Clipping and Scan Conversion

Line Clipping
Polygon Clipping
Clipping in Three Dimensions
Scan Conversion (Rasterization)

[Angel 7.3-7.6, 7.8-7.9]

March 19, 2002
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/
The Graphics Pipeline, Revisited

- Must eliminate objects outside viewing frustum
- Tied in with projections
 - **Clipping**: object space (eye coordinates)
 - **Scissoring**: image space (pixels in frame buffer)
- Introduce **clipping** in stages
 - 2D (for simplicity)
 - 3D (as in OpenGL)
- In a later lecture: **scissoring**
Transformations and Projections

• Sequence applied in many implementations
 1. Object coordinates to
 2. Eye coordinates to
 3. Clip coordinates to
 4. Normalized device coordinates to
 5. Screen coordinates
Clipping Against a Frustum

- General case of frustum (truncated pyramid)

- Clipping is tricky because of frustum shape
Perspective Normalization

- Solution:
 - Implement perspective projection by perspective normalization and orthographic projection
 - Perspective normalization is a homogeneous tfm.

See [Angel Ch. 5.8]
The Normalized Frustum

- OpenGL uses \(-1 \leq x,y,z \leq 1\) (others possible)
- Clip against resulting cube
- Clipping against programmer-specified planes is different and more expensive
- Often a useful programming device
The Viewport Transformation

- Transformation sequence again:
 1. **Camera**: From object coordinates to eye coords
 2. **Perspective normalization**: to clip coordinates
 3. **Clipping**
 4. **Perspective division**: to normalized device coords.
 5. **Orthographic projection** (setting $z_p = 0$)
 6. **Viewport transformation**: to screen coordinates

- Viewport transformation can distort
- Often in OpenGL: resize callback
Line-Segment Clipping

• General: 3D object against cube
• Simpler case:
 – In 2D: line against square or rectangle
 – Before scan conversion (rasterization)
 – Later: polygon clipping
• Several practical algorithms
 – Avoid expensive line-rectangle intersections
 – Cohen-Sutherland Clipping
 – Liang-Barsky Clipping
 – Many more [see Foley et al.]
Clipping Against Rectangle

- **Line-segment clipping**: modify endpoints of lines to lie within clipping rectangle
- Could calculate intersections of line (segments) with clipping rectangle (expensive)
Cohen-Sutherland Clipping

- Clipping rectangle as intersection of 4 half-planes

- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-planes)
Outcodes

- Divide space into 9 regions
- 4-bit outcode determined by comparisons

\[\begin{align*}
 b_0 &: \ y > y_{\text{max}} \\
 b_1 &: \ y < y_{\text{min}} \\
 b_2 &: \ x > x_{\text{max}} \\
 b_3 &: \ x < x_{\text{min}}
\end{align*} \]

- \(o_1 = \text{outcode}(x_1,y_1) \) and \(o_2 = \text{outcode}(x_2,y_2) \)
Cases for Outcodes

- Outcomes: accept, reject, subdivide

- o₁ = o₂ = 0000: accept
- o₁ & o₂ ≠ 0000: reject
- o₁ = 0000, o₂ ≠ 0000: subdiv
- o₁ ≠ 0000, o₂ = 0000: subdiv
- o₁ & o₂ = 0000: subdiv
Cohen-Sutherland Subdivision

- Pick outside endpoint \((o \neq 0000)\)
- Pick a crossed edge \((o = b_0b_1b_2b_3 \text{ and } b_k \neq 0)\)
- Compute intersection of this line and this edge
- Replace endpoint with intersection point
- Restart with new line segment
 - Outcodes of second point are unchanged
- Must converge (roundoff errors?)

