RESEARCH ON AUTOMATIC VERIFICATION OF FINITE-STATE CONCURRENT SYSTEMS

E. M. Clarke and O. Grämmberg

Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

1. INTRODUCTION

Temporal logics were first developed by philosophers for reasoning about the ordering of events in time without introducing time explicitly (Hughes & Creswell 1977). Although a number of different temporal logics have been studied, most have an operator like $\mathcal{G}(f)$ that is true in the present if f is always true in the future (i.e. if f is globally true). To assert that two events e_1 and e_2 never occur at the same time, one would write $\mathcal{G}(\neg e_1 \lor \neg e_2)$. Temporal logics are often classified according to whether time is assumed to have a linear or a branching structure. This classification may occasionally be misleading since some temporal logics combine both linear-time and branching-time operators. We adopt here the approach used by Emerson & Halpern (1983) which permits both types of logics to be treated within a single semantic framework. In this paper the meaning of a temporal logic formula will always be determined with respect to a labeled state transition graph; for historical reasons such structures are called Kripke models (Hughes & Creswell 1977).

Pnueli was apparently the first person to use temporal logic for specifying and verifying concurrent programs (Pnueli 1977). His approach involved proving desired properties of the program under consideration from a set of program axioms that described the behavior of the individual statements in the program. Proofs were usually constructed by hand, and this task was in general tedious. Since many concurrent programs can be viewed as

1 This research was partially supported by NSF Grant MCS-82-16706. The second author, O. Grämmberg, is currently on leave from Technion, Haifa, and is partially supported by a Weizmann postdoctoral fellowship.
communicating finite-state machines, there was a strong possibility that at least some of these programs could be automatically verified. The first verification technique to exploit this observation was the CTL model checking procedure developed by Clarke & Emerson (1981). Their algorithm was polynomial both in the size of the model determined by the program under consideration and in the length of its specification in temporal logic. They also showed how fairness (Gabbay et al 1980) could be handled without changing the complexity of their algorithm. Handling fairness was an important step since the correctness of many concurrent algorithms depends critically on some assumption of this type; for example, absence of starvation in a mutual exclusion algorithm may depend on the assumption that each process makes progress infinitely often.

At roughly the same time Quelle & Sifakis (1981) produced a model-checking algorithm for a similar branching-time logic, but they did not analyze its complexity or show how to handle an interesting notion of fairness. Later Clarke, Emerson, and Sistla (Clarke et al 1986a) devised an improved algorithm that was linear in the product of the length of the formula and in the size of the global state graph. Sistla & Clarke (1986) analyzed the model-checking problem for a variety of other temporal logics and showed, in particular, that for linear temporal logic the problem was PSPACE complete.

A number of papers have shown how the temporal logic model-checking procedure can be used for verifying network protocols and sequential circuits (Clarke et al 1986a; Mishra & Clarke 1985; Browne et al 1986a,b; Dill & Clarke 1986; Browne et al 1985; Browne & Clarke 1986). In the case of sequential circuits, two approaches have been developed for obtaining state-transition graphs to analyze. The first approach extracts a state graph directly from the circuit under an appropriate timing model of circuit behavior. The second approach obtains a state-transition graph by compilation from a high-level representation of the circuit in a Pascal-like programming language. In practice the model-checking procedure is able to check state-transition graphs at a rate of 100 states per second for formulas of reasonable length. It has been used successfully to find previously unknown errors in published designs of asynchronous circuits.

Alternative approaches have been proposed by a number of other researchers. The approach used by Kurshan (1986) involves checking inclusion between two automata on infinite tapes. The first machine represents the system that is being verified; the second represents its specification. Automata on infinite tapes are used in order to handle fairness. Lichtenstein & Pnueli (1985) reanalyzed the complexity of checking linear-time formulas and discovered that although the complexity appears exponential in the length of the formula, it is linear in the size of the global state.
graph. Based on this observation, they argued that the high complexity of linear-time model checking might still be acceptable for short formulas. Emerson & Lei (1985) extended their result to show that formulas of the logic CTL*, which combines both branching-time and linear-time operators, could be checked with essentially the same complexity as formulas of linear temporal logic. Vardi & Wolper (1986) have recently shown how the model-checking problem can be formulated in terms of automata, thus relating the model-checking approach to the work of Kurshan.

Although the model-checking procedure discussed in this paper has already been used to discover some surprising errors in nontrivial programs, more work remains to be done. Certainly the most serious problem is the state explosion problem. In analyzing a system of N processes, the number of states in the global state graph may grow exponentially with N. Recent research indicates, however, that it may be possible to avoid this problem in some important cases. For instance, techniques developed by Clarke et al (1986b) may reduce the size of the state graph that needs to be searched when many of the processes are identical. It may also be possible to exploit the hierarchical structure of a complex concurrent program in order to reduce the number of states that need to be considered at any one level of abstraction (Mishra & Clarke 1985).

This survey is organized as follows: Section 2 describes the syntax and semantics of the temporal logics used in this paper. In Section 3 we state the model-checking problem and give an efficient algorithm for checking simple branching-time formulas. In Section 4 we discuss the issue of fairness and show how the algorithm of Section 3 can be extended to include fairness constraints. Section 5 demonstrates how the model-checking algorithm can be used to debug a simple mutual exclusion program. In Section 6 we describe some alternative approaches for verifying systems of finite-state concurrent processes. We analyze the complexity of checking linear temporal logic formulas and outline the techniques of Lichtenstein & Pnueli (1985) and Vardi & Wolper (1986). Additional applications to circuit and protocol verification are discussed in Section 7. The paper concludes in Section 8 with a discussion of some of the important remaining research problems like the state explosion problem.

