15-462 Computer Graphics I
Lecture 10

Splines

Cubic B-Splines
Nonuniform Rational B-Splines
Rendering by Subdivision
Curves and Surfaces in OpenGL
[Angel, Ch 10.7-10.14]

Review

• Cubic polynomial form for curve
 \[p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3 = \sum_{k=0}^{3} c_k u^k \]
• Each \(c_k \) is a column vector \([c_{kx} \ c_{ky} \ c_{kz}]^T\)
• Solve for \(c_k \) given control points
• Interpolation: 4 points
• Hermite curves: 2 endpoints, 2 tangents
• Bezier curves: 2 endpoints, 2 tangent points
Splines

- Approximating more control points

- C^0 continuity: points match
- C^1 continuity: tangents (derivatives) match
- C^2 continuity: curvature matches
- With Bezier segments or patches: C^0

B-Splines

- Use 4 points, but approximate only middle two

- Draw curve with overlapping segments
 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc.
- Curve may miss all control points
- Smoother at joint points
Cubic B-Splines

- Need \(m+2 \) control points for \(m \) cubic segments
- Computationally 3 times more expensive
- \(C^2 \) continuous at each interior point
- Derive as follows:
 - Consider two overlapping segments
 - Enforce \(C^0 \) and \(C^1 \) continuity
 - Employ symmetry
 - \(C^2 \) continuity follows

Deriving B-Splines

- Consider points
 - \(p_{i-2}, p_{i-1}, p_i, p_{i+1} \)
 - \(p(0) \) approx \(p_{i-1}, p(1) \) approx \(p_i \)
 - \(p_{i-3}, p_{i-2}, p_{i-1}, p_i \)
 - \(q(0) \) approx \(p_{i-2}, q(1) \) approx \(p_{i-1} \)
- Condition 1: \(p(0) = q(1) \)
 - Symmetry: \(p(0) = q(1) = 1/6(p_{i-2} + 4 p_{i-1} + p_i) \)
- Condition 2: \(p'(0) = q'(1) \)
 - Geometry: \(p'(0) = q'(1) = 1/2 ((p_i - p_{i+1}) + (p_{i-1} - p_{i-2})) \)
 \[= 1/2 \ (p_i - p_{i-2}) \]
B-Spline Geometry Matrix

- Conditions at $u = 0$
 - $p(0) = c_0 = 1/6 (p_{i-2} + 4p_{i-1} + p_i)$
 - $p'(0) = c_1 = 1/2 (p_i - p_{i-2})$

- Conditions at $u = 1$
 - $p(1) = c_0 + c_1 + c_2 + c_3 = 1/6 (p_{i-1} + 4p_i + p_{i+1})$
 - $p'(1) = c_1 + 2c_2 + 3c_3 = 1/2 (p_{i+1} - p_{i-1})$

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = M_S \begin{bmatrix} p_{i-2} \\ p_{i-1} \\ p_i \\ p_{i+1} \end{bmatrix}, M_S = \frac{1}{6} \begin{bmatrix} 1 & 4 & 1 & 0 \\ -3 & 0 & 3 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

Blending Functions

- Calculate cubic blending polynomials

$$b(u) = M_T^{S^T} u = \frac{1}{6} \begin{bmatrix} (1 - u)^3 \\ 4 - 6u^2 + 3u^3 \\ 1 + 3u + 3u^2 - 3u^3 \\ u^3 \end{bmatrix}$$

- Note symmetries
Convex Hull

- For $0 \leq u \leq 1$, have $0 \leq b_k(u) \leq 1$
- Recall:
 \[p(u) = b_{i-2}(u)p_{i-2} + b_{i-1}(u)p_{i-1} + b_i(u)p_i + b_{i+1}(u)p_{i+1} \]
- So each point $p(u)$ lies in convex hull of p_k

Spline Basis Functions

- Total contribution $B_i(u)p_i$ of p_i is given by

\[
B_i(u) = \begin{cases}
0 & u < i - 2 \\
b_0(u + 2) & i - 2 \leq u < i - 1 \\
b_1(u + 1) & i - 1 \leq u \leq i \\
b_2(u) & i \leq u < i + 1 \\
b_3(u - 1) & i + 1 \leq u < i + 2 \\
0 & i - 2 \leq u
\end{cases}
\]
Spline Surface

• As for Bezier patches, use 16 control points
• Start with blending functions
 \[p(u, v) = \sum_{i=0}^{3} \sum_{k=0}^{3} b_i(u)b_k(v)p_{ik} \]
• Need 9 times as many splines as for Bezier

