Clipping and Scan Conversion

The Graphics Pipeline, Revisited
- Must eliminate objects outside viewing frustum
- Tied in with projections
 - Clipping: object space (eye coordinates)
 - Scissoring: image space (pixels in frame buffer)
- Introduce clipping in stages
 - 2D (for simplicity)
 - 3D (as in OpenGL)
- In a later lecture: scissoring

Transformations and Projections
- Sequence applied in many implementations
 1. Object coordinates to
 2. Eye coordinates to
 3. Clip coordinates to
 4. Normalized device coordinates to
 5. Screen coordinates

Clipping Against a Frustum
- General case of frustum (truncated pyramid)
- Clipping is tricky because of frustum shape

Perspective Normalization
- Solution:
 - Implement perspective projection by perspective normalization and orthographic projection
 - Perspective normalization is a homogeneous tfm.

The Normalized Frustum
- OpenGL uses $-1 \leq x,y,z \leq 1$ (others possible)
- Clip against resulting cube
- Clipping against programmer-specified planes is different and more expensive
- Often a useful programming device
The Viewport Transformation

- Transformation sequence again:
 1. Camera: From object coordinates to eye coords
 2. Perspective normalization: to clip coordinates
 3. Clipping
 4. Perspective division: to normalized device coords.
 5. Orthographic projection (setting $z_p = 0$)
 6. Viewport transformation: to screen coordinates
- Viewport transformation can distort
- Often in OpenGL: resize callback

Line-Segment Clipping

- General: 3D object against cube
- Simpler case:
 - In 2D: line against square or rectangle
 - Before scan conversion (rasterization)
 - Later: polygon clipping
- Several practical algorithms
 - Avoid expensive line-rectangle intersections
 - Cohen-Sutherland Clipping
 - Liang-Barsky Clipping
 - Many more [see Foley et al.]

Clipping Against Rectangle

- Line-segment clipping: modify endpoints of lines to lie within clipping rectangle
- Could calculate intersections of line (segments) with clipping rectangle (expensive)

Cohen-Sutherland Clipping

- Clipping rectangle as intersection of 4 half-planes
- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-planes)

Outcodes

- Divide space into 9 regions
- 4-bit outcode determined by comparisons

Cases for Outcodes

- Outcomes: accept, reject, subdivide

\[\begin{align*}
\text{Code} & \quad \text{Condition} \\
0000 & \quad \text{accept} \\
0001 & \quad \text{reject} \\
0010 & \quad \text{reject} \\
0100 & \quad \text{subdiv} \\
0101 & \quad \text{subdiv} \\
1000 & \quad \text{subdiv} \\
1001 & \quad \text{subdiv} \\
1010 & \quad \text{subdiv} \\
1100 & \quad \text{subdiv}
\end{align*} \]
Cohen-Sutherland Subdivision
- Pick outside endpoint \((o \neq 0000)\)
- Pick a crossed edge \((o = \overline{b_0b_1b_2b_3} \text{ and } b_k \neq 0)\)
- Compute intersection of this line and this edge
- Restart with new line segment
 - Outcodes of second point are unchanged
- Must converge (roundoff errors?)

Liang-Barsky Clipping
- Starting point is parametric form
 \[
 p(\alpha) = (1 - \alpha)p_1 + \alpha p_2, \quad 0 \leq \alpha \leq 1
 \]
 \[
 x(\alpha) = (1 - \alpha)x_1 + \alpha x_2
 \]
 \[
 y(\alpha) = (1 - \alpha)y_1 + \alpha y_2
 \]
- Compute four intersections with extended clipping rectangle
- Will see that this can be avoided

Ordering of intersection points
- Order the intersection points
 - Figure (a): \(1 > \alpha_4 > \alpha_3 > \alpha_2 > \alpha_1 > 0\)
 - Figure (b): \(1 > \alpha_4 > \alpha_2 > \alpha_3 > \alpha_1 > 0\)

Liang-Barsky Efficiency Improvements
- Efficiency improvement 1:
 - Compute intersections one by one
 - Often can reject before all four are computed
- Efficiency improvement 2:
 - Equations for \(\alpha_3, \alpha_2\)
 \[
 \alpha_3 = \frac{y_{max} - y_1}{y_2 - y_1}, \quad \alpha_2 = \frac{x_{min} - x_1}{x_2 - x_1}
 \]
 - Compare \(\alpha_3, \alpha_2\) without floating-point division

Line-Segment Clipping Assessment
- Cohen-Sutherland
 - Works well if many lines can be rejected early
 - Recursive structure (multiple subdiv) a drawback
- Liang-Barsky
 - Avoids recursive calls (multiple subdiv)
 - Many cases to consider (tedious, but not expensive)
 - Used more often in practice (?)

