
15-213 Spring 2005
Section F

March 21, 2005

Concurrency Example – Readers/Writers Locks

Consider the following data structure and functions:

typedef struct blackbox {

 // Some stuff that we don't know about

} Blackbox;

char *read(Blackbox *b);

void write(BlackBox *b, const char *buf);

We don’t know how Blackbox has been implemented, but we have been told that it was
written with no knowledge of threads in mind. Our manager wants us to write wrappers
arounds the functions to allow for use of Blackbox in a multi-threaded environment,
following these rules:

(1) If a write is occurring, there cannot be any read s occurring simultaneously

(2) There is at most one write occurring at any time

(3) If any thread is capable of proceeding without violating (1) or (2), then at least one
such thread should be allowed to do so (i.e., there cannot be deadlock)

The declarations for these thread-safe wrappers is the same:

char *ts_read(Blackbox *b);

void ts_write(BlackBox *b, const char *buf);

Question 1:

What tools do we have to work with in solving this problem?

Question 2:

What is the simplest possible way to satisfy these criteria? What are the drawbacks of this
implementation?

Question 3:

What if we add a fourth criteria: (4) If there are no write s occurring, then multiple read s
should be able to run at the same time

Implementation 1 - Mutex

/* Add a mutex and a count to Blackbox: */

typedef struct blackbox {
 // Some stuff that we don't know about

 volatile int reader_count;
 pthread_mutex_t lock;
} Blackbox;

char *ts_read(Blackbox *b)
{
 char *buf;

 pthread_mutex_lock(&b->lock);
 b->reader_count++;
 pthread_mutex_unlock(&b->lock);

 buf = read(b);

 pthread_mutex_lock(&b->lock);
 b->reader_count--;
 pthread_mutex_unlock(&b->lock);
}

void ts_write(BlackBox *b, const char *buf) {
 int written = FALSE;
 while (!written)
 {
 pthread_mutex_lock(&b->lock);
 if (b->reader_count == 0)
 {
 write(b, buf);
 written = TRUE;
 }
 pthread_mutex_unlock(&b->lock);
 }
}

Question 4

One problem that is common is high-concurrency applications is starvation – that is, one
thread or group of threads being perpetually denied a chance to run, even though there is
no rule preventing them from running.

Can you see any reasons why Implementation 1 might lead to starvation? If so, how?
How might we fix it?

Implementation 2 - Condition Variable

/* This implementation ensures that if there are an y writes
 * pending, they will occur before any reads are pe rmitted,
 * minimizing the risk of starvation in the common case
 * (many readers, few writers).
 */

/* Add a mutex and a count to Blackbox: */

typedef struct blackbox {
 // Some stuff that we don't know about

 volatile int num_reads_in_prog;
 volatile int num_writes; // waiting or in progres s
 pthread_cond_t reader_cv;
 pthread_cond_t writer_cv;
 pthread_mutex_t lock;
} Blackbox;

/* Pre-condition: b->lock must be locked before thi s function
 * is called
 */
void signal_next(BlackBox *b)
{
 if (b->num_writes > 0)
 {
 // If any writes are waiting, wake one up
 pthread_cond_signal(&b->writer_cv);
 }
 else
 {
 // If there are no writes pending, wake up all the
 // readers (there may not be any but that's fin e)
 pthread_cond_broadcast(&b->reader_cv);
 }
}

char *ts_read(Blackbox *b)
{
 char *buf;

 pthread_mutex_lock(&b->lock);
 while (b->num_writes > 0)
 {
 // cond_wait unlocks the mutex, waits to be sig naled,
 // then re-acquires the mutex
 pthread_cond_wait(&b->reader_cv, &b->lock);
 }
 // By here b->num_writes must be 0
 b->num_reads_in_prog++;
 pthread_mutex_unlock(&b->lock);

 buf = read(b);

 pthread_mutex_lock(&b->lock);
 b->num_reads_in_prog--;
 signal_next(b);
 pthread_mutex_unlock(&b->lock);
}

void ts_write(BlackBox *b, const char *buf) {
 pthread_mutex_lock(&b->lock);
 b->num_writes++;

 // Don't need a while here because we will always be able to
 // run if we are signaled
 if (b->num_writes > 1 || b->num_reads_in_prog > 0)
 {
 // cond_wait unlocks the mutex, waits to be sig naled,
 // then re-acquires the mutex
 pthread_cond_wait(&b->writer_cv, &b->lock);
 }
 pthread_mutex_unlock(&b->lock);

 write(b, buf);

 pthread_mutex_lock(&b->lock);
 b->num_writes--;
 signal_next(b);
 pthread_mutex_unlock(&b->lock);
}

