Classical Radiosity Method
- Divide surfaces into patches
- Model light transfer between patches as system of linear equations
- Important assumptions (so far):
 - Reflection and emission are diffuse
 - No participating media (no fog)
 - No transmission (only opaque surfaces)
 - Radiosity is constant across each patch
 - Solve for R, G, B separately

Radiosity Equation
- For each patch i:
 \[B_i = E_i + \rho_i \sum_j (F_{ij}A_j/A_i)B_j \]
- Variables
 - \(B_i \) = radiosity (unknown)
 - \(E_i \) = emittance of light sources (given)
 - \(\rho_i \) = reflectance (given)
 - \(F_{ij} \) = form factor from i to j (computed)
 - fraction of light emitted from patch i arriving at patch j
 - \(A_i \) = area of patch i (computed)

Form Factors via Hemicubes

Idealized Radiosity Computation
- Division into patches
- Scene
- Geometry
- Reflectance Properties
- Form factor calculation
- Solution of radiosity eqn
- Radiosity
- Image
- Visualization
- Viewing Conditions

Outline
- Substructuring
- Progressive Refinement
- Bidirectional Reflectance Distribution Function
- Combining Radiosity and Ray Tracing
Substructuring
- Radiosity assumed constant across patch
 - Impact of number of patches
 - Few: fast, but very inaccurate (blocky)
 - Many: slow O(n^2), but much more accurate
- Substructuring
 - Introduce elements as a substructure for patches
 - Use adaptively where radiosity varies rapidly
 - Distinguish elements and patches to avoid explosion

Elements vs. Patches
- Analyse transport from patch onto elements
- Do not analyze element-to-element detail
 - This means
 - Compute form factors from elements to patches
 - Do not compute form factors from patches to elements
 - Use weighted patch to parent-of-element
 - Complexity O(m \cdot n) for m elements, n patches
 - Typically substructured areas
 - Near lights
 - Shadow boundaries

Outline
- Substructuring
- Progressive Refinement
- Bidirectional Reflectance Distribution Function
- Combining Radiosity and Ray Tracing

Matrix Radiosity Revisited
- Compute all form factors \(F_{ij} \)
- Make initial approximation to radiosity
 - Emitting elements \(B_i = E_i \)
 - Other elements \(B_i = 0 \)
- Apply equation to get next approximation
 \[B_i' = E_i + \rho_i \sum_j F_{ij} B_j \]
- Iterate with new approximation
 - Intuitively
 - Gather incoming light for each element \(i \)
 - Base new estimate on previous estimate

Progressive Refinement
- Shoot light instead of gathering light
- Basic algorithm
 - Initialize emitting element with \(B_i = E_i \)
 - Initialize others with \(B_i = 0 \)
 - Pick source \(i \) (start with brightest)
 - Using hemicube around source, calculate \(F_{ij} \)
 - For each \(j \neq i \), approximate \(B_j' = \rho_j B_i F_{ij} (A_i / A_j) \)
 - Pick next source \(i \) and iterate until convergence
- Each iteration is \(O(n) \)
- May or may not keep \(F_{ij} \) after each iteration

Progressive Refinement Corrected
- Problem: double-count if source is used more than once as source
- Solution: compute and use difference from last time a patch was used as a source \((\Delta B_i) \)
 - Initialize \(\Delta B_i, B_i = E_i \)
 - Pick source \(i \) with maximum unshot power
 - Using hemicube, calculate \(F_{ij} \) for each \(j \)
 - \(\Delta R = \rho_i \Delta B_i F_{ij} (A_i / A_j) \)
 - \(B_i = B_i + \Delta R \)
 - \(\Delta B_i = \Delta B_i + \Delta R \)
 - \(\Delta B_i = 0 \)
Some Special Cases

- Image after we have iterated through all light sources?
 - Shadows, but no interreflections
- Can incrementally display image while iterating
 - Add ambient light at each stage for visibility
 - Ambient shading if progressively refined
- Incremental form factor computation

Radiosity Algorithms Summary

- Matrix radiosity algorithm
 - Pre-compute all form factors
 - Iterative solution (Gauss-Seidel)
 - Start with emission
 - Each object gathers light from all other objects
- Progressive refinement
 - Pick brightest patch
 - Compute outgoing form factors
 - Shoot light from this patch to all other patches
 - Repeat for next brightest batch
- Combine substructuring and progressive refinement

Outline

- Substructuring
- Progressive Refinement
- Bidirectional Reflectance Distribution Function
- Combining Radiosity and Ray Tracing

Bidirectional Reflectance Distribution

- General model of light reflection
- Hemispherical function
 - 6-dimensional (location, 4 angles, wavelength)
 \[f(\omega_i \rightarrow \omega_r) = \frac{L_r(\omega_i)}{L_i(\omega_i) \cos\theta_i d\omega_i} \]

BRDF Examples

- Measure BRDFs for different materials

BRDF Isotropy

- Rotation invariance of BRDF
- Reduces 4 angles to 2
- Holds for a wide variety of surfaces
- Anisotropic materials
 - Brushed metal
 - Others?
- How many parameters for
 - Ideal specular?
 - Ideal diffuse?
Outline

- Substructuring
- Progressive Refinement
- Bidirectional Reflectance Distribution Function
- Combining Radiosity and Ray Tracing

Light Transport and Global Illumination

- Diffuse to diffuse
- Diffuse to specular
- Specular to diffuse
- Specular to specular
- Ray tracing (viewer dependent)
 - Light to diffuse
 - Specular to specular
- Radiosity (viewer independent)
 - Diffuse to diffuse
- Inherent limitations

Specular Radiosity

- Diffuse radiosity
 - Light reflected equally in all directions
 - Relationship between patches limited to form factor
- Specular radiosity
 - Retain viewer independence (unlike ray tracing)
 - Light reflected differently in different directions
 - For each source and each direction, need to calculate interaction
 - Not practical

Two-Pass Approach

- View-dependent specular is tractable
- View-independent diffuse is tractable
- First pass view independent
 - Enhanced radiosity
- Second pass is view dependent
 - Enhanced ray tracing

Pass 1: Enhanced Radiosity

- Diffuse transmission (translucent surfaces)
 - Backwards diffuse form factor
- Specular transmission
 - Extended form factor computation
 - Consider occluding translucent surfaces
 - Window form factor
- Specular reflection
 - Create "virtual" (mirror-image) environment
 - Use specular transmission technique
 - Mirror form factor

Pass 1 Result

- Account only for one specular reflection between surfaces (diffuse-specular-diffuse)
- Accurate diffuse component
- Solve enhanced radiosity equation as before
- Viewer independent solution
Pass 2: Enhanced Ray Tracing

- Classical ray tracing
 - Specular to specular light transport
- For diffuse-to-specular transport:
 - Should integrate incoming light over hemisphere
 - Approximate by using small frustum in direction of ideal reflection
 - Use radiosity of pixels calculated in Pass 1
 - Apply recursively if visible surface is specular

Two-Pass Global Illumination

- Still several approximating assumptions
- Appropriate for scenes with few specular reflecting or transmitting surfaces
- More expensive than already expensive methods

Two-Pass Radiosity Example

Summary

- Substructuring
- Progressive Refinement
- Bidirectional Reflectance Distribution Function
- Combining Radiosity and Ray Tracing

Preview

- Tuesday: Guest Lecture by Steve Sullivan
 - http://www.evenhouse.com/sullivan/
 - Works at Industrial Light + Magic (ILM)
 http://www.ilm.com/
- Next Lecture: Image Processing (tentative)