functional programming languages. For example,
Java makes it easy to add new classes to a program externally by subclass-
ing from existing classes. However, there is no way to externally add a new
function with cases for each class-instead the function must be split up and
added as one method to each relevant class in the system, something that is

SUPPLEMENTARY NOTES NOVEMBER 4-6, 2003

L20-21.4 Objects

impossible if the system’s source code is not available. In comparison, this
task is easy in ML-you simply define a new function with cases for each
relevant datatype constructor.

A better language design combines the benefits of both functional and
object-oriented languages. Here we follow the design of Extensible ML
(EML), a recently-developed language that provides object-oriented fea-
tures in ML by making datatypes and functions hierarchically extensible.
The grammar of EML'’s class and function declarations is given as follows:

decl ::= [abstract |class C [extends (']
of {I:7}
| fun f:C—r

| extend fun f(zas C)=c¢

In this example, we use the overbar notation ¢ to denote a tuple of terms
that have the form t. We assume that expressions e have the same form
as in MinML programs we have already studied. The EML language is
declaration-oriented, and there are three forms of declarations: class dec-
larations, function signature declarations, and function cases.

A class declaration in EML is an extended form of an ML datatype
declaration, where the body of the datatype is an extensible record. Class
declarations can be declared abstract , meaning that the class cannot be
instantiated, only extended. Inheritance is represented by an extends
clause. Finally, the body of the class is a record mapping labels [to types 7.

Function declarations are split into two parts. A fun declaration de-
clares the type of a function from a tuple of classes C to a type 7. In the full
EML language, functions can have any argument and result type, but we
are simplifying the system for the purposes of modeling it formally.

Function cases are declared with the extend fun declaration. The
extend fun keywords are followed with a pattern expression describing
the conditions under which the function case is applicable. In our formal
treatment, we assume that the pattern is a tuple of bindings of variables
to classes; the full EML language permits an arbitrary pattern here. The
body of the function e is evaluated in a scope where the variables = from
the pattern match are bound to the actual parameters of the function.

A multi-method language is an object-oriented language where func-
tion dispatch can depend on all of the arguments to the function, not just
the receiver of the message (“this” in Java or C++). EML is a multi-method
language, because function cases can specify dispatch on every argument
in the tuple that is passed to the function.

SUPPLEMENTARY NOTES NOVEMBER 4-6, 2003

Objects L20-21.5

We also need new syntax for creating objects: this syntax the same one
we would use to create a ML datatype that is implemented as a record:

e = C{l=¢}

Here we create an object of class C, initializing the fields with the ex-
pressions e.

Operational Semantics for EML

EML’s operational semantics follows the same rules as in MinML, except
for calls to functions. Function calls must be treated differently because the
system must use the actual classes of the arguments to determine which
function case to execute. We define function case lookup using an auxiliary
function, lookup, which chooses the most specific applicable function case
for a given tuple of classes.

v=C{...} lookup(f,C)=T.e
F@ e fome

(extend fun f(zas C’) =e) € Decls C <:C'
(extend fun f(z'as C”) =¢') € Decls = (C" <: C" NC" £: C")
lookup(f,C) = T.e

Lookup

Client-Side Typechecking in EML

The typing rules for EML are divided into client-side and implementation-
side typechecking. Client-side typechecking is the same kind of typecheck-
ing we have been studying up to this point in the class: we check that
expressions e have types 7, and that class declarations and function decla-
rations are well formed, written decl OK. Implementation-side typecheck-
ing, discussed in a later section, verifies that each generic function is imple-
mented completely and consistently.

EML’s rules for client-side typechecking build on the rules we have
been studying for MinML. The rules that are new are given below. Sev-
eral of the rules refer to Decls, the (global) set of declarations visible in the
program.

SUPPLEMENTARY NOTES NOVEMBER 4-6, 2003

L20-21.6 Objects

(fun f:C — 1) € Decls

— FnTj
'Ef:.C—-r »
Fe:7) ={l:7
Cclass C concrete T’ “e:T fields(C) ={l:7} ClsTyp
I-c{i=¢}:C
C class T type
— FnOK
fn 7.C—r 0K "
(fun f:C" - 7)€ Decls C<:C" mChe:T
—— ExtOK
extend fun f(zas C)=e OK
C'class Ttype {l} N fields(C') =0
T type {l} N fields(C") CISOK

[abstract]class C [extends C’]of {I:7} OK

The first rule gives a type to a variable in client code that refers to a
function that has been declared. The second rule states that an object of
class C is well-typed and has C if C is a class and C is concrete. It also
requires that the expressions assigned to the fields of C have types that
match the class declaration.

The rule for function declarations ensures that the declared classes and
types exist. The rule for function cases checks that the classes in the pattern
expression are subtypes of the classes in the function signature. The rule
also checks that the body is well-formed, assuming the arguments have
appropriate types. The rule for classes just checks that the types and classes
referred-to actually exist, and also verifies that the new fields are distinct
from the ones being inherited. In a real language, we would allow one field
to shadow another, disambiguating them using the class in which the fields
were defined.

To be precise, we should also define auxiliary judgments of the form
C class and fields(C).

