15-122 : Principles of Imperative Computation, Fall 2015

Written Homework 8

Due: Monday, October 26 2015 by 6:00 PM

Name:

Andrew ID:

Section:

This written homework covers amortized analysis, hash tables, and generics.

Print out this PDF double-sided, staple pages in order, and write your answers on these pages neatly. You can hand in the assignment to your TA during lab or in the box outside of GHC 4117 (in the CS Undergraduate Program suite). **Warning: The box is removed promptly at 6PM.**

You must hand in your homework yourself; do not give it to someone else to hand in.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
1. Amortized Analysis Revisited

Consider a special binary counter represented as k bits: $b_{k-1}b_{k-2}\ldots b_1b_0$. For this special counter, the cost of flipping the i^{th} bit is 2^i tokens. For example, b_0 costs 1 token to flip, b_1 costs 2 tokens to flip, b_2 costs 4 tokens to flip, etc. We wish to analyze the cost of performing $n = 2^k$ increments of this k-bit counter. (Note that k is not a constant.)

Note that if we begin with our k-bit counter containing all 0s, and we increment n times, where $n = 2^k$, the final value stored in the counter will again be 0.

(a) 1pt

The worst case for a single increment of the counter is when every bit is set to 1. The increment then causes every bit to flip, the cost of which is

\[1 + 2 + 2^2 + 2^3 + \ldots + 2^{k-1}\]

Explain in one or two sentences why this cost is $O(n)$. (HINT: Find a closed form for the formula above.)

Solution:

(b) 2pts

Now, we will use amortized analysis to show that although the worst case for a single increment is $O(n)$, the amortized cost of a single increment is asymptotically less than this. Remember, $n = 2^k$.

Over the course of n increments, how many tokens in total does it cost to flip the i^{th} bit the necessary number of times?

Solution:

Based on your answer to the previous part, what is the total cost in tokens of performing n increments? (In other words, what is the total cost of flipping each of the k bits through n increments?) Write your answer as a function of n only. (Hint: what is k as a function of n?)

Solution:

Based on your answer above, what is the amortized cost of a single increment as a function of n only?

Solution: $O(\quad)$ amortized
2. **Hash Tables: Data Structure Invariants**

Refer to the C0 code below for `is_hset`, which checks that a given separate-chaining hash set containing only strings is valid.

```c
typedef struct chain_node chain;
struct chain_node {
    string data;
    chain* next;
};

typedef struct hset_header hset;
struct hset_header {
    int size; // number of elements stored in hash table
    int capacity; // maximum number of chains in hash table
    chain*[] table;
};

int hashindex(hset* H, string x)
//@requires H != NULL && H->capacity > 0;
//@ensures 0 <= \result && \result < H->capacity;
{
    return abs(string_hash(x) % H->capacity);
}

bool is_table_expected_length(chain*[] table, int length) {
    //@assert \length(table) == length;
    return true;
}

bool is_hset(hset* H) {
    return H != NULL && H->capacity > 0 && H->size >= 0
    && is_table_expected_length(H->table, H->capacity);
}
```

An obvious data structure invariant of our hash table is that every element of a chain hashes to the index of that chain. Thus, this specification function is incomplete: we never test that the contents of the hash table satisfy this additional invariant. That is, we test only on the struct `hset`, and not on the properties of the array within.

On the next page, extend `is_hset` from above, adding a helper function to check that every element in the hash table belongs in the chain it is located in, and that each chain is non-cyclic. You should assume we will use the following two functions for hashing strings and for comparing them for equivalence:

```c
int string_hash(string x);
bool string_equiv(string x, string y);
```
Note: your answer needs only to work for hashtables containing a few hundred million elements – do not worry about the number of elements exceeding `int_max()`.

```c
bool has_valid_chains(hset* H) {
    // Preconditions (H != NULL, H->size >= 0, ...) omitted for space
    int nodecount = 0;
    for (int i = 0; i < __________________________________; i++) {
        // set p to the first node of chain i in table, if any
        chain* p = ______________________________________________;
        while (________________________________________________) {
            string x = p->data;
            if (____________________________________________ != i)
                return false;
            nodecount++;
            if (nodecount > _____________________________________)
                return false;
            p = _________________________________________________;
        }
    }
    if (_________________________________________________________)
        return false;
    return true;
}

bool is_hset(hset H) {
    return H != NULL && H->capacity > 0 && H->size >= 0
        && is_table_expected_length(H->table, H->capacity)
        && has_valid_chains(H);
}
3. Hash Tables: Mapping Hash Values to Hash Table Indices

In our `hset` implementation, we require a library helper function `hashindex` that takes an element, computes its hash value using the client’s `elem_hash` function and converts this hash value to a valid index for the hash table. The first two functions below try to implement `hashindex` but have issues.

(a) The following function has a bug in it. For one specific hash value \( h \), this function does not return an index that is valid for a hash table. Identify the specific hash value.

