1. Course Overview Revisited
 • Modeling: how to represent objects
 • Animation: how to control and represent motion
 • Rendering: how to create images
 • OpenGL graphics library

2. Basic Graphics Programming
 • The graphics pipeline
 • Pipelines and parallelism
 • Latency vs throughput
 • Efficiently implementable in hardware
 • Not so efficiently implementable in software
 • Course approach: walk the pipeline left-to-right

Graphics Functions
 • Primitive functions (points, lines, polygons)
 • Attribute functions (color, lighting, material)
 • Transformation functions (homogeneous coord)
 • Viewing functions (projections)
 • Input functions (callbacks)
 • Control functions (GLUT library calls)

3. Interaction
 • Client/Server Model
 • Callbacks
 • Double Buffering
 • Hidden Surface Removal

Announcements
 • Assignment 4 due Thursday before lecture
 • Lecture by John Ketchpaw
 • Midterm next Tuesday
 – In class
 – Closed book
 – One double-sided sheet of notes permitted
 – Everything covered in lecture so far
 • Assignment 3 movies
 – Some flaws may be problems in production software
 – Enjoy!
Client/Server Model

- Graphics hardware and caching
- Important for efficiency
- Need to be aware where data are stored
- Examples: vertex arrays, display lists

Hidden Surface Removal

- Classic problem of computer graphics
- What is visible after clipping and projection?
- Object-space vs image-space approaches
- Object space: depth sort (Painter’s algorithm)
- Image space: ray cast (z-buffer algorithm)
- Related: back-face culling

4. Transformations

- Vector Spaces
- Affine and Euclidean Spaces
- Frames
- Homogeneous Coordinates
- Transformation Matrices
- OpenGL Transformation Matrices

Geometric Interpretations

- Lines and line segments
- Convexity
- Dot product and projections
- Cross product and normal vectors
- Planes

Lines and Line Segments

- Parametric form of line: \(P(\alpha) = P_0 + \alpha \vec{d} \)
- Line segment between \(Q \) and \(R \):
 \[P(\alpha) = (1-\alpha) \vec{Q} + \alpha \vec{R} \text{ for } 0 \leq \alpha \leq 1 \]

Convex Hull

- Convex hull defined by
 \[P = \alpha_1 P_1 + \cdots + \alpha_n P_n \]
 for \(\alpha_1 + \cdots + \alpha_n = 1 \)
 and \(0 \leq \alpha_i \leq 1, i = 1, \ldots, n \)
Projection

- Dot product projects one vector onto other
 \[u \cdot v = |u| \|v\| \cos(\theta) \]

Normal Vector

- Cross product defines normal vector
 \[u \times v = n \]
 \[|u \times v| = |u| |v| |\sin(\theta)| \]
 - Right-hand rule

Plane

- Plane defined by point \(P_0 \) and vectors \(u \) and \(v \)
- \(u \) and \(v \) cannot be parallel
- Parametric form: \(T(\alpha, \beta) = P_0 + \alpha u + \beta v \)
- Let \(n = u \times v \) be the normal
- Then \(n \cdot (P - P_0) = 0 \) iff \(P \) lies in plane

Homogeneous Coordinates

- In affine space, \(P = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + P_0 \)
- Define \(0 \cdot P = 0 \), \(1 \cdot P = P \)
- Points \([\alpha_1, \alpha_2, \alpha_3, 1]^T\)
- Vectors \([\delta_1, \delta_2, \delta_3, 0]^T\)
- Change of frame

Affine Transformations

- Compose
 - Rotations, translations, scalings
 - Express in homogeneous coords (4 \times 4 matrices)
- Apply from right to left!
 - \(R p = (R_z R_y R_x) p = R_z (R_y (R_x p)) \)
 - Postmultiplication in OpenGL
- Think in terms of composition
 - Translation to and from origin
 - Remember geometric intuition

5. Viewing and Projection

- Camera Positioning
- Parallel Projections
- Perspective Projections
Camera in Modeling Coordinates

- Camera position is identified with a frame
- Either move and rotate the objects
- Or move and rotate the camera
- Those views are inverses!
 - Each transformation
 - Order of transformation
 - gluLookAt utility

Orthographic Projections

- Projectors perpendicular to projection plane
- Simple, but not realistic

Perspective Viewing

- Characterized by foreshortening
- More distant objects appear smaller

```
y/z = y_p/d  so  y_p = y/(z/d)
Note this is non-linear!
Need homogeneous coordinates
```