Assessment: Cubic B-Splines

• More expensive than Bezier curves or patches
• Smoother at join points
• Local control
 – How far away does a point change propagate?
• Contained in convex hull of control points
• Preserved under affine transformation
• How to deal with endpoints?
 – Closed curves (uniform periodic B-splines)
 – Non-uniform B-Splines (multiplicities of knots)
General B-Splines

- Generalize from cubic to arbitrary order
- Generalize to different basis functions
- Read: [Angel, Ch 10.8]
- Knot sequence \(u_{\text{min}} = u_0 \leq \ldots \leq u_n = u_{\text{max}} \)
- Repeated points have higher “gravity”
- Multiplicity 4 means point must be interpolated
- \{0, 0, 0, 0, 1, 2, \ldots, n-1, n, n, n, n\} solves boundary problem

Nonuniform Rational B-Splines (NURBS)

- Exploit homogeneous coordinates

\[
p_i = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} \simeq w_i \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} = q_i
\]

- Use perspective division to renormalize

\[
p(u) = \frac{\sum_{i=0}^{n} B_i(u) w_i p_i}{\sum_{i=0}^{n} B_i(u) w_i}
\]

- Each component of \(p(u) \) is rational function of \(u \)
- Points not necessarily uniform (NURBS)
NURBS Assessment

- Convex-hull and continuity props. of B-splines
- Preserved under perspective transformations
 - Curve with transformed points = transformed curve
- Widely used (including OpenGL)

Outline

- Cubic B-Splines
- Nonuniform Rational B-Splines (NURBS)
- Rendering by Subdivision
- Curves and Surfaces in OpenGL
Rendering by Subdivision

- Divide the curve into smaller subpieces
- Stop when “flat” or at fixed depth
- How do we calculate the sub-curves?
 - Bezier curves and surfaces: easy (next)
 - Other curves: convert to Bezier!

Subdividing Bezier Curves

- Given Bezier curve by p_0, p_1, p_2, p_3
- Find l_0, l_1, l_2, l_3 and r_0, r_1, r_2, r_3
- Subcurves should stay the same!
Construction of Bezier Subdivision

- Use algebraic reasoning

\[l(0) = l_0 = p_0 \]
\[l(1) = l_3 = p(1/2) = \frac{1}{8}(p_0 + 3p_1 + 3p_2 + p_3) \]
\[l'(0) = 3(l_1 - l_0) = p'(0) = \frac{3}{2}(p_1 - p_0) \]
\[l'(1) = 3(l_3 - l_2) = p'(1/2) = \frac{3}{8}(-p_0 - p_1 + p_2 + p_3) \]
- Note parameter substitution \(v = 2u \) so \(dv = 2du \)

Geometric Bezier Subdivision

- Can also calculate geometrically

\[l_1 = \frac{1}{2}(p_0 + p_1), \quad r_2 = \frac{1}{2}(p_2 + p_3) \]
\[l_2 = \frac{1}{2}(l_1 + \frac{1}{2}(p_1 + p_2)), \quad r_1 = \frac{1}{2}(r_2 + \frac{1}{2}(p_1 + p_2)) \]
\[l_3 = r_0 = \frac{1}{2}(l_2 + r_1), \quad l_0 = p_0, \quad r_3 = p_3 \]
Recall: Bezier Curves

- Recall \(u^T = \begin{bmatrix} 1 & u & u^2 & u^3 \end{bmatrix} \)
- Express \(p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3 \)
 \[= u^T \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = u^T M_B \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} \]
 \(M_B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & -1 \end{bmatrix}\)

Subdividing Other Curves

- Calculations more complex
- Trick: transform control points to obtain identical curve as Bezier curve!
- Then subdivide the resulting Bezier curve
- Bezier: \(p(u) = u^T M_b p \)
- Other curve: \(p(u) = u^T M q, M \) geometry matrix
- Solve: \(q = M^{-1} M_b p \) with \(p = M_b^{-1} M q \)
Example Conversion

• From cubic B-splines to Bezier:

\[
M_B^{-1}M_S = \frac{1}{6} \begin{bmatrix}
1 & 4 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 4 & 0 \\
0 & 1 & 4 & 1 \\
\end{bmatrix}
\]

• Calculate Bezier points \(p \) from \(q \)
• Subdivide as Bezier curve

Subdivision of Bezier Surfaces

• Slightly more complicated
• Need to calculate interior point
• Cracks may show with uneven subdivision
• See [Angel, Ch 10.9.4]
Outline

• Cubic B-Splines
• Nonuniform Rational B-Splines (NURBS)
• Rendering by Subdivision
• Curves and Surfaces in OpenGL