2. COMPUTATION TREE LOGICS

In this paper finite-state programs are modeled by labeled state-transition graphs, called Kripke structures (Hughes & Creswell 1977). If some state is designated as the initial state, then the Kripke structure can be unwound into an infinite tree with that state as the root. Since paths in the tree
represent possible computations of the program, we will refer to the infinite
tree obtained in this manner as the computation tree of the program.
Temporal logics may differ according to how they handle branching in
the underlying computation tree. In linear temporal logic, operators are
provided for describing events along a single computation path. In a
branching-time logic the temporal operators quantify over the paths that
are possible from a given state. The computation tree logic CTL* (Emerson
& Clarke 1981; Emerson & Halpern 1983; Clarke et al 1986a) combines
both branching-time and linear-time operators; a path quantifier, either A
("for all computation paths") or E ("for some computation path") can
prefix an assertion composed of arbitrary combinations of the usual linear-
time operators G ("always"), F ("sometimes"), X ("nexttime"), and U
("until"). The remainder of this section gives a precise description of the
syntax and semantics of these logics.

There are two types of formulas in CTL*: state formulas (which are
true in a specific state) and path formulas (which are true along a specific
path). Let AP be the set of atomic proposition names. A state formula is
either:

- A, if $A \in AP$
- If f and g are state formulas, then $\neg f$ and $f \lor g$ are state formulas.
- If f is a path formula, then $E(f)$ is a state formula.

A path formula is either:

- A state formula
- If f and g are path formulas, then $\neg f$, $f \lor g$, Xf, and fUg are
 path formulas.

CTL* is the set of state formulas generated by the above rules.

CTL (Ben-Ari et al 1983; Clarke & Emerson 1981) is a restricted subset
of CTL* that permits only branching-time operators—each path quan-
tifier must be immediately followed by exactly one of the operators G, F,
X, or U. More precisely, CTL is the subset of CTL* that is obtained if the
path formulas are restricted as follows:

- If f and g are state formulas, then Xf and fUg are path formulas.
- If f is a path formula, then so is $\neg f$.

Linear temporal logic (LTL), on the other hand, will consist of formulas
that have the form Af where f is a path formula in which the only state
subformulas permitted are atomic propositions. More formally, a path
formula is either:

- An atomic proposition
• If \(f \) and \(g \) are path formulas, then \(\neg f, f \lor g, \mathsf{X}f, \) and \(fUg \) are path formulas.

We define the semantics of \(\text{CTL}^* \) with respect to a structure \(M = \langle S, R, L \rangle \), where \(S \) is a set of states; \(R \subseteq S \times S \) is the transition relation, which must be total (we write \(s_i \rightarrow s_2 \) to indicate that \((s_1, s_2) \in R \)); and \(L : S \rightarrow \mathcal{P}(AP) \) is a function that labels each state with a set of atomic propositions true in that state. Unless otherwise stated, all of our results apply only to finite Kripke structures.

We define a path in \(M \) to be a sequence of states, \(\pi = s_0, s_1, \ldots \) such that for every \(i \geq 0 \), \(s_i \rightarrow s_{i+1} \). We use \(\pi' \) to denote the suffix of \(\pi \) starting at \(s_0 \).

We use the standard notation to indicate that a state formula \(f \) holds in a structure: \(M, s \models f \) means that \(f \) holds at state \(s \) in structure \(M \). Similarly, if \(f \) is a path formula, \(M, \pi \models f \) means that \(f \) holds along path \(\pi \) in structure \(M \). The relation \(\models \) is defined inductively as follows (assuming that \(f_1 \) and \(f_2 \) are state formulas and \(g_1 \) and \(g_2 \) are path formulas):

1. \(s \models A \iff A \in L(s) \).
2. \(s \models \neg f_1 \iff \neg s \models f_1 \).
3. \(s \models f_1 \lor f_2 \iff s \models f_1 \) or \(s \models f_2 \).
4. \(s \models E(g_1) \iff \exists \text{ a path } \pi \text{ starting with } s \text{ such that } \pi \models g_1 \).
5. \(\pi \models f_1 \iff s \text{ is the first state of } \pi \text{ and } s \models f_1 \).
6. \(\pi \models \neg g_1 \iff \neg \pi \models g_1 \).
7. \(\pi \models g_1 \lor g_2 \iff \pi \models g_1 \) or \(\pi \models g_2 \).
8. \(\pi \models Xg_1 \iff \pi^1 \models g_1 \).
9. \(\pi \models g_1 \mathcal{U} g_2 \iff \text{there exists a } k \geq 0 \text{ such that } \pi^k \models g_2 \text{ and for all } 0 \leq j < k, \pi^j \not\models g_1 \).

We use the following abbreviations in writing \(\text{CTL}^* \) (CTL and LTL) formulas:

\[f \land g \equiv \neg (\neg f \lor \neg g) \quad \text{• } \mathsf{F}f \equiv \text{true} \mathcal{U}f \]
\[\mathsf{A}(f) \equiv \neg \mathsf{E}(\neg f) \quad \text{• } \mathsf{G}f \equiv \neg \mathcal{U}\neg f. \]

Lamport (1980) and Emerson & Halpern (1983) have shown that the three logics discussed in this section have different expressive powers. For example, there is no CTL formula that is equivalent to the LTL formula \(\mathsf{A} (\mathsf{F}g) \). Likewise, there is no LTL formula that is equivalent to the CTL formula \(\mathsf{AG}(\mathsf{EF}p) \). The disjunction of these two formulas \(\mathsf{A} (\mathsf{F}g) \lor \mathsf{AG}(\mathsf{EF}p) \) is a \(\text{CTL}^* \) formula that is not expressible in either CTL or LTL.

3. THE CTL MODEL-CHECKING ALGORITHM

Let \(M = (S, R, L) \) be a finite Kripke structure. Assume that we want to determine which states in \(S \) satisfy the CTL formula \(f_0 \). We will design
our algorithm to operate in stages: The first stage processes all subformulas of \(f_0 \) of length 1, the second stage processes all subformulas of length 2, and so on. At the end of the \(i \)th stage, each state will be labeled with the set of all subformulas of length less than or equal to \(i \) that are true in the state. We let the expression label(s) denote this set for state \(s \). When the algorithm terminates at the end of stage \(n = length(f_0) \), we see that for all states and for all subformulas \(f \) of \(f_0 \), \(M, s \vDash f \) iff \(f \in \text{label}(s) \).