SUPPLEMENTARY NOTES NOVEMBER 4-6, 2003

Objects L20-21.7

([abstract |class C ...) € Decls
C class

Class

€ class cppesType

C type

([abstract]class Cof {l:7}) € Decls
fields(C) = {l : 7}

FieldsBase

([abstract]class Cextends C’of {l:7}) € Decls
fields(C) = {1 : 7} U fields(C")

FieldsInherit

The first two rules state that a class exists if it is declared in Decls, and
that each class defines a type with the same name. The fields of a class
are computed based on the union of the inherited and the newly-declared
fields. We can define the subtyping relation as the reflexive, transitive clo-
sure of the declared inheritance relation:

([abstract]class Cextends C’...)€ Decls
C<:

SubBase

o= SubReflex

C<:C C'<.C"
C <"

SubTrans

Implementation-Side Typechecking in EML

To complete the typing rules for EML, we must give rules for implementation-
side typechecking as well. Implementation-side typechecking verifies that
each function in the system is completely and consistently implemented.
For example, consider the following code:

abstract class Shape of
class Rectangle extends Shape of
class Circle extends Shape of

SUPPLEMENTARY NOTES NOVEMBER 4-6, 2003

L20-21.8 Objects

fun draw : Shape -> unit
extend fun draw (c as Circle) = ...

fun intersect : Shape*Shape -> boolean
extend fun intersect (c as Circle, s as Shape) = ...
extend fun intersect (s as Shape, r as Rectangle) = ...

In the code above, the draw function is incomplete, because there is no
case for Rectangle. It’s actually fine that there is no case for Shape, because
since Shape is an abstract class, and so we can never create a Shape at run
time. However, if we create a Rectangle at run time and pass it to draw,
we will get a message not understood error. This terminology stems from
the object-oriented practice of calling functions “messages” that are sent to
objects like Rectangle; in this case, there is no function case for Rectangle in
the message, so we say that Rectangle did not understand the message.

Similarly, in the code above, the intersect function is ambiguous, be-
cause if the function is invoked with the tuple (c,r), where c is a Circle and
r is a Rectangle, then either case of the intersect function applies to the tu-
ple, but neither is more specific than the other. This is known as a message
ambiguous error.

The goal of implementation-side typechecking is to statically guarantee
that message not understood and message ambiguous errors cannot occur.
We will first define a global typechecking algorithm formally, and then dis-
cuss informally how to derive a modular typechecking algorithm from the
global one. The global algorithm is given by the rule below:

V(fun f:C — 1) € Decls
VC" where C' concrete and C' <: C
lookup(f,C") =T.e

Decls OK

Global-ITC

The rule above checks, for each function f and for each tuple of con-
crete classes C” that subtype the classes declared in the function signature,
whether there is a unique function case for that tuple of classes. The same
lookup function that is used for dispatching at run time is used to check for
a unique function case.

SUPPLEMENTARY NOTES NOVEMBER 4-6, 2003

Objects L20-21.9

Modular Implementation Side Typechecking.

The implementation side typechecking rule defined above is global, which
is undesirable since it means that we can’t ensure that two modules that
typecheck in isolation will also typecheck when they are combined. It is
preferable to have a modular typechecking algorithm. We say a typecheck-
ing algorithm is modular if it can typecheck a module by looking at only
the implementation of that module and the interfaces of the modules it stat-
ically depends on. In EML, we broaden the definition of interface slightly
to include the list of cases defined for each function in a module.

The following table summarizes the rules that Java, ML, and EML use to
modularly check for the absence of message not understood and message
ambiguous errors. The table shows that EML's strategy is a combination of
the strategies of ML and of Java.

Implement- | Message Not Understood | Message Ambiguous

ation Side

Typecheck-

ing

Java Concrete classes must | Each function cases must
define inherited abstract | be defined in the receiver
methods, and all argu- | class body
ment types except the
receiver must match the
signature

ML All cases must be covered | All cases are declared to-
in a single local declara- | gether, and the order re-
tion (compiler warning if | solves any ambiguity
cases are not exhaustive)

EML External functions must | All function cases must be
provide a default case | declared either in the same
where function is de- | module where the func-
clared. For internal | tion is declared, or in the
functions, a local default | module where the receiver
case must be defined | is declared.
whenever a new concrete
subclass of an abstract
class is defined.

With the restrictions above applied to the EML language, the global

typechecking algorithm can be run one module at a time, taking the Decls
set to be just the locally-declared declarations as well as the declarations

SUPPLEMENTARY NOTES NOVEMBER 4-6, 2003

L20-21.10 Objects

in modules that the current module statically depends on. The authors
of EML have proved that these restrictions are sufficient to guarantee that
when the typechecking algorithm is run on several modules in isolation,
global typechecking will succeed when these modules are linked. The
proof is beyond the scope of this course, however.

Using Inheritance Correctly.

Consider the code below.

class Engine of { horsepower:int }
class Automobile extends Engine of { mileage:int }
class Airplane extends Engine of { prop:Propeller }

This code represents a broken use of inheritance. Essentially, it mixes
up the subtyping relationship with the containment relationship. An Au-
tomobile has an Engine, and an Airplane has an Engine as well. However,
“has a” relationships should be expressed with containment. For example,
an Airplane has a Propeller, and this is properly expressed by giving the
Airplane a prop field of type Propeller. Inheritance imposes a subtyping
relationship, meaning that the declarations above state (incorrectly) that an
Automobile is a Engine. This breaks down in an obvious way when you
consider that not all operations which apply to engines also apply to Air-
planes. For example, it makes sense to change the oil of an engine, but
changing the oil of an airplane doesn’t make sense in the same way. Using
inheritance for a “has a” relationship also breaks down when we consider
an Airplane that has more than one engine.

The general rule is: only use inheritance to represent an “is a” relation-
ship between entities, never a “has a” relationship.

SUPPLEMENTARY NOTES NOVEMBER 4-6, 2003