Perspective Projection Matrix

- Represent multiple of point
 \[
 \begin{bmatrix}
 z/d \\
 x/d \\
 y/d \\
 1
 \end{bmatrix}
 =
 \begin{bmatrix}
 x \\
 y \\
 z \\
 z/d
 \end{bmatrix}
 \]
- Solve
 \[
 M \begin{bmatrix}
 x \\
 y \\
 z \\
 1
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 1/d & 0
 \end{bmatrix}
 \]

6. Hierarchical Models

- Matrix and attribute stacks
- Save and restore state
- Exploit natural hierarchical structure for
 - Efficient rendering
 - Example: bounding boxes (later in course)
 - Concise specification of model parameters
 - Example: joint angles
 - Physical realism

Hierarchical Objects and Animation

- Drawing functions are time-invariant
- Can be easily stored in display list
- Change parameters of model with time
- Redraw when idle callback is invoked
Complex Objects
• Tree rather than linear structure
• Interleave along each branch
• Use push and pop to save state

Unified View of Computer Animation
• Models with parameters
 – Polygon positions, control points, joint angles, ...
 – \(n \) parameters define \(n \)-dimensional state space
• Animation defined by path through state space
 – Define initial state, repeat:
 – Render the image
 – Move to next point (following motion curves)
• Animation = specifying state space trajectory

Animation vs Modeling
• Modeling: what are the parameters?
• Animation: how do we vary the parameters?
• Sometimes boundary not clear
• Build models that are easy to control
• Hierarchical models often easy to control

Basic Animation Techniques
• Traditional (frame by frame)
• Keyframing
• Procedural techniques
• Behavioral techniques
• Performance-based (motion capture)
• Physically-based (dynamics)

7. Lighting and Shading
• Approximate physical reality
• Ray tracing:
 – Follow light rays through a scene
 – Accurate, but expensive (off-line)
• Radiosity:
 – Calculate surface inter-reflection approximately
 – Accurate, especially interiors, but expensive (off-line)
• Phong Illumination model:
 – Approximate only interaction light, surface, viewer
 – Relatively fast (on-line), supported in OpenGL

Light Sources and Material Properties
• Appearance depends on
 – Light sources, their locations and properties
 – Material (surface) properties
 – Viewer position
• Ray tracing: from viewer into scene
• Radiosity: between surface patches
• Phong Model: at material, from light to viewer
Types of Light Sources

- Ambient light: no identifiable source or direction
- Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
 - Cut-off angle defines a cone of light
 - Attenuation function (brighter in center)
- Light source described by a luminance
 - Each color is described separately
 - $I = [I_r, I_g, I_b]^T$ (I for intensity)
 - Sometimes calculate generically (applies to r, g, b)

Phong Illumination Model

- Calculate color for arbitrary point on surface
- Compromise between realism and efficiency
- Local computation (no visibility calculations)
- Basic inputs are material properties and l, n, v:
 $I = vector\ to\ light\ source$
 $n = surface\ normal$
 $v = vector\ to\ viewer$
 $r = reflection\ of\ I\ at\ p$
 (determined by l and n)

Summary of Phong Model

- Light components for each color:
 - Ambient (L_a), diffuse (L_d), specular (L_s)
- Material coefficients for each color:
 - Ambient (k_a), diffuse (k_d), specular (k_s)
- Distance q for surface point from light source
 $I = \frac{1}{a + bq + cq^2}(k_dL_d(I \cdot n) + k_sL_s(r \cdot v) + k_aL_a)$
 $l = vector\ from\ light$
 $n = surface\ normal$
 $v = vector\ to\ viewer$
 $r = l\ reflected\ about\ n$

Normal Vectors

- Critical for Phong model (diffuse and specular)
- Must calculate accurately
 - From geometry (e.g., differential calculus)
 - From approximating surface (e.g., Bezier patch)
- Pitfalls
 - Unit length (some OpenGL support)
 - Surface boundary

8. Shading in OpenGL

- Polygonal shading
- Material properties
- Approximating a sphere [example]

Polygonal Shading

- Curved surfaces are approximated by polygons
- How do we shade?
 - Flat shading
 - Interpolative shading
 - Gouraud shading
 - Phong shading (different from Phong illumination)
- Two questions:
 - How do we determine normals at vertices?
 - How do we calculate shading at interior points?
Gouraud Shading

- Special case of interpolative shading
- How do we calculate vertex normals?
- Gouraud: average all adjacent face normals
 \[n = \frac{n_1 + n_2 + n_3 + n_4}{|n_1 + n_2 + n_3 + n_4|} \]
- Requires knowledge about which faces share a vertex

Data Structures for Gouraud Shading

- Sometimes vertex normals can be computed directly (e.g. height field with uniform mesh)
- More generally, need data structure for mesh
- Key: which polygons meet at each vertex

Drawing a Sphere

- Recursive subdivision technique quite general
- Interpolation vs flat shading effect

Recursive Subdivision

- General method for building approximations
- Research topic: construct a good mesh
 - Low curvature, fewer mesh points
 - High curvature, more mesh points
 - Stop subdivision based on resolution
 - Some advanced data structures for animation
 - Interaction with textures
- Here: simplest case
- Approximate sphere by subdividing icosahedron

Subdivision Example

- Icosahedron after 3 subdivisions (fast converg.)