Observe that \(\text{AX} \) can be expressed in terms of \(\text{EX} \) and that \(\text{AU} \) can be expressed in terms of \(\text{EU} \) and \(\text{EG} \):

\[
\text{AX}f_i \equiv \neg \text{EX} \neg f_i \\
\text{A}[f_i \text{U} f_j] \equiv \neg (\text{E} \neg f_i \text{U} (\neg f_i \land \neg f_j)) \lor \text{EG}(\neg f_j).
\]

Thus, for the stage-i algorithm it is sufficient to be able to handle six cases, depending on whether \(f \) is atomic or has one of the following forms: \(\neg f_i, f_i \lor f_j, \text{EX} f_i, \text{E}[f_i \text{U} f_j], \) or \(\text{EG} f_i \).

We only consider the last two cases, since the others are straightforward.

To handle formulas of the form \(f = E[f_i \text{U} f_j] \) we first find all states that are labeled with \(f_j \). We then work backwards using the converse of the transition relation \(R \) and find all states that can be reached by a path in which each state is labeled with \(f_i \). All such states should be labeled with \(f \). This step requires time \(O(|S| + |R|) \).

The case in which \(f = EG f_i \) is slightly more complicated and depends on the following observation.

\textbf{Lemma 1}: Let \(M' \) be obtained from \(M \) by deleting from \(S \) all of those states at which \(f_i \) does not hold and restricting \(R \) and \(L \) accordingly. Thus, \(M' = (S', R', L') \) where \(S' = \{ s \in S | M, s \vDash f_i \} \), \(R' = R|_{S' \times S' \times S'} \) and \(L' = L|_{S'} \). Then \(M, s \vDash EG f_i \) iff the following two conditions are satisfied:

1. \(s \in S' \)
2. there exists a path in \(S' \) that leads from \(s \) to some node \(t \) in a nontrivial strongly connected component\(^{2}\) of the graph \((S', R') \).

\textbf{Proof}: Assume that \(M, s \vDash EG f_i \). Clearly \(s \in S' \). Let \(\pi \) be an infinite path starting at \(s \) such that \(f_i \) holds at each state on \(\pi \). Since \(M \) is finite, it must be possible to write \(\pi \) as \(\pi = \pi_0 \pi_1 \) where \(\pi_0 \) is a finite initial segment and \(\pi_1 \) is an infinite suffix of \(\pi \) with the property that each state on \(\pi_1 \) occurs infinitely often. Obviously \(\pi_0 \) is contained in \(S' \). Let \(C \) be the set of states in \(\pi_1 \). \(C \) is a nontrivial strongly connected component of \(S' \). To see this, let \(s_1 \) and \(s_2 \) be states in \(C \). Pick some instance of \(s_1 \) on \(\pi_1 \). By the way in

\(^{2}\) A strongly connected component \(C \) is nontrivial iff either \(|C| > 1 \) or \(C = \{ e \} \) and \(e \) has a self-loop—i.e. \((e, e) \in R' \).
which π_1 was selected, we know that there is an instance of s_2 further along π_1. The segment from s_1 or s_2 lies entirely within C and hence within S'. This segment is a finite path from s_1 to s_2 in S'. Thus, both condition (1) and condition (2) are satisfied.

Next, assume that conditions (1) and (2) are satisfied. Let π_2 be the path from s to t. Let π_2 be a finite path of length at least 1 that leads from t back to t. The existence of π_2 is guaranteed since C is a nontrivial strongly connected component. All of the states on the infinite path $\pi = \pi_1 \pi_2$ satisfy f_i. Since π is also a possible path starting at s in M, we see that $M, s \models EGf_i$.

The algorithm for the case of $f = EGf_i$ follows directly from the lemma. We construct the restricted Kripke structure $M' = (S', R', L')$ as described in the statement of the lemma. We partition the graph (S', R') into strongly connected components and find those states that belong to nontrivial components. We then work backwards using the converse of R and find all of those states that can be reached by a path in which each state is labeled with f_i. This step also requires time $O(|S| + |R|)$.

In order to handle an arbitrary CTL formula f_0, we successively apply the state-labeling algorithm to the subformulas of f_0, starting with the shortest, most deeply nested, and work outward to include all of f_0. Since each pass takes time $O(|S| + |R|)$ and since f_0 has $\text{length}(f_0)$ different subformulas, the entire algorithm requires $O(\text{length}(f_0) \cdot (|S| + |R|))$.

Theorem 2: There is an algorithm for determining whether a CTL formula f_0 is true in state s of the structure $M = (S, R, L)$ that runs in time $O(\text{length}(f_0) \cdot (|S| + |R|))$.

4. FAIRNESS CONSTRAINTS

In verifying concurrent systems, we are occasionally interested only in correctness along fair execution sequences. For example, with a system of concurrent processes we may wish to consider only those computation sequences in which each process is executed infinitely often. When dealing with network protocols where processes communicate over an imperfect (or lossy) channel we may also wish to restrict the set of computation sequences; in this case the unfair execution sequences are those in which a sender process continuously transmits messages without any reaching the receiver owing to erratic behavior by the channel.

Roughly speaking, a fairness condition asserts that requests for service are granted "sufficiently often." Different concepts of what constitutes a "request" and what "sufficiently often" should mean give rise to a variety of notions of fairness. Indeed, many different types of fairness and approaches to dealing with them have been proposed in the literature; we

In this section we show how to extend the CTL model-checking algorithm to handle a simple but fundamental type of fairness in which certain predicates must hold infinitely often along every fair path. [Clarke et al (1986a) show how to handle a richer class of fairness constraints.] In this case it follows from work by Emerson & Halpern (1983) that correctness of fair executions cannot be expressed in CTL.