Outline
- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions
- Scan Conversion
 - DDA algorithm
 - Bresenham’s algorithm
Polygon Clipping

- Convert a polygon into one or more polygons
- Their union is the intersection with the clip window
- Alternatively, we can first tessellate concave polygons (OpenGL supported)

Concave Polygons

- Approach 1: clip and join to a single polygon
- Approach 2: tessellate and clip triangles

Sutherland-Hodgeman I

- Subproblem:
 - Input: polygon (vertex list) and single clip plane
 - Output: new (clipped) polygon (vertex list)
- Apply once for each clip plane
 - 4 in two dimensions
 - 6 in three dimensions
 - Can arrange in pipeline

Sutherland-Hodgeman II

- To clip vertex list (polygon) against half-plane:
 - Test first vertex. Output if inside, otherwise skip.
 - Then loop through list, testing transitions
 - In-to-in: output vertex
 - In-to-out: output intersection
 - Out-to-in: output intersection and vertex
 - Out-to-out: no output
 - Will output clipped polygon as vertex list
- May need some cleanup in concave case
- Can combine with Liang-Barsky idea

Other Cases and Optimizations

- Curves and surfaces
 - Analytically if possible
 - Through approximating lines and polygons otherwise
- Bounding boxes
 - Easy to calculate and maintain
 - Sometimes big savings

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions
- Scan Conversion
 - DDA algorithm
 - Bresenham’s algorithm
Clipping Against Cube

- Derived from earlier algorithms
- Can allow right parallelepiped

Cohen-Sutherland in 3D

- Use 6 bits in outcode
 - \(b_4; z > z_{\text{max}} \)
 - \(b_5; z < z_{\text{min}} \)
- Other calculations as before

Liang-Barsky in 3D

- Add equation \(z(\alpha) = (1-\alpha) z_1 + \alpha z_2 \)
- Solve, for \(p_n \) in plane and normal \(n \):
 \[
 x_{\text{min}} = (1-\alpha_2)x_1 + \alpha_2 x_2 \\
 \alpha_3 = \frac{y_{\text{max}} - y_1}{y_2 - y_1} \\
 \alpha_2 = \frac{x_{\text{min}} - x_1}{x_2 - x_1}
 \]
- Yields
 \[
 \alpha = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)}
 \]
- Optimizations as for Liang-Barsky in 2D

Perspective Normalization

- Intersection simplifies for orthographic viewing
 - One division only (no multiplication)
 - Other Liang-Barsky optimizations also apply
- Otherwise, use perspective normalization
 - Reduces to orthographic case
 - Applies to oblique and perspective viewing

Summary: Clipping

- Clipping line segments to rectangle or cube
 - Avoid expensive multiplications and divisions
 - Cohen-Sutherland or Liang-Barsky
- Clipping to viewing frustum
 - Perspective normalization to orthographic projection
 - Apply clipping to cube from above
- Client-specific clipping
 - Use more general, more expensive form
- Polygon clipping
 - Sutherland-Hodgeman pipeline

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions
- Scan Conversion
 - DDA algorithm
 - Bresenham’s algorithm
Rasterization

- Final step in pipeline: rasterization (scan conv.)
- From screen coordinates (float) to pixels (int)
- Writing pixels into frame buffer
- Separate z-buffer, display, shading, blending
- Concentrate on primitives:
 - Lines
 - Polygons (Thursday)

DDA Algorithm

- DDA (“Digital Differential Analyzer”)
- Represent
 \[y = mx + h \]
 where \(m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \)
- Assume 0 ≤ m ≤ 1
- Exploit symmetry
- Distinguish special cases

DDA Loop

- Assume write_pixel(int x, int y, int value)

 For (ix = x1; ix <= x2; ix++)
 {
 y += m;
 write_pixel(ix, round(y), color);
 }

- Slope restriction needed
- Easy to interpolate colors

Bresenham’s Algorithm I

- Eliminate floating point addition from DDA
- Assume again 0 ≤ m ≤ 1
- Assume pixel centers halfway between ints

Bresenham’s Algorithm II

- Decision variable a – b
 - If a – b > 0 choose lower pixel
 - If a – b ≤ 0 choose higher pixel
- Goal: avoid explicit computation of a – b
- Step 1: re-scale d = (x₂ – x₁)(a – b) = Δx(a – b)
- d is always integer

Bresenham’s Algorithm III

- Compute d at step k + 1 from d at step k!
- Case: j did not change (dᵢ > 0)
 - a decreases by m, b increases by m
 - (a – b) decreases by 2m = 2(Δy/Δx)
 - Δx(a – b) decreases by 2Δy
Bresenham's Algorithm IV

- Case: \(j \) did change (\(d_k \leq 0 \))
 - \(a \) decreases by \(m-1 \), \(b \) increases by \(m-1 \)
 - \((a-b) \) decreases by \(2m-2 = 2(\Delta y/\Delta x - 1) \)
 - \(\Delta x(a-b) \) decreases by \(2(\Delta y - \Delta x) \)

Bresenham's Algorithm V

- So \(d_{k+1} = d_k - 2\Delta y \) if \(d_k > 0 \)
- And \(d_{k+1} = d_k - 2(\Delta y - \Delta x) \) if \(d_k \leq 0 \)
- Final (efficient) implementation:

```c
void draw_line(int x1, int y1, int x2, int y2) {
  int x, y = y1;
  int dx = 2*(x2-x1), dy = 2*(y2-y1);
  int dydx = dy-dx, D = (dy-dx)/2;
  for (x = x1 ; x <= x2 ; x++) {
    write_pixel(x, y, color);
    if (D > 0) D -= dy;
    else {y++; D -= dydx;}
  }
}
```

Bresenham's Algorithm VI

- Need different cases to handle other \(m \)
- Highly efficient
- Easy to implement in hardware and software
- Widely used

Summary

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Baraksky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions
- Scan Conversion
 - DDA algorithm
 - Bresenham's algorithm

Preview

- Scan conversion of polygons
- Anti-aliasing
- Other pixel-level operations
- Assignment 5 due Thursday
- Assignment 6 (written) out Thursday