Midterm Review

Announcements

• Assignment 4 due Thursday before lecture
• Lecture by John Ketchpaw
• Midterm next Tuesday
 – In class
 – Closed book
 – One double-sided sheet of notes permitted
 – Everything covered in lecture so far
• Assignment 3 movies
 – Some flaws may be problems in production software
 – Enjoy!
1. Course Overview Revisited

- Modeling: how to represent objects
- Animation: how to control and represent motion
- Rendering: how to create images
- OpenGL graphics library

2. Basic Graphics Programming

- The graphics pipeline
- Pipelines and parallelism
- Latency vs throughput
- Efficiently implementable in hardware
- Not so efficiently implementable in software
- Course approach: walk the pipeline left-to-right
Graphics Functions

- Primitive functions (points, lines, polygons)
- Attribute functions (color, lighting, material)
- Transformation functions (homogeneous coord)
- Viewing functions (projections)
- Input functions (callbacks)
- Control functions (GLUT library calls)

3. Interaction

- Client/Server Model
- Callbacks
- Double Buffering
- Hidden Surface Removal
Client/Server Model

- Graphics hardware and caching

- Important for efficiency
- Need to be aware where data are stored
- Examples: vertex arrays, display lists

Hidden Surface Removal

- Classic problem of computer graphics
- What is visible after clipping and projection?
- Object-space vs image-space approaches
- Object space: depth sort (Painter’s algorithm)
- Image space: ray cast (z-buffer algorithm)
- Related: back-face culling
4. Transformations

- Vector Spaces
- Affine and Euclidean Spaces
- Frames
- Homogeneous Coordinates
- Transformation Matrices
- OpenGL Transformation Matrices

Geometric Interpretations

- Lines and line segments
- Convexity
- Dot product and projections
- Cross product and normal vectors
- Planes
Lines and Line Segments

- Parametric form of line: $P(\alpha) = P_0 + \alpha d$

- Line segment between Q and R:
 $$P(\alpha) = (1-\alpha) Q + \alpha R \text{ for } 0 \leq \alpha \leq 1$$

Convex Hull

- Convex hull defined by
 $$P = \alpha_1 P_1 + \ldots + \alpha_n P_n$$
 for $a_1 + \ldots + a_n = 1$
 and $0 \leq a_i \leq 1$, $i = 1, ..., n$
Projection

- Dot product projects one vector onto other
 \[u \cdot v = |u| |v| \cos(\theta) \]

Normal Vector

- Cross product defines normal vector
 \[u \times v = n \]
 \[|u \times v| = |u| |v| |\sin(\theta)| \]
- Right-hand rule
Plane

- Plane defined by point P_0 and vectors u and v
- u and v cannot be parallel
- Parametric form: $T(\alpha, \beta) = P_0 + \alpha u + \beta v$
- Let $n = u \times v$ be the normal
- Then $n \cdot (P - P_0) = 0$ iff P lies in plane

Homogeneous Coordinates

- In affine space, $P = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + P_0$
- Define $0 \cdot P = 0$, $1 \cdot P = P$
- Points $[\alpha_1 \ \alpha_2 \ \alpha_3 \ 1]^T$
- Vectors $[\delta_1 \ \delta_2 \ \delta_3 \ 0]^T$
- Change of frame

\[
M = \begin{bmatrix}
\gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\
\gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\
\gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\
\gamma_{41} & \gamma_{42} & \gamma_{43} & 1
\end{bmatrix}
\]
Affine Transformations

- Compose
 - Rotations, translations, scalings
 - Express in homogeneous coords (4 x 4 matrices)
- Apply from right to left!
 - \(R \ p = (R_z \ R_y \ R_x) \ p = R_z (R_y (R_x \ p)) \)
 - Postmultiplication in OpenGL
- Think in terms of composition
 - Translation to and from origin
 - Remember geometric intuition

5. Viewing and Projection

- Camera Positioning
- Parallel Projections
- Perspective Projections
Camera in Modeling Coordinates

- Camera position is identified with a frame
- Either move and rotate the objects
- Or move and rotate the camera
- Those views are inverses!
 - Each transformation
 - Order of transformation
 - gluLookAt utility

Orthographic Projections

- Projectors perpendicular to projection plane
- Simple, but not realistic
Perspective Viewing

- Characterized by foreshortening
- More distant objects appear smaller

- $y/z = y_p/d$ so $y_p = y/(z/d)$
- Note this is non-linear!
- Need homogeneous coordinates

Perspective Projection Matrix

- Represent multiple of point

\[
\begin{bmatrix}
 x/z/d \\
 y/z/d \\
 z/d \\
 1
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
z \\
z/d
\end{bmatrix}
\]