In order to handle fairness and still obtain an efficient model-checking algorithm we modify the semantics of CTL. The new logic, which we call CTL^F, has the same syntax as CTL. But a structure is now a 4-tuple $M = (S, R, L, F)$ where S, R, L have the same meaning as in the case of CTL, and F is a collection of predicates on $S, F \subseteq 2^S$. A path π is F-fair iff the following condition holds: For each $G \in F$, there are infinitely many states on π which satisfy predicate G. CTL^F has exactly the same semantics as CTL except that all path quantifiers range over fair paths. The first step in checking CTL^F formulas is to determine the fair strongly connected components of the graph of M. A strongly connected component is fair if it contains at least one state from each set in F. Formally, let $F = \{G_1, \ldots, G_k\}$ be a collection of subsets of S. A strongly connected component C of the graph of M is fair iff for each G_i in F, there is a state $t, \in (C \cap G_i)$.

Lemma 3: Given any finite structure $M = (S, R, L, F)$ where F is a set of fairness constraints and a state $s_0 \in S$, the following two conditions are equivalent:

1. There exists an F-fair path in M starting at s_0.
2. There exists a fair strongly connected component C of (the graph of) M such that there is a finite path from s_0 to a state $t \in C$.

The proof is straightforward and is given by Clarke et al (1986a). We next extend our model-checking algorithm to CTL^F. We introduce an additional proposition Q, which is true at a state iff there is a fair path starting from that state. This can easily be done, by obtaining the strongly connected components of the graph associated with the structure and marking a component as fair if it contains at least one state from each G_i in F. By the above lemma every state in a fair strongly connected component is the start of an infinite fair path. Thus, we label a state with Q iff there is a path from that state to some node of a fair strongly connected component. As usual we design the algorithm so that after it terminates
each state will be labeled with the subformulas of \(f_0 \) true in that state. We consider the two interesting cases where \(f \) is a subformula of \(f_0 \) and either \(f = \text{E}[f_1 \cup f_2] \) or \(f = \text{EG}f_i \). We assume that the states have already been labeled with the immediate subformulas of \(f \) by an earlier stage of the algorithm.

1. \(f = \text{E}[f_1 \cup f_2] \): \(f \) is true in a state iff the CTL formula \(\text{E}[f_1 \cup (f_2 \land Q)] \) is true in that state, and this can be determined using the CTL model checker. Again, state \(s \) is labeled with \(f \) iff \(f \) is true in that state.

2. \(f = \text{EG}(f_i) \): To determine if \(s \models \text{EG}(f_i) \) we use the procedure described in Section 3 to check \(s \models \text{EG}(f_1 \land Q) \) in the structure with the additional proposition \(Q \).

It is easy to see that the above algorithm runs in time \(O(\text{length}(f_0) \cdot (|S| + |R|) \cdot |F|) \).

Theorem 4: There is an algorithm for determining whether a CTL\(^x\) formula \(f_0 \) is true in state \(s \) of the structure \(M = (S, R, L, F) \) with \(F \) as the set of fairness constraints that runs in time \(O(\text{length}(f_0) \cdot (|S| + |R|) \cdot |F|) \).

5. **AN EXAMPLE**

In this section we illustrate how the model checker can be used to verify a simple, but not entirely trivial, concurrent program. The example is a two-process mutual exclusion program that was manually proved correct using linear temporal logic by Owicki & Lamport (1982). The program, expressed in a variant of the CSP programming language (Hoare 1978), is shown in Figure 1. In this version of CSP, processes may have global variables (e.g. \(pL \) and \(p2 \)), and assignments to such variables are assumed to be atomic. Since our verification technique can only be used to analyze finite-state concurrent systems, we require that all variables be Boolean and that all messages between processes be signals. Labels (e.g. \(NC1 \) and \(NC2 \)) are used to indicate that flow of control has reached a particular point in some process. In our example there are two processes \(SL \) and \(S2 \), and each process has three code regions: a noncritical region \(NCi \) in which the process computes some data values that it wishes to share with the other process, a trying region \(Ti \) in which the process executes a protocol to obtain entry into the critical section, and a critical section \(CSi \) in which the process updates shared variables. To prevent a race condition that might result in unpredictable values being assigned to the shared variables, only one process is allowed to be in its critical section at any given time. Note that the two processes are different; hence this is not a symmetric solution to the mutual exclusion problem. When the CSP program is
\(s::[
 p1, p2: \text{bool};
 NC1, NC2, T1, T2, T2a, CS1, CS2: \text{label};
 S1, S2: \text{process};
 S1::[
 p1 := \text{false};
 *[
 \text{true} \rightarrow
 \text{\ll NC1 \gg skip; \text{--noncritical section 1}}
 p1 := \text{true};
 \text{\ll T1 \gg } *\text{\ll p2 \rightarrow skip];}
 \text{\ll CS1 \gg skip; \text{--critical section 1}}
 p1 := \text{false}
]
]
 \parallel
 S2::[
 p2 := \text{false};
 *[
 \text{true} \rightarrow
 \text{\ll NC2 \gg skip; \text{--noncritical section 2}}
 p2 := \text{true};
 \text{\ll T2 \gg } *\text{\ll p1 \rightarrow}
 \text{\ll T2a \gg } *\text{\ll p1 \rightarrow skip];}
 \text{\ll CS2 \gg skip; \text{--critical section 2}}
 p2 := \text{false}
]
]
]\)

Figure 1 A two-process mutual-exclusion program.

compiled a state graph with 77 states is obtained. Although this is not an extremely large state machine, it would nevertheless be tedious for a human to debug.