Liang-Barsky Clipping

- Starting point is parametric form

\[
p(\alpha) = (1 - \alpha)p_1 + \alpha p_2, \quad 0 \leq \alpha \leq 1
\]

\[
x(\alpha) = (1 - \alpha)x_1 + \alpha x_2
\]

\[
y(\alpha) = (1 - \alpha)y_1 + \alpha y_2
\]

- Compute four intersections with extended clipping rectangle
- Will see that this can be avoided
Ordering of intersection points

- Order the intersection points
- Figure (a): $1 > \alpha_4 > \alpha_3 > \alpha_2 > \alpha_1 > 0$
- Figure (b): $1 > \alpha_4 > \alpha_2 > \alpha_3 > \alpha_1 > 0$
Liang-Barsky Efficiency Improvements

• Efficiency improvement 1:
 – Compute intersections one by one
 – Often can reject before all four are computed

• Efficiency improvement 2:
 – Equations for α_3, α_2

\[
\begin{align*}
 \alpha_3 &= \frac{y_{max} - y_1}{y_2 - y_1} \\
 \alpha_2 &= \frac{x_{min} - x_1}{x_2 - x_1}
\end{align*}
\]

 – Compare α_3, α_2 without floating-point division
Line-Segment Clipping Assessment

• Cohen-Sutherland
 – Works well if many lines can be rejected early
 – Recursive structure (multiple subdiv) a drawback

• Liang-Barsky
 – Avoids recursive calls (multiple subdiv)
 – Many cases to consider (tedious, but not expensive)
 – Used more often in practice (?)
Outline

• Line-Segment Clipping
 – Cohen-Sutherland
 – Liang-Barsky

• Polygon Clipping
 – Sutherland-Hodgeman

• Clipping in Three Dimensions

• Scan Conversion
 – DDA algorithm
 – Bresenham’s algorithm
Polygon Clipping

• Convert a polygon into one or more polygons
• Their union is intersection with clip window
• Alternatively, we can first tesselate concave polygons (OpenGL supported)
Concave Polygons

- Approach 1: clip and join to a single polygon

- Approach 2: tessellate and clip triangles
Sutherland-Hodgeman I

- **Subproblem:**
 - Input: polygon (vertex list) and single clip plane
 - Output: new (clipped) polygon (vertex list)

- **Apply once for each clip plane**
 - 4 in two dimensions
 - 6 in three dimension
 - Can arrange in pipeline
Sutherland-Hodgeman II

• To clip vertex list (polygon) against half-plane:
 – Test first vertex. Output if inside, otherwise skip.
 – Then loop through list, testing transitions
 • In-to-in: output vertex
 • In-to-out: output intersection
 • out-to-in: output intersection and vertex
 • out-to-out: no output
 – Will output clipped polygon as vertex list

• May need some cleanup in concave case

• Can combine with Liang-Barsky idea
Other Cases and Optimizations

- Curves and surfaces
 - Analytically if possible
 - Through approximating lines and polygons otherwise

- Bounding boxes
 - Easy to calculate and maintain
 - Sometimes big savings
Outline

• Line-Segment Clipping
 – Cohen-Sutherland
 – Liang-Barsky

• Polygon Clipping
 – Sutherland-Hodgeman

• Clipping in Three Dimensions

• Scan Conversion
 – DDA algorithm
 – Bresenham’s algorithm
Clipping Against Cube

- Derived from earlier algorithms
- Can allow right parallelepiped
Cohen-Sutherland in 3D

- Use 6 bits in outcode
 - b_4: $z > z_{\text{max}}$
 - b_5: $z < z_{\text{min}}$

- Other calculations as before
Liang-Barsky in 3D

• Add equation \(z(\alpha) = (1- \alpha) z_1 + \alpha z_2 \)

• Solve, for \(p_0 \) in plane and normal \(n \):

\[
\begin{align*}
 y_{\text{max}} &= (1 - \alpha_3)y_1 + \alpha_3 y_2 \\
 x_{\text{min}} &= (1 - \alpha_2)x_1 + \alpha_2 x_2 \\
 \alpha_3 &= \frac{y_{\text{max}} - y_1}{y_2 - y_1} \quad \alpha_2 = \frac{x_{\text{min}} - x_1}{x_2 - x_1}
\end{align*}
\]

• Yields

\[
\alpha = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)}
\]

• Optimizations as for Liang-Barsky in 2D
Perspective Normalization

- Intersection simplifies for orthographic viewing
 - One division only (no multiplication)
 - Other Liang-Barsky optimizations also apply
- Otherwise, use perspective normalization
 - Reduces to orthographic case
 - Applies to oblique and perspective viewing

