In this assignment we add simple input and output to the generic framework of monads. Both input and output are represented as potentially infinite streams of integers \(n_1 \cdot n_2 \cdot \ldots \), where \(\epsilon \) is the empty stream.

The worlds of the monadic framework are therefore pairs \((S_I, S_O)\) of potentially infinite streams of integers, where \(S_I \) represents the input stream, and \(S_O \) is the output stream which is initially empty. We have the following new monadic (that is, effectful) expressions.

- **read :\(\text{int} \)** which reads and thereby consumes an integer from the input stream. It returns 0 if the input stream is empty.
- **eof :\(\text{bool} \)** which returns true if the input stream is empty and false otherwise.
- **write(e) :\(\text{1} \)** which writes the value of \(e \) (which must be an integer) to the output stream.

1. **Typing rules (5 pts)**

Give the rules for typing the new expressions (read, eof, write). You do not need to repeat the generic rules for the monad.

2. **Operational semantics (10 pts)**

Present the new transition rules for the structured operational semantics. According to the monadic framework, the transitions should have one of
the two forms

\[\langle (S_I, S_O), m \rangle \mapsto \langle (S'_I, S'_O), m' \rangle \]

\[e \mapsto e' \]

3. Stating the progress theorem (5 pts)

Carefully formulate the progress theorem which is appropriate for the setting above. You may assume the input and output streams are well-formed.

4. Proving the progress theorem (15 pts)

Prove the progress theorem. Show all the cases concerned with the monadic constructs: val, letval, read, eof and write. If you need a value inversion property (also known as the canonical forms property), please state it explicitly, but you don’t need to prove it. If you need to generalize the progress theorem from question 3, please explicitly state the generalization.

5. Non-recursive programming (5 pts)

Define copyOne : 1 which reads one integer from the input stream and writes it to the output stream.

6. Recursive programming (10 pts)

When programming monadically, it is convenient to have recursion not just for functions, but arbitrary expressions. We write \(\text{rec } x. e \) for a recursive expression. It has exactly one typing rule, one transition rule, and defines no new values.

\[
\frac{\Gamma, x : \tau \vdash e : \tau}{\Gamma \vdash \text{rec } x. e : \tau}
\]

\[
\text{rec } x. e \mapsto \{\text{rec } x. e/x\} e
\]

Using this construct define

\[\text{copy} : 1 \]

which reads the whole input stream and copies it to the output stream.