```c
int hashindex(hset H, elem x)
//@requires H != NULL && H->capacity > 0;
//@requires x != NULL;
//@ensures 0 <= \result && \result < H->capacity;
{
 int h = elem_hash(x);
 return abs(h) % H->capacity;
}
```

**Solution:** This function fails when \( h = \)

(b) The following function has an undesirable feature, although it always returns a valid index. Identify the flaw and, in one sentence, explain why it’s a problem.

```c
int hashindex(hset H, elem x)
//@requires H != NULL && H->capacity > 0;
//@requires x != NULL;
//@ensures 0 <= \result && \result < H->capacity;
{
 int h = elem_hash(x);
 return h < 0 ? 0 : h % H->capacity;
}
```

**Solution:**
(c) Complete the following function so it avoids the problems in the previous two implementations of \texttt{hashindex}.

\begin{verbatim}
Solution:
int hashindex(hset H, elem x)
//@requires H != NULL && H->capacity > 0;
//@requires x != NULL;
//@ensures 0 <= \result && \result < H->capacity;
{
    int h = elem_hash(x);

    return (h < 0 ? Integer.MAX_VALUE : h) % H->capacity;
}
\end{verbatim}
4. Generic Algorithms

A generic comparison function might be given the following type in C1:

```c
int compare_fn(void* x, void* y)
//@ensures -1 <= \result && \result <= 1;
```

(Note: there’s no precondition that \(x\) and \(y\) are necessarily non-NULL.)

If we’re given such a function, we can treat \(x\) as being less than \(y\) if the function returns -1, treat \(x\) as being greater than \(y\) if the function returns 1, and treat the two arguments as being equal if the function returns 0.

Given such a comparison function, we can write a function to check that an array is sorted even though we don’t know the type of its elements (as long as it is a pointer type):

```c
bool is_sorted(void*[] A, int lo, int hi, compare_fn* comp)
//@requires 0 <= lo && lo <= hi && hi <= \length(A) && comp != NULL;
```

(a) Complete the generic binary search function below. You don’t have access to generic variants of \(\text{lt}_\text{seg}\) and \(\text{gt}_\text{seg}\). Remember that, for sorted integer arrays, \(\text{gt}_\text{seg}(x, A, 0, lo)\) was equivalent to \(lo == 0 || A[lo - 1] < x\).

```c
int binsearch_generic(void* x, void*[] A, int n, compare_fn* comp)
//@requires 0 <= n && n <= \length(A) && comp != NULL;
//@requires is_sorted(A, 0, n, comp);
{
 int lo = 0;
 int hi = n;

 while (lo < hi)
 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
 //@loop_invariant lo == _____ || _______________________ == -1;
 //@loop_invariant hi == _____ || ________________________ == 1;
 {
 int mid = lo + (hi - lo)/2;

 int c = ________________________________;

 if (c == 0) return mid;
 else if (c < 0) lo = mid + 1;
 else hi = mid;
 }
 return -1;
}
```
Suppose you have a generic sorting function, with the following contract:

```c
void sort_generic(void*[A, int lo, int hi, compare_fn* comp)
 //@requires 0 <= lo && lo <= hi && hi <= length(A) && comp != NULL;
 //@ensures is_sorted(A, lo, hi, comp);
```

(b) 2pts
Write an integer comparison function `compare_ints` that can be used with this generic sorting function, which you should assume is already written. You can leave out the postcondition that the result of `compare_ints` is between -1 and 1 inclusive. However, the contracts on your `compare_ints` function must be sufficient to ensure that no precondition-passing call to `compare_ints` can possibly cause a memory error.

```c
int compare_ints(void* x, void* y)
 //@requires x != NULL && \hastag(_______________________);
 //@requires y != NULL && \hastag(_______________________);
{
 if ___________________ return -1;
 if ___________________ return 1;
 return 0;
}
```
(c) Using the above generic sorting function and `compare_ints`, fill in the body of the `sort_ints` function below so that it will sort the array `A` of integers using the generic sort function specified above. You can omit loop invariants. But of course, when you call `sort_generic`, the preconditions of `compare_ints` must be satisfied by any two elements of the array `B`.

```c
void sort_ints(int[] A, int n)
//@requires \length(A) == n;
{
 // Allocate a temporary generic array of the same size as A
 void*[] B = __;

 // Store a copy of each element in A into B

 // Sort B using sort_generic and compare_ints from part b

 // Copy the sorted ints in your generic array B into array A.

}