We initially run the verifier without any fairness constraints (see Figure 2). We first check to see if both processes are ever in their critical regions at the same time. This property is succinctly expressed by the CTL formula \(\text{EF}(CS1 \land CS2)\). The verifier rapidly determines that the formula is false—hence, the program does guarantee mutual exclusion. Time is measured in 1/60 of a second. The first component measures user cpu time. The second component measures system cpu time. We next check for absence of deadlock. This is expressed by the formula \(\text{AG(EF(CS1 \lor CS2))}\). The
CTL MODEL CHECKER (C version 2.5)
\[\vdash EF(CS1 \& CS2). \]
The equation is FALSE.

time: (24)

\[\vdash AG(EF(CS1|CS2)). \]

time: (42)

\[\vdash AG(T1 \rightarrow AF CS1). \]
The equation is FALSE.

time: (17 12)

Figure 2 Transcript of model-checker execution (without fairness constraint).

The verifier determines that this formula is satisfied; thus, from any state reachable from the initial state it is always possible to get to either CS1 or CS2.

Absence of starvation for process 1 is expressed by the formula \[AG(T1 \rightarrow AF CS1). \] This property is not satisfied without a fairness constraint. The reason is simple. When we build the global state graph for the program we do not make any assumptions about the relative speeds of the two processes. Thus, the second process can make any number of steps between steps of the first process. In fact, the second process can even run forever, thereby preventing the first process from ever making another step. We can rule out the second type of behavior by means of fairness constraints which require that each process be given a chance to execute infinitely often. In *Figure 3* we restart the verifier with several fairness

Fairness constraint: \(\neg NC1. \)
Fairness constraint: \(\neg NC2. \)
Fairness constraint: \(\neg CS1. \)
Fairness constraint: \(\neg CS2. \)
Fairness constraint: \(\neg T1|p2. \)
Fairness constraint: \(\neg T2|p1. \)
Fairness constraint: \(\neg T2|\neg p1|T2a. \)
Fairness constraint: \[\vdash AG(T1 \rightarrow AF CS1). \]
The equation is TRUE.

time: (100)

\[\vdash AG(T2 \rightarrow AF CS2). \]
The equation is FALSE.

time: (299)

\[\vdash AG(CS1 \rightarrow A[CS1 U(\neg CS1 \& A[\neg CS1 U CS2])]). \]
The equation is FALSE.

time: (38 17)

Figure 3 Transcript of model-checker execution (with fairness constraint).
constraints that prevent either process from remaining forever at the same statement while enabled to make a step. Under these assumptions the first process will never starve. However, the possibility of starvation still exists for the second process.

A good solution to the mutual exclusion problem should not require that processes alternate entry into their critical regions: CS1, CS2, CS1, CS2, In order to test that the algorithm in Figure 1 does not require strict alternation, we check the formula

\[AG(CS1 \rightarrow A[CS1 U (\neg CS1 \land A[\neg CS1 U CS2])]). \]

This formula asserts that if process 1 enters its critical section and subsequently leaves it, then it cannot enter it again until process 2 has entered its critical section. The verifier determines that the formula is false in less than a second. This example shows how the basic temporal operators, particularly the “until” operators, can be nested to express complicated timing properties.

Finally, the verifier has a counterexample feature (not shown in the transcripts). When this feature is enabled and the model checker determines that a formula is false, it will attempt to find a path in the state graph which demonstrates that the negation of the formula is true. For example, if the formula has the form \(AG(f) \), our system will produce a path to a state in which \(\neg f \) holds. For instance, when the verifier determines that the last formula above is false, it prints out an execution of the mutual exclusion program in which process 1 enters its critical region, leaves, and reenters without process 2 entering its critical section in the meantime. This feature is useful in debugging.

6. OTHER APPROACHES

Several papers have considered the model-checking problem for linear temporal logic formulas. Let \(M = (S, R, L) \) be a Kripke structure with \(s_0 \in S \), and let \(Af \) be a linear temporal logic formula. Thus, \(f \) is a restricted path formula in which the only state subformulas are atomic propositions. We wish to determine if \(M, s_0 \vDash Af \). Notice that \(M, s \vDash Af \) iff \(M, s \vDash \neg E \neg f \). Consequently, it is sufficient to be able to check the truth of formulas of the form \(Ef \) where \(f \) is a restricted path formula. In general, this problem is PSPACE complete (Sistla & Clarke 1986). Although the proof of this PSPACE-completeness result is beyond the scope of our survey, it is easy to see that the model-checking problem is NP hard for formulas of the form \(Ef \) where \(f \) is a restricted path formula. We show that the direct Hamiltonian path problem is reducible to the problem of determining whether \(M, s \vDash f \) where
* \(M \) is a finite structure,
* \(s \) is a state in \(M \) and
* \(f \) is the assertion (using atomic propositions \(p_1, \ldots, p_n \)):

\[
E[p_1 \land \cdots \land p_n \land G(p_1 \rightarrow X \neg p_1) \land \cdots \land G(p_n \rightarrow X \neg p_n)].
\]

Consider an arbitrary directed graph \(G = (V, A) \) where \(V = \{v_1, \ldots, v_n\} \).
We obtain a structure from \(G \) by making proposition \(p_i \) hold at node \(v_i \)
and false at all other nodes (for \(1 \leq i \leq n \)), and by adding a source node \(u_1 \) from which all \(v_i \) are accessible (but not vice versa) and a sink node \(u_2 \) that is accessible from all \(v_i \) (but not vice versa). Formally, let the structure \(M = (U, B, L) \) consist of

\[
U = V \cup \{u_1, u_2\} \quad \text{where} \quad u_1, u_2 \notin V;
\]

\[
B = A \cup \{(u_1, v_i) \mid v_i \in V\} \cup \{(v_i, u_2) \mid v_i \in V\} \cup \{(u_2, u_2)\}; \quad \text{and}
\]

\(L \) is an assignment of propositions to states such that

* \(p_i \) is true in \(v_i \) for \(1 \leq i \leq n \)
* \(p_j \) is false in \(v_i \) for \(1 \leq i, j \leq n, i \neq j \)
* \(p_i \) is false in \(u_1, u_2 \) for \(1 \leq i \leq n \).