Normalization of oblique projections
Summary: Clipping

• Clipping line segments to rectangle or cube
 – Avoid expensive multiplications and divisions
 – Cohen-Sutherland or Liang-Barsky

• Clipping to viewing frustum
 – Perspective normalization to orthographic projection
 – Apply clipping to cube from above

• Client-specific clipping
 – Use more general, more expensive form

• Polygon clipping
 – Sutherland-Hodgeman pipeline
Outline

• Line-Segment Clipping
 – Cohen-Sutherland
 – Liang-Barsky

• Polygon Clipping
 – Sutherland-Hodgeman

• Clipping in Three Dimensions

• Scan Conversion
 – DDA algorithm
 – Bresenham’s algorithm
Rasterization

- Final step in pipeline: rasterization (scan conv.)
- From screen coordinates (float) to pixels (int)
- Writing pixels into frame buffer
- Separate z-buffer, display, shading, blending
- Concentrate on primitives:
 - Lines
 - Polygons (Thursday)
DDA Algorithm

- DDA ("Digital Differential Analyzer")
- Represent

\[y = mx + h \quad \text{where} \quad m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \]

- Assume \(0 \leq m \leq 1 \)
- Exploit symmetry
- Distinguish special cases
DDA Loop

- Assume `write_pixel(int x, int y, int value)`

  ```
  For (ix = x1; ix <= x2; ix++)
  {
      y += m;
      write_pixel(ix, round(y), color);
  }
  ```

- Slope restriction needed
- Easy to interpolate colors
Bresenham’s Algorithm I

- Eliminate floating point addition from DDA
- Assume again $0 \leq m \leq 1$
- Assume pixel centers halfway between ints
Bresenham’s Algorithm II

• Decision variable $a - b$
 – If $a - b > 0$ choose lower pixel
 – If $a - b \leq 0$ choose higher pixel
• Goal: avoid explicit computation of $a - b$
• Step 1: re-scale $d = (x_2 - x_1)(a - b) = \Delta x(a - b)$
• d is always integer
Bresenham’s Algorithm III

- Compute \(d \) at step \(k + 1 \) from \(d \) at step \(k \)!
- Case: \(j \) did not change (\(d_k > 0 \))
 - \(a \) decreases by \(m \), \(b \) increases by \(m \)
 - \((a - b)\) decreases by \(2m = 2(\Delta y/\Delta x)\)
 - \(\Delta x(a-b) \) decreases by \(2\Delta y \)
Bresenham’s Algorithm IV

• Case: j did change \((d_k \leq 0) \)
 – \(a \) decreases by \(m-1 \), \(b \) increases by \(m-1 \)
 – \((a - b) \) decreases by \(2m - 2 = 2(\Delta y/\Delta x - 1) \)
 – \(\Delta x(a-b) \) decreases by \(2(\Delta y - \Delta x) \)
Bresenham’s Algorithm V

• So \(d_{k+1} = d_k - 2\Delta y \) if \(d_k > 0 \)
• And \(d_{k+1} = d_k - 2(\Delta y - \Delta x) \) if \(d_k \leq 0 \)
• Final (efficient) implementation:

```c
void draw_line(int x1, int y1, int x2, int y2) {
    int x, y = y0;
    int dx = 2*(x2-x1), dy = 2*(y2-y1);
    int dydx = dy-dx, D = (dy-dx)/2;

    for (x = x1 ; x <= x2 ; x++) {
        write_pixel(x, y, color);
        if (D > 0) D -= dy;
        else {y++; D -= dydx;}
    }
}
```
Bresenham’s Algorithm VI

• Need different cases to handle other m
• Highly efficient
• Easy to implement in hardware and software
• Widely used
Summary

• Line-Segment Clipping
 – Cohen-Sutherland
 – Liang-Barsky

• Polygon Clipping
 – Sutherland-Hodgeman

• Clipping in Three Dimensions

• Scan Conversion
 – DDA algorithm
 – Bresenham’s algorithm
• Scan conversion of polygons
• Anti-aliasing
• Other pixel-level operations
• Assignment 5 due Thursday
• Assignment 6 (written) out Thursday