Transformations

Vector Spaces
Affine and Euclidean Spaces
Frames
Homogeneous Coordinates
Transformation Matrices

[Angel, Ch. 4]
Announcement

- Guest lecture Tuesday, January 29
- From Design to Production: How a Graphics Chip is Built, Scott Whitman, nVidia
Compiling Under Windows (Answer)

- Must install GLUT
- Good source: http://www.opengl.org/
- Includes should be
  ```c
  #include <GL/glut.h>
  #include <stdlib.h>
  ```
- Do not include <GL/gl.h> or <GL/glu.h>
- Run on lab machines before handing in!
Geometric Objects and Operations

• Primitive types: scalars, vectors, points
• Primitive operations: dot product, cross product
• Representations: coordinate systems, frames
• Implementations: matrices, homogeneous coor.
• Transformations: rotation, scaling, translation
• Composition of transformations
• OpenGL transformation matrices
Scalars

- Scalars α, β, γ from a scalar field
- Operations $\alpha + \beta$, $\alpha \cdot \beta$, 0, 1, $-\alpha$, $(\)^{-1}$
- “Expected” laws apply
- Examples: rationals or reals with addition and multiplication
Vectors

- Vectors u, v, w from \textit{vector space}
- Includes scalar field
- Vector addition $u + v$
- Zero vector $\mathbf{0}$
- Scalar multiplication αv
Points

• Points P, Q, R from affine space
• Includes vector space
• Point-point subtraction $v = P - Q$
• Define also $P = v + Q$
Euclidean Space

• Assume vector space over real number
• Dot product: \(\alpha = u \cdot v \)
• \(0 \cdot 0 = 0 \)
• \(u, v \) are orthogonal if \(u \cdot v = 0 \)
• \(|v|^2 = v \cdot v \) defines \(|v| \), the length of \(v \)
• Generally work in an affine Euclidean space
Geometric Interpretations

- Lines and line segments
- Convexity
- Dot product and projections
- Cross product and normal vectors
- Planes
Lines and Line Segments

- Parametric form of line: \(P(\alpha) = P_0 + \alpha d \)

- Line segment between \(Q \) and \(R \):
 \[P(\alpha) = (1-\alpha) Q + \alpha R \text{ for } 0 \leq \alpha \leq 1 \]
Convex Hull

- Convex hull defined by

\[P = \alpha_1 P_1 + \cdots + \alpha_n P_n \]

for \(\alpha_1 + \cdots + \alpha_n = 1 \) and \(0 \leq \alpha_i \leq 1, \ i = 1, \ldots, n \)
Projection

- Dot product projects one vector onto another

\[\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta) \]

[diagram correction: \(x = \mathbf{u} \)]
Normal Vector

- Cross product defines normal vector
 \[u \times v = n \]
 \[|u \times v| = |u| \ |v| \ |\sin(\theta)| \]
- Right-hand rule
Plane

- Plane defined by point P_0 and vectors u and v
- u and v cannot be parallel
- Parametric form: $T(\alpha, \beta) = P_0 + \alpha u + \beta v$
- Let $n = u \times v$ be the normal
- Then $n \cdot (P - P_0) = 0$ iff P lies in plane
Outline

• Vector Spaces
• Affine and Euclidean Spaces
• Frames
• Homogeneous Coordinates
• Transformation Matrices
• OpenGL Transformation Matrices
Coordinate Systems

• Let \(v_1, v_2, v_3 \) be three linearly independent vectors in a 3-dimensional vector space
• Can write any vector \(w \) as
 \[
 w = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3
 \]
 for scalars \(\alpha_1, \alpha_2, \alpha_3 \)
• In matrix notation:

\[
\mathbf{a} = \begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3
\end{bmatrix}
\]
Frames

- Frame = coordinate system + origin P_0
- Any point $P = P_0 + \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$
- Useful in with homogenous coordinates
Changes of Coordinate System

- Bases \{u_1, u_2, u_3\} and \{v_1, v_2, v_3\}
- Express basis vectors \(u_i\) in terms of \(v_j\)

\[
\begin{align*}
 u_1 &= \gamma_{11}v_1 + \gamma_{12}v_2 + \gamma_{13}v_3 \\
 u_2 &= \gamma_{21}v_1 + \gamma_{22}v_2 + \gamma_{23}v_3 \\
 u_3 &= \gamma_{31}v_1 + \gamma_{32}v_2 + \gamma_{33}v_3
\end{align*}
\]

- Represent in matrix form

\[
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3
\end{bmatrix}
= \begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{bmatrix}
\text{ for } M =
\begin{bmatrix}
 \gamma_{11} & \gamma_{12} & \gamma_{13} \\
 \gamma_{21} & \gamma_{22} & \gamma_{23} \\
 \gamma_{31} & \gamma_{32} & \gamma_{33}
\end{bmatrix}
\]
Map to Representations

• \(w = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \), \(a^T = [\alpha_1 \alpha_2 \alpha_3] \)
• \(w = \beta_1 u_1 + \beta_2 u_2 + \beta_3 u_3 \), \(b^T = [\beta_1 \beta_2 \beta_3] \)

\[
\begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
\end{bmatrix}^T = w = \begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
\end{bmatrix}^T = b^T M \begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
\end{bmatrix}
\]

• So \(a = M^T b \) and \(b = (M^T)^{-1} a \)
• Suffices for rotation and scaling, not translation
Outline

• Vector Spaces
• Affine and Euclidean Spaces
• Frames
• Homogeneous Coordinates
• Transformation Matrices
• OpenGL Transformation Matrices
Linear Transformations