It is easy to see that \(M, u_1 \models f \) iff there is a directed infinite path in \(M \)
starting at \(u_1 \) that goes through all \(v_i \in V \) exactly once and ends in the self loop through \(u_2 \). Note that the formula \(f \) in the above construction has essentially the same size as the graph \(G \). Suppose that the length of the formula to be checked were known to be much smaller than the size of the Kripke structure under consideration. Would the complexity still be high in this case? A careful analysis by Lichtenstein & Pnueli (1985) showed that although the complexity is apparently exponential in the length of the formula, it is linear in the size of the global state graph. We briefly describe their results below.

Let \(f \) be a restricted path formula. The closure of \(f \), \(CL(f) \), is the smallest set of formulas containing \(f \) and satisfying:

* \(\neg f_i \in CL(f) \) iff \(f_i \in CL(f) \)
* if \(f_1 \lor f_2 \in CL(f) \), then \(f_1, f_2 \in CL(f) \)
* if \(\Box f_i \in CL(f) \), then \(f_i \in CL(f) \)
* if \(\neg \Box f_i \in CL(f) \), then \(\neg f_i \in CL(f) \)
* if \(f_1 [U] f_2 \in CL(f) \), then \(f_1, f_2, X[f_1 [U] f_2] \in CL(f) \).

It can be shown that the size of \(CL(f) \) is \(5 \cdot \text{length}(f) \).

An atom is a pair \(A = (s_A, F_A) \) with \(s_A \in S \) and \(F_A \subseteq CL(f) \cup AP \) such that

* for each proposition \(Q \in AP, Q \in F_A \) iff \(Q \in L(s_A) \)
for every $f_1 \in CL(f)$, $f_1 \in F_A$ iff $\neg f_1 \notin F_A$

- for every $f_1, f_2 \in CL(f)$, $f_1 \lor f_2 \in F_A$ iff f_1 or $f_2 \in F_A$

- for every $\neg Xf_1 \in CL(f)$, $\neg Xf_1 \in F_A$ iff $X\neg f_1 \in F_A$

- for every $f_1, f_2 \in CL(f)$, $f_1 \cup f_2 \in F_A$ iff $f_1 \in F_A$ or $f_2 \in F_A$ or $f_1, X[f_1 \cup f_2] \in F_A$

Now, a graph G is constructed with the set of vertices. (A, B) is an edge of G iff $(s_A, s_B) \in R$ and for every formula f, if $Xf \in F_A$, then $f \in F_B$. An eventuality sequence is an infinite path π in G such that if $f, Uf_2 \in F_A$ for some atom A on π, then there exists an atom B, reachable from A along π, such that $f \in F_B$.

Lemma 5: $M, s \vDash Ef$ iff there exists an eventuality sequence starting at an atom (s, F) such that $f \in F$.

A nontrivial strongly connected component C of the graph G is said to be self-fulfilling iff for every atom A in C and for every $f, Uf \in F_A$ there exists an atom B in C such that $f \in F_B$.

Lemma 6: $M, s \vDash Ef$ iff there exists an atom $A = (s, F)$ in G such that $f \in F$ and there exists a path in G from A to a self-fulfilling strongly connected component.

Lemma 6 can be used as the basis for a linear temporal logic model-checking algorithm. This algorithm has the time complexity $O(|S| + |R| \cdot 2^{\text{length}(f)})$. Lichtenstein & Pnueli further showed how this basic algorithm could be extended to handle different notions of fairness with essentially the same complexity.

The alternative approach of Vardi & Wolper (1986) exploits the close relationship between linear temporal logic formulas and Büchi automata. A Büchi automaton is a tuple $A = (\Sigma, S, \rho, S_0, F)$, where

- Σ is an alphabet.
- S is a set of states.
- $\rho : S \times \Sigma \rightarrow 2^S$ is a nondeterministic transition function.
- $S_0 \subseteq S$ is a set of initial states.
- $F \subseteq S$ is a set of designated states.

A run of A on an infinite word $w = a_1a_2 \ldots$ is a sequence $s_0s_1 \ldots$ where $s_0 \in S_0$ and $s_i \rho(s_{i-1}, a_i)$, for all $i \geq 1$. A run $s_0s_1 \ldots$ is accepting if there is some designated state that repeats infinitely often—i.e. for some $s \in F$ there are infinitely many i's such that $s_i = s$. The infinite word w is accepted by A if there is an accepting run of A over w. The set of infinite words accepted by A is denoted $\mathcal{L}(A)$. The following theorem is proved by Vardi & Wolper (1986).

Lemma 7: For every linear temporal formula Af, a Büchi automaton A_f can
be constructed, where \(\Sigma = 2^{4p} \) and \(|S| \leq 2^{\text{length}(f)} \), such that \(\mathcal{L}(A) \) is exactly
the set of computations satisfying the formula \(f \).

A Kripke structure \(M = (S, R, L) \) with initial state \(s_0 \in S \) can be viewed as a Büchi automaton \(A_M = (\Sigma, S, \{s_0\}, \rho, S) \) where \(\Sigma = 2^{4p} \) and \(s' \in \rho(s, a) \) iff \((s, s') \in R \) and \(a = L(s) \). Note that any infinite run of this automaton is accepting. \(\mathcal{L}(A_M) \) is the set of computations of \(A_M \). Thus, in order to determine whether \(M, s \models A f \) it is sufficient to check whether \(\mathcal{L}(A_M) \cap \mathcal{L}(A_{\neg F}) \) is empty. This can be determined by an automaton-theoretic construction with essentially the same time complexity as the Pnueli-Lichtenstein algorithm.