9. Curves and Surfaces

- Parametric Representations
 - Also used: implicit representations
- Cubic Polynomial Forms
- Hermite Curves
- Bezier Curves and Surfaces
Parametric Forms

- Parameters often have natural meaning
- Easy to define and calculate
 - Tangent and normal
 - Curves segments (for example, \(0 \leq u \leq 1\))
 - Surface patches (for example, \(0 \leq u, v \leq 1\))

Approximating Surfaces

- Use parametric polynomial surfaces
- Important concepts:
 - Join points for segments and patches
 - Control points to interpolate
 - Tangents and smoothness
 - Blending functions to describe interpolation
- First curves, then surfaces

Cubic Polynomial Form

- Degree 3 appears to be a useful compromise
- Curves:
 - \(p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3 = \sum_{k=0}^{3} c_k u^k\)
 - Each \(c_k\) is a column vector \([c_{kx}, c_{ky}, c_kz]^T\)
 - From control information (points, tangents) derive 12 values \(c_{kx}, c_{ky}, c_kz\) for \(0 \leq k \leq 3\)
 - These determine cubic polynomial form

Geometry Matrix

- Calculate approximating polynomial from control point with geometry matrix \(M\)
 - \(p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3\)
 - \(\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = M \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}\)
 - Each form of interpolation has its own geometry matrix

Standard Methods

- Hermite curves
 - Given by 2 points, 2 tangents
 - \(C^1\) continuity, intersect control points
- Bezier curves
 - Given by 4 control points
 - Intersects 2, others approximate tangent
- Bezier surface patches
 - Given by 16 control points
 - Intersects 4 corners, other approximate tangents

Hermite Curves

- Another cubic polynomial curve
- Specify two endpoints and their tangents

\([\text{diagram correction } p(t) = p']\)
Bezier Curves

- Widely used in computer graphics
- Approximate tangents by using control points

\[p'(0) = 3(p_1 - p_0) \]
\[p'(1) = 3(p_3 - p_2) \]

10. Splines

- Approximating more than 4 control points
- Piecing together a longer curve or surface

B-Splines

- Use 4 points, but approximate only middle two
- Draw curve with overlapping segments
 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc.
- Curve may miss all control points
- Smoother at joint points

Cubic B-Splines

- Need \(m+2 \) control points for \(m \) cubic segments
- Computationally 3 times more expensive
- \(C^2 \) continuous at each interior point
- Derive as follows:
 - Consider two overlapping segments
 - Enforce \(C^0 \) and \(C^1 \) continuity
 - Employ symmetry
 - \(C^2 \) continuity follows

Rendering by Subdivision

- Divide the curve into smaller subpieces
- Stop when "flat" or at fixed depth
- How do we calculate the sub-curves?
 - Bezier curves and surfaces: easy (next)
 - Other curves: convert to Bezier!

Subdividing Bezier Curves

- Given Bezier curve by \(p_0, p_1, p_2, p_3 \)
- Find \(l_0, l_1, l_2, l_3 \) and \(r_0, r_1, r_2, r_3 \)
- Subcurves should stay the same!
Preview I

- Physically based models
 - Particle systems
 - Spring forces (cloth)
 - Collisions and constraints
- Rendering
 - Clipping, bounding boxes
 - Line drawing
 - Scan conversion
 - Anti-aliasing

Preview II

- Textures and pixels
 - Texture mapping
 - Bump maps
 - Environment maps
 - Opacity and blending
 - Filtering
 - Image transformation
- Ray tracing
 - Spatial data structures
 - Bounding volumes

Preview III

- Radiosity
 - Inter-surface reflections
 - Ray casting
- Scientific visualization
 - Height fields and contours
 - Iso-surfaces
 - Marching cubes
 - Volume rendering
 - Volume textures

Announcements

- Assignment 4 due Thursday before lecture
- Lecture by John Ketchpaw
- Midterm next Tuesday
 - In class
 - Closed book
 - One double-sided sheet of notes permitted
 - Everything covered in lecture so far