- Solve

\[
M \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix} = \begin{bmatrix}
x \\
y \\
z \\
z/d
\end{bmatrix}
\quad \text{with} \quad M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1/d & 0
\end{bmatrix}
\]
6. Hierarchical Models

- Matrix and attribute stacks
- Save and restore state
- Exploit natural hierarchical structure for
 - Efficient rendering
 - Example: bounding boxes (later in course)
 - Concise specification of model parameters
 - Example: joint angles
 - Physical realism

Hierarchical Objects and Animation

- Drawing functions are time-invariant
- Can be easily stored in display list
- Change parameters of model with time
- Redraw when idle callback is invoked
Complex Objects

- Tree rather than linear structure
- Interleave along each branch
- Use push and pop to save state

Unified View of Computer Animation

- Models with parameters
 - Polygon positions, control points, joint angles, ...
 - n parameters define n-dimensional state space
- Animation defined by path through state space
 - Define initial state, repeat:
 - Render the image
 - Move to next point (following motion curves)
- Animation = specifying state space trajectory
Animation vs Modeling

- Modeling: what are the parameters?
- Animation: how do we vary the parameters?
- Sometimes boundary not clear
- Build models that are easy to control
- Hierarchical models often easy to control

Basic Animation Techniques

- Traditional (frame by frame)
- Keyframing
- Procedural techniques
- Behavioral techniques
- Performance-based (motion capture)
- Physically-based (dynamics)
7. Lighting and Shading

• Approximate physical reality
• Ray tracing:
 – Follow light rays through a scene
 – Accurate, but expensive (off-line)
• Radiosity:
 – Calculate surface inter-reflection approximately
 – Accurate, especially interiors, but expensive (off-line)
• Phong Illumination model:
 – Approximate only interaction light, surface, viewer
 – Relatively fast (on-line), supported in OpenGL

Light Sources and Material Properties

• Appearance depends on
 – Light sources, their locations and properties
 – Material (surface) properties
 – Viewer position
• Ray tracing: from viewer into scene
• Radiosity: between surface patches
• Phong Model: at material, from light to viewer
Types of Light Sources

- Ambient light: no identifiable source or direction
- Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
 - Cut-off angle defines a cone of light
 - Attenuation function (brighter in center)
- Light source described by a luminance
 - Each color is described separately
 - \(I = [I_r, I_g, I_b]^T \) (I for intensity)
 - Sometimes calculate generically (applies to r, g, b)

Phong Illumination Model

- Calculate color for arbitrary point on surface
- Compromise between realism and efficiency
- Local computation (no visibility calculations)
- Basic inputs are material properties and \(I, n, v \):

\[
l = \text{vector to light source}\\
n = \text{surface normal}\\
v = \text{vector to viewer}\\
r = \text{reflection of } l \text{ at } p \\
\text{(determined by } l \text{ and } n)\]
Summary of Phong Model

- Light components for each color:
 - Ambient (L_a), diffuse (L_d), specular (L_s)
- Material coefficients for each color:
 - Ambient (k_a), diffuse (k_d), specular (k_s)
- Distance q for surface point from light source

\[
I = \frac{1}{a + bq + cq^2} (k_d L_d (1 \cdot n) + k_s L_s (r \cdot v)^\alpha + k_a L_a)
\]

\[l = \text{vector from light} \quad r = l \text{ reflected about } n\]
\[n = \text{surface normal} \quad v = \text{vector to viewer}\]

Normal Vectors

- Critical for Phong model (diffuse and specular)
- Must calculate accurately
 - From geometry (e.g., differential calculus)
 - From approximating surface (e.g., Bezier patch)
- Pitfalls
 - Unit length (some OpenGL support)
 - Surface boundary
8. Shading in OpenGL

- Polygonal shading
- Material properties
- Approximating a sphere [example]

Polygonal Shading

- Curved surfaces are approximated by polygons
- How do we shade?
 - Flat shading
 - Interpolative shading
 - Gouraud shading
 - Phong shading (different from Phong illumination)
- Two questions:
 - How do we determine normals at vertices?
 - How do we calculate shading at interior points?
Gouraud Shading

- Special case of interpolative shading
- How do we calculate vertex normals?
- Gouraud: average all adjacent face normals

\[n = \frac{n_1 + n_2 + n_3 + n_4}{|n_1 + n_2 + n_3 + n_4|} \]