- 3×3 matrices represent linear transformations

 $a = M \, b$

- Can represent rotation, scaling, and reflection
- Cannot represent translation
- a and b represent vectors, not points

$$w = a^T \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$
Homogeneous Coordinates

- In affine space, \(P = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + P_0 \)
- Define \(0 \cdot P = 0, \ 1 \cdot P = P \)
- Then

\[
P = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ P_0 \end{bmatrix}
\]

- Point \(p = [\alpha_1 \ \alpha_2 \ \alpha_3 \ 1]^T \)
- Vector \(w = \delta_1 v_1 + \delta_2 v_2 + \delta_3 v_3 \)
- Homogeneous coords: \(a = [\delta_1 \ \delta_2 \ \delta_3 \ 0]^T \)
Translation of Frame

• Express frame \((u_1, u_2, u_3, P_0)\) in \((v_1, v_2, v_3, Q_0)\)

\[
\begin{align*}
u_1 &= \gamma_{11}v_1 + \gamma_{12}v_2 + \gamma_{13}v_3 \\
u_2 &= \gamma_{21}v_1 + \gamma_{22}v_2 + \gamma_{23}v_3 \\
u_3 &= \gamma_{31}v_1 + \gamma_{32}v_2 + \gamma_{33}v_3 \\
Q_0 &= \gamma_{41}v_1 + \gamma_{42}v_2 + \gamma_{43}v_3 + P_0
\end{align*}
\]

• Then

\[
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
Q_0
\end{bmatrix} = M
\begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
P_0
\end{bmatrix}
\text{ for } M =
\begin{bmatrix}
\gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\
\gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\
\gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\
\gamma_{41} & \gamma_{42} & \gamma_{43} & 1
\end{bmatrix}
\]
Homogeneous Coordinates Summary

- Points $[\alpha_1 \ \alpha_2 \ \alpha_3 \ 1]^\top$
- Vectors $[\delta_1 \ \delta_2 \ \delta_3 \ 0]^\top$
- Change of frame

\[
M = \begin{bmatrix}
\gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\
\gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\
\gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\
\gamma_{41} & \gamma_{42} & \gamma_{43} & 1
\end{bmatrix}
\]
Outline

• Vector Spaces
• Affine and Euclidean Spaces
• Frames
• Homogeneous Coordinates
• Transformation Matrices
• OpenGL Transformation Matrices
Affine Transformations

- Translation
- Rotation
- Scaling
- Any composition of the above
- Express in homogeneous coordinates
- Need 4×4 matrices
- Later: projective transformations
- Also expressible as 4×4 matrices!
Translation

\[p' = p + d \quad \text{where} \quad d = [\alpha_x \, \alpha_y \, \alpha_z \, 0]^T \]

\[p = [x \, y \, z \, 1]^T \]

\[p' = [x' \, y' \, z' \, 1]^T \]

Express in matrix form \(p' = T \, p \) and solve for \(T \)

\[
T = \begin{bmatrix}
1 & 0 & 0 & \alpha_x \\
0 & 1 & 0 & \alpha_y \\
0 & 0 & 1 & \alpha_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Scaling

• $x' = \beta_x x$
• $y' = \beta_y y$
• $z' = \beta_z z$
• Express as $\mathbf{p}' = S \mathbf{p}$ and solve for S

$$S = \begin{bmatrix} \beta_x & 0 & 0 & 0 \\ 0 & \beta_y & 0 & 0 \\ 0 & 0 & \beta_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Rotation in 2 Dimensions

- Rotation by θ about the origin
- $x' = x \cos \theta - y \sin \theta$
- $y' = x \sin \theta + y \cos \theta$
- Express in matrix form

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Note determinant is 1
Rotation in 3 Dimensions

- Decompose into rotations about x, y, z axes

\[
R_z = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
R_x = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Compose by Matrix Multiplication

- $R = R_z \ R_y \ R_x$
- Applied from right to left
- $R \ p = (R_z \ R_y \ R_x) \ p = R_z \ (R_y \ (R_x \ p))$
- “Postmultiplication” in OpenGL
Rotation About a Fixed Point

- First, translate to the origin
- Second, rotate about the origin
- Third, translate back
- To rotate by θ in about z around p_f

$$M = T(p_f) \ R_z(\theta) \ T(-p_f) = \ldots$$
Deriving Transformation Matrices

• Other examples: see [Angel, Ch. 4.8]
• See also Assignment 2 when it is out
• Hint: manipulate matrices, but remember geometric intuition
Outline

• Vector Spaces
• Affine and Euclidean Spaces
• Frames
• Homogeneous Coordinates
• Transformation Matrices
• OpenGL Transformation Matrices
Current Transformation Matrix

- Model-view matrix (usually affine)
- Projection matrix (usually not affine)

- Manipulated separately

```c
glMatrixMode (GL_MODELVIEW);
glMatrixMode (GL_PROJECTION);
```
Manipulating the Current Matrix

• Load or postmultiply

```c
glLoadIdentity();
glLoadMatrixf(*m);
glMultMatrixf(*m);
```

• Library functions to compute matrices

```c
glTranslatef(dx, dy, dz);
glRotatef(angle, vx, vy, vz);
glScalef(sx, sy, sz);
```

• Recall: last transformation is applied first!
Summary

• Vector Spaces
• Affine and Euclidean Spaces
• Frames
• Homogeneous Coordinates
• Transformation Matrices
• OpenGL Transformation Matrices
OpenGL Tutors by Nate Robins

- Run under Windows
- Available at http://www.xmission.com/~nate/tutors.html
- Example: Transformation tutor