Curves and Surface in OpenGL

• Central mechanism is evaluator
• Defined by array of control points
• Evaluate coordinates at u (or u and v) to generate vertex
• Define Bezier curve: type = GL_MAP_VERTEX_3
 glmMap1f(type, u0, u1, stride, order, point_array)
• Enable evaluator
 glEnable(type)
• Evaluate Bezier curve
 glEvalCoord1f(u)
Example: Drawing a Bezier Curve

- 4 control points

  ```c
  GLfloat ctrlpoints[4][3] = {
    {-4.0, -4.0, 0.0}, {-2.0, 4.0, 0.0},
    {2.0, -4.0, 0.0}, {4.0, 4.0, 0.0}};
  ```

- Initialize

  ```c
  void init()
  {
    ...
    glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, &ctrlpoints[0][0]);
    glEnable(GL_MAP1_VERTEX_3);
  }
  ```

Evaluating Coordinates

- Use a fixed number of points, num_points

  ```c
  void display()
  {
    ... glBegin(GL_LINE_STRIP);
    for (i = 0; i <= num_points; i++)
      glEvalCoord1f((GLfloat)i/(GLfloat)num_points);
    glEnd();
    ...
  }
  ```
Drawing the Control Points

• To illustrate Bezier curve

 void display()
 {
 ...
 glPointSize(5.0);
 glColor3f(1.0, 1.0, 0.0);
 glBegin(GL_POINTS);
 for (i = 0; i < 4; i++)
 glVertex3fv(&ctrlpoints[i][0]);
 glEnd();
 glFlush();
 }

Resulting Images

$n = 5$
$n = 20$
Beziers Surfaces

• Create evaluator in two parameters u and v

 \[\text{glMap2f(GL_MAP2_VERTEX_3,}
 \quad u_0, \, u_1, \, \text{ustride, uorder,}
 \quad v_0, \, v_1, \, \text{vstride, vorder, point_array);}\]

• Enable, also automatic calculation of normal

 \[\text{glEnable(GL_MAP2_VERTEX_3);}\]
 \[\text{glEnable(GL_AUTO_NORMAL);}\]

• Evaluate at parameters u and v

 \[\text{glEvalCoord2f(u, v);}\]

Grids

• Convenience for uniform evaluators
• Define grid (nu = number of u division)

 \[\text{glMapGrid2f(nu, u_0, \, u_1, \, \text{nv, v_0, v_1);}\]

• Evaluate grid

 \[\text{glEvalMesh2(mode, i_0, \, i_1, \, k_0, k_1);}\]

• \textit{mode} = GL_POINT, GL_LINE, or GL_FILL
• \textit{i} and \textit{k} define subrange
Example: Bezier Surface Patch

- Use 16 control points

 GLfloat ctrlpoints[4][4][3] = {...};
- Initialize 2-dimensional evaluator

 void init(void)
 {
 glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,
 0, 1, 12, 4, &ctrlpoints[0][0][0]);
 glEnable(GL_MAP2_VERTEX_3);
 glEnable(GL_AUTO_NORMAL);
 glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
 }

Evaluating the Grid

- Use full range

 void display(void)
 {
 glPopMatrix();
 glRotatef(85.0, 1.0, 1.0, 1.0);
 glEvalMesh2(GL_FILL, 0, 20, 0, 20);
 glPopMatrix();
 glFlush();
 }
NURBS Functions

- Higher-level interface
- Implemented in GLU using evaluators
- Create a NURBS renderer
  ```
  theNurb = gluNewNurbsRenderer();
  ```
- Set NURBS properties
  ```
  gluNurbsProperty(theNurb, GLU_DISPLAY_MODE, GLU_FILL);
  gluNurbsCallback(theNurb, GLU_ERROR, nurbsError);
  ```
Displaying NURBS Surfaces

• Specify knot arrays for splines

```c
GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
gluBeginSurface(theNurb);
gluNurbsSurface(theNurb,
    8, knots, 8, knots,
    4 * 3, 3, &ctlpoints[0][0][0],
    4, 4, GL_MAP2_VERTEX_3);
gluEndSurface(theNurb);
```

• For more see [Red Book, Ch. 12]

Summary

• Cubic B-Splines
• Nonuniform Rational B-Splines (NURBS)
• Rendering by Subdivision
• Curves and Surfaces in OpenGL
Reminders

• Assignment 3 due tonight
• Assignment 4 out some time today
• Midterm will cover curves and surfaces
• Next Tuesday: Textures?
• Next Thursday: John Ketchpaw