- Requires knowledge about which faces share a vertex

Data Structures for Gouraud Shading

- Sometimes vertex normals can be computed directly (e.g. height field with uniform mesh)
- More generally, need data structure for mesh
- Key: which polygons meet at each vertex
Drawing a Sphere

• Recursive subdivision technique quite general
• Interpolation vs flat shading effect

Recursive Subdivision

• General method for building approximations
• Research topic: construct a good mesh
 – Low curvature, fewer mesh points
 – High curvature, more mesh points
 – Stop subdivision based on resolution
 – Some advanced data structures for animation
 – Interaction with textures
• Here: simplest case
• Approximate sphere by subdividing icosahedron
9. Curves and Surfaces

- Parametric Representations
 - Also used: implicit representations
- Cubic Polynomial Forms
- Hermite Curves
- Bezier Curves and Surfaces
Parametric Forms

- Parameters often have natural meaning
- Easy to define and calculate
 - Tangent and normal
 - Curves segments (for example, \(0 \leq u \leq 1 \))
 - Surface patches (for example, \(0 \leq u, v \leq 1 \))

Approximating Surfaces

- Use parametric polynomial surfaces
- Important concepts:
 - Join points for segments and patches
 - Control points to interpolate
 - Tangents and smoothness
 - Blending functions to describe interpolation
- First curves, then surfaces
Cubic Polynomial Form

- Degree 3 appears to be a useful compromise
- Curves:
 \[p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3 = \sum_{k=0}^{3} c_k u^k \]
- Each \(c_k \) is a column vector \([c_{kx} \ c_{ky} \ c_{kz}]^T\)
- From control information (points, tangents) derive 12 values \(c_{kx}, c_{ky}, c_{kz} \) for \(0 \leq k \leq 3 \)
- These determine cubic polynomial form

Geometry Matrix

- Calculate approximating polynomial from control point with geometry matrix \(M \)
 \[p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3 \]
 \[
 \begin{bmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 c_3 \\
 \end{bmatrix} = M \begin{bmatrix}
 p_0 \\
 p_1 \\
 p_2 \\
 p_3 \\
 \end{bmatrix}
 \]
- Each form of interpolation has its own geometry matrix
Standard Methods

- Hermite curves
 - Given by 2 points, 2 tangents
 - C^1 continuity, intersect control points

- Bezier curves
 - Given by 4 control points
 - Intersects 2, others approximate tangent

- Bezier surface patches
 - Given by 16 control points
 - Intersects 4 corners, other approximate tangents

Hermite Curves

- Another cubic polynomial curve
- Specify two endpoints and their tangents
Beziers Curves

- Widely used in computer graphics
- Approximate tangents by using control points

\[p'(0) = 3(p_1 - p_0) \]
\[p'(1) = 3(p_3 - p_2) \]

10. Splines

- Approximating more than 4 control points
- Piecing together a longer curve or surface
B-Splines

- Use 4 points, but approximate only middle two
- Draw curve with overlapping segments
 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc.
- Curve may miss all control points
- Smoother at joint points

Cubic B-Splines

- Need $m+2$ control points for m cubic segments
- Computationally 3 times more expensive
- C^2 continuous at each interior point
- Derive as follows:
 - Consider two overlapping segments
 - Enforce C^0 and C^1 continuity
 - Employ symmetry
 - C^2 continuity follows
Rendering by Subdivision

- Divide the curve into smaller subpieces
- Stop when “flat” or at fixed depth
- How do we calculate the sub-curves?
 - Bezier curves and surfaces: easy (next)
 - Other curves: convert to Bezier!

Subdividing Bezier Curves

- Given Bezier curve by p_0, p_1, p_2, p_3
- Find l_0, l_1, l_2, l_3 and r_0, r_1, r_2, r_3
- Subcurves should stay the same!
Preview I

• Physically based models
 – Particle systems
 – Spring forces (cloth)
 – Collisions and constraints

• Rendering
 – Clipping, bounding boxes
 – Line drawing
 – Scan conversion
 – Anti-aliasing

Preview II

• Textures and pixels
 – Texture mapping
 – Bump maps
 – Environment maps
 – Opacity and blending
 – Filtering
 – Image transformation

• Ray tracing
 – Spatial data structures
 – Bounding volumes
Preview III

- Radiosity
 - Inter-surface reflections
 - Ray casting
- Scientific visualization
 - Height fields and contours
 - Isosurfaces
 - Marching cubes
 - Volume rendering
 - Volume textures

Announcements

- Assignment 4 due Thursday before lecture
- Lecture by John Ketchpaw
- Midterm next Tuesday
 - In class
 - Closed book
 - One double-sided sheet of notes permitted
 - Everything covered in lecture so far