One of the expected advantages of using linear temporal logic is that fairness constraints can be handled directly. However, if fairness constraints are included as part of the specifications, the formulas that must be checked will in general be large. For instance, consider a fairness constraint which requires that progress be made from any state in the program. The formula that expresses this property is

\[
A \left(\bigwedge_{t \in S} \neg G(at s) \rightarrow \langle \text{rest of specification} \rangle \right),
\]

which has size \(O(|S|) \). This problem was realized by Lichtenstein & Pnueli and by Vardi & Wolper. They in fact handle fairness by means of fairness constraints in a manner similar to that of Clarke et al (1986a). Another problem with using linear temporal logic is that in general it is impossible to handle specifications that involve existential path quantifiers. Although it is possible to check simple formulas of the form \(EFf \) where \(f \) is a restricted path formula, it is not possible to check formulas like \(AG(EEf) \), which is used to express absence of deadlock in the example in Section 5. Moreover, model checking for full logic \(CTL^* \) is no more difficult than for linear temporal logic, as was shown by Emerson & Lei (1985).

Theorem 8: If we are given an algorithm \(AL_{LTL} \) to solve the model checking problem for linear temporal logic, then we can construct an algorithm \(AL_{CTL^*} \) for the full logic \(CTL^* \) that has the same order of complexity as \(AL_{LTL} \).

7. **APPLICATIONS**

Sequential circuit verification is a natural application for the type of verifier discussed here. Bochmann (1982) was probably the first to realize the usefulness of temporal logic for describing the behavior of circuits. He verified an implementation of a self-timed arbiter using linear temporal
logic and what he called "reachability analysis." The work of Malachi & Owicki (1981) identified additional temporal operators required to express interesting properties of circuits and also gave specifications for a large class of modules used in self-timed circuits. Although these researchers contributed significantly toward developing an adequate notation for expressing the correctness of sequential circuits, the problem of mechanically verifying a circuit remained unsolved.

Clarke & Mishra (1985) showed how the EMC algorithm could be used to verify various temporal properties of asynchronous circuits. They developed a technique for extracting a state graph directly from a wire-list description of the circuit (i.e. from a description of the circuit in terms of its components and their interconnections). The model checker was then used to show that the state graph satisfied various specifications expressed in temporal logic. In this way they were able to determine that a self-timed queue element described by Seitz (1980) did not satisfy its specifications. Their work was later extended by Brown et al (1986a), who showed in general how a mixed gate and switch level circuit simulator could be used to extract a state graph from a structural description of a sequential circuit. The basic simulation algorithm is shown in Figure 4. Circuits are usually designed under the assumption that certain input sequences and com-

[The procedure below uses a hash table that maps node value assignments to states. To construct the state machine, call this procedure on a node_value_assignment for the initial state.]

procedure BuildGraph(Node_value_assignment) **return** a state

begin

if there is a state for the node_value_assignment already in the table then return the state;

else

Create a new state;

Label state with nodes that have 1 values;
Store state and node values together in hash table;

for each possible input assignment do

Combine current values for internal nodes and input assignment into a new node_value_assignment;
Simulate one step to find a new node assignment;
Call BuildGraph recursively on new node assignment;
Add value returned by previous line to successors of current state;

end

end

end

Figure 4 An algorithm for constructing a Kripke structure from a circuit.
binations will not occur. Their program exploits its observation to prevent a combinatorial explosion in the number of states that are generated, by allowing the user to specify a set of conditions under which the inputs can change.

The circuit simulator suggested by Browne et al (1986a) used a unit-delay timing model in which the switching delays of all the transistors and gates are assumed to be equal. While a unit-delay model is satisfactory for synchronous circuits, it may not be appropriate for asynchronous ones. Dill & Clarke (1986) showed how Kripke structures could be extracted from a gate-level description of a circuit under a model of circuit behavior that permitted arbitrary nonzero delays to be associated with the outputs of the gates. The basic idea behind their approach is simple. Consider an AND gate with two inputs, x and y, and a single output z. Assume that the gate is in an unstable configuration with x low, y high, and z high. The Kripke structure for the circuit containing this gate will have a state corresponding to the unstable configuration as shown in Figure 5. The state will have a self loop and a transition to another state representing a stable configuration in which the output is low. Fairness constraints, as described in Section 4, are used to ensure that the system doesn’t remain in an unstable configuration forever. In the case of the AND gate, it is sufficient to require that infinitely often $z = x \land y$.

In practice, the arbitrary-delay model is much too conservative. Many circuits are “almost speed independent”: They do not appear to be correct under a pure arbitrary-delay model but would work given reasonable assumptions about the relationships between the delays. When the circuit designer has a great deal of control over the magnitudes of circuit delays, exploiting more detailed knowledge of circuit timing can result in smaller and faster circuits. In fact, actual circuits often rely on such assumptions.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{kripke_structure.png}
\caption{A Kripke structure for unstable configuration of an AND gate.}
\end{figure}
Browne et al (1985) and Dill (1986) describe a method for adding such assumptions to a circuit description and incorporating them into the state-graph construction. Possible timing constraints include constant upper and lower bounds on individual delays, and bounds on the differences between delays. Using constraints of this form, one can say for example: "the delay of the first AND gate is between 5 and 10 nanoseconds" or "the delay of the first AND gate is greater than the delay of the second AND gate." The state graph constructed with respect to a particular set of delay assumptions rules out some circuit executions that would be allowed under an arbitrary delay model. Hence, formulas in CTL that might not have been true in an arbitrary delay model may be true with respect to particular delay assumptions (because all the counterexample paths are ruled out by the delay assumptions). This technique was applied to a patented asynchronous queue cell by Browne et al (1985). The authors determined that the circuit did not meet its specifications under the arbitrary element delay model. However, under the assumption that the input was slower than two of the circuit gates, they showed that the circuit met its temporal logic specifications.

An alternative approach obtains the state diagram by compilation from a specification of the original (synchronous) circuit in a simple programming language-like notation. Browne and Clarke (Browne et al 1986; Browne & Clarke 1986) use a Pascal-like state machine description language called SML for this purpose. The language includes the standard control structures if, while, and loop/exit. A cobegin statement is also provided for simultaneous execution of statements in lock-step. Since SML programs will ultimately be implemented in hardware, the only data types permitted are Boolean and (bounded) integer. The output of the SML compiler is a deterministic Moore Machine that can be automatically implemented as a PLA, PAL, or a ROM. The output can also be analyzed for correctness using the EMC algorithm. Browne (1986) describes a specialized version of the EMC algorithm that can check Moore machines much more rapidly than the original algorithm.

Another potential area of application is the verification of network communication protocols. The alternating bit protocol (Bartlet et al 1969) for reliable transmission of messages by a noisy communication channel is a simple example of such an algorithm. By using the CTL model-checking procedure it is possible to determine in a few seconds whether this protocol meets its specifications (Clarke et al 1986a). Sifakis at Grenoble (Quille & Sifakis 1981) and Kurshan at Bell Labs (Kurshan 1986) have also considered applications involving network protocols. The delay assumptions mentioned above may be useful for describing the real-time behavior of such protocols.
8. CONCLUSION

Although the verification technique described in this paper has already been used to find some nontrivial errors in circuit designs and communications protocols, more research needs to be done before it will become a truly practical debugging tool for use by system designers. One problem is the expressibility of the underlying temporal logic. For circuit specification timing diagrams may be more natural to use than temporal logic formulas. Of course, temporal logic is more general since there is no analog of negation, disjunction, or conjunction for timing diagrams. It may be possible either to translate timing diagrams systematically into temporal logic formulas or to check them directly using an algorithm similar to the one used by the model checker. If so, this would simplify the task of specifying a complicated circuit and also allow the designer to be more confident that specifications actually mean what he thinks they mean.

The most important problem, however, is the state explosion problem. There are several different strategies for handling this problem. In verifying asynchronous circuits, for example, buggy circuits sometimes result in much larger state graphs than correct circuits. This happens because the activity in the circuit is much more disordered after an error has occurred. One possible solution in this case is to run the program which builds the state graph and the model checker as co-routines, creating states only as they need to be referenced by the model checker. Dill (1986) calls this technique lazy state generation, by analogy to lazy evaluation in programming language implementations. By using this method, an error could be discovered and reported after constructing only a small part of the entire state graph; this would not only speed up the verification process, it would also make it possible to verify some circuits that could not be verified if the entire graph had to be constructed.

Another approach to the state explosion problem is to exploit the hierarchical structural of complex finite-state concurrent systems. If an appropriate subset of CTL is used (Mishra & Clarke 1985; Clarke et al 1986b), then lower-level subcircuits can be simplified by "hiding" some of their internal nodes (more precisely, making it illegal to use them in temporal logic formulas) and merging groups of states that become indistinguishable into single state. Preliminary research (Mishra & Clarke 1985) indicates that by using this technique it may be possible to cut down dramatically on the number of states that need to be examined.

Finally, special techniques may be appropriate for concurrent systems that are composed of many identical processes. Consider, for example, a distributed mutual-exclusion algorithm for processes arranged in a ring
network in which mutual exclusion is guaranteed by means of a token that is passed around the ring (Dijkstra 1985; Kurshan 1985; Martin 1985). A strategy that is often used for debugging such systems is to consider first a reduced system with one or two processes. If it is possible to show that the reduced system is correct, and if the individual processes are really identical, then one is tempted to conclude that the entire system will be correct. Clarke et al. (1986b) attempt to provide a solid theoretical basis that will prevent fallacious conclusions in arguments of this type. The authors describe a temporal logic called Indexed CTL*, or ICTL* for specifying networks of identical processes. The logic includes all of CTL* with the exception of the nexttime operator; in addition, it permits formulas of the form $\land \neg f(i)$ and $\lor \neg f$ where $f(i)$ is a formula in which all of the atomic propositions are subscripted by i. A Kripke structure for a family of N identical processes may be obtained as a product of the state graphs of the individual processes. Instances of the same atomic proposition in different processes are distinguished by using the number of the process as a subscript; thus, A_i represents the instance of atomic proposition A associated with process i.

Since a closed formula of the new logic cannot contain any atomic propositions with constant index values, it is impossible to refer to a specific process by writing such a formula. Hence, changing the number of processes in a family of identical processes should not affect the truth of a formula in the logic. This intuitive idea is made precise by introducing a new notion of bisimulation (Milner 1979) between two Kripke structures with the same set of indexed propositions but different sets of index values. It is possible to prove that if two structures correspond in this manner, a closed formula of Indexed CTL* will be true in the initial state of one if and only if it is true in the initial state of the other.

These ideas are illustrated by Clarke et al. (1986b), who consider the distributed mutual exclusion algorithm mentioned above. The atomic proposition c_i is true when the i-th process is in its critical region, and the atomic proposition d_i is true when the i-th process is delayed waiting to enter its critical region. A typical requirement for such a system is that a process waiting to enter its critical region will eventually do so. This condition is easily expressed in ICTL* by the formula $\land \neg AG(d_i \Rightarrow A \neg F c_i)$. The results of Clarke et al. (1986b) can be used to show that exactly the same ICTL* formulas hold in a network with 1000 processes as hold in a network with two processes. The EMC algorithm can be used to check automatically that the above formula holds in networks of size 2 and conclude that it will also hold in networks of size 1000. At present this methodology has only been automated partially, however. The bisimulation must be established by hand, and this generally requires some
representation of the larger Kripke structure. Several researchers are attempting to find a way of automating this phase in a manner that avoids building the larger Kripke structure.

Other techniques for avoiding the state explosion problem are being investigated by Kurshan and Wolper. In Kurshan’s system (Kurshan 1985) this problem is handled by using a homomorphism to collapse a large state machine into a much smaller one while preserving those properties that are important for verification. Since Kurshan does not use temporal logic formulas for specification, he has no analog of the indexed formulas or of the bisimulation theorem used by Clarke et al. (1986b). Wolper (1986) considers a logic somewhat like that of ICTL* for reasoning about programs that are data independent; however, his indexed variables range over data elements, not over processes. Also, there is no notion of correspondence between structures in his work. Some ultimate limitations on this type of reasoning are discussed in Apt & Kozen (1986).

Literature Cited

Francez, N. 1986. Fairness. NY: Springer-Verlag