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ABSTRACT: To investigate conjoint stimulus control over place cells,
Fenton et al. (J Gen Physiol 116:191–209, 2000a) recorded while rats
foraged in a cylinder with 45° black and white cue cards on the wall. Card
centers were 135° apart. In probe trials, the cards were rotated together
or apart by 25°. Firing field centers shifted during these trials, stretching
and shrinking the cognitive map. Fenton et al. (2000b) described this
deformation with an ad hoc vector field equation. We consider what sorts
of neural network mechanisms might be capable of accounting for their
observations. In an abstract, maximum likelihood formulation, the rat’s
location is estimated by a conjoint probability density function of land-
mark positions. In an attractor neural network model, recurrent connec-
tions produce a bump of activity over a two-dimensional array of cells; the
bump’s position is influenced by landmark features such as distances or
bearings. If features are chosen with appropriate care, the attractor
network and maximum likelihood models yield similar results, in accord
with previous demonstrations that recurrent neural networks can effi-
ciently implement maximum likelihood computations (Pouget et al. Neu-
ral Comput 10:373–401, 1998; Deneve et al. Nat Neurosci 4:826–831,
2001). © 2004 Wiley-Liss, Inc.
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INTRODUCTION

Many cells in the rat hippocampus exhibit spike activity focused on times
when the rat is located at specific places in the environment. Dozens of
studies over the past three decades have demonstrated that these firing field
locations can be controlled by visual landmarks. The studies have yielded
enough quantitative information to enable development of preliminary
computational models of these “place cell” responses. Currently, however,

the pool of candidate models is very diverse, and there is not
even consensus on the general form of a correct model,
much less the detailed values of parameters (see Hippocam-
pus 9:4, Special Issue on Place Cells, for examples and ref-
erences). In an effort to narrow down the pool of viable
models, some of the most useful information has come from
experiments that have manipulated features of the environ-
ment and quantified the resulting changes in spatial firing
properties of hippocampal cells. One set of particularly in-
formative findings comes from a recent study by Fenton et
al. (2000a) on the consequences of changing the angular
separation between two cue cards mounted on the walls of a
cylindrical arena. The authors presented a mathematical
model of the deformations they observed in the “cognitive
map,” but it was purely descriptive; there was no claim that
the hippocampus actually derived firing fields this way. The
aim of the current study is to consider what sorts of neural
network mechanisms might be capable of accounting for
their observations.

After reviewing the Fenton et al. model, we develop a
theoretically justified account of the map deformation
effect by constructing a new model based on maximum
likelihood estimation. We then present a third model, an
attractor neural network, that approximates the behavior
of the maximum likelihood model as a computation that
could be implemented in the hippocampus. Our results
are in accord with previous observations that recurrent
neural networks can efficiently implement maximum
likelihood estimation (Pouget et al., 2002).

THE EXPERIMENT

To investigate conjoint stimulus control over place
cells, Fenton et al. (2000a) recorded while rats foraged in
a cylinder with one white and one black cue card on the
wall. The cards each subtended 45° of arc, and their
centers were 135° apart, leaving a gap of 90° between the
right edge of the white card and the left edge of the black
card. In probe trials the cards were rotated to increase or
decrease their separation by 25°. Firing field centers
shifted systematically during these trials, distorting the
cognitive map. In contrast, on trials in which one card
was removed and the other rotated, the map did not
distort, but rotated with the remaining card, demonstrat-
ing its continuing salience and a nearly ideal form of
pattern completion.
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Fenton et al. (2000b) presented a mathematical model of the
deformations they observed in their experiments. The model de-
scribed how they believed firing field centers moved as a result of
rotating the cue cards or deleting a card: all cells were controlled by
both cards, but to varying degrees based on the distance of the field
center to each card. This finding contrasts with previous models, in
which cells differ in their responses to environmental manipula-
tions because they receive input from different subsets of cues
(Shapiro et al. 1997; Hartley et al., 2000).

REFORMULATED VECTOR FIELD MODEL

The vector field model of Fenton et al. (2000b) had two parts:
an angular component that determined how firing field centers
rotate around the center of the arena, and a translational compo-
nent that corrected a problem with the prediction of the rotation
equation when the cards were moved together or apart. We begin
by presenting this model in a slightly different formulation for
improved clarity and completeness.

Our variant assumes that upon entry into the cylinder during a
probe trial, the animal’s head direction estimate is reset so that
“east” is the direction defined by the line from the arena center to
a reference point on the cylinder wall halfway between the closest
edges of the two cue cards. If the cards rotate by opposite amounts
(e.g., �10° and �10°), their edges move closer together or farther
apart, but there is no change in the reference point. If the cards
rotate by identical amounts, the reference point rotates as well, so
the change is undetectable by the model due to the resetting of the
head direction system. If the cards rotate by unequal amounts, after
head direction reset the model will see only their relative motion.
Finally, if one card is removed, the reference point is defined to be
in “standard” position with respect to the remaining card, meaning
45° counterclockwise from the left edge of the black card or 45°
clockwise from the right edge of the white card and, again, any
rotation of the card is undetectable.

Head direction reset restricts the model to operating in the
reference frame defined by the cards. There is no provision for an
external reference frame tied to the experimental chamber to influ-
ence place cell firing, in agreement with the finding that when the
two cards were rotated together no influence of a room frame was
seen. The head direction reset assumption greatly simplifies the
vector field equations, ensuring that angular displacements of the
cards with respect to the reference point are always equal and
opposite. We will therefore adopt the convention that the white
card rotates by an angle � and the black card by ��.

The next step in our formulation is to calculate displacement
vectors, in room coordinates, based on rotations of the individual
cue cards. Ignoring the black card for the moment, if the white card
rotates by an angle �, then all firing fields influenced by this card
should rotate by � (see Fig. 1). We represent each field by the
location of its center. Assume the cylinder is centered at the origin,
and let R be its radius. A field on the east edge of the cylinder, at
location [R, 0], would rotate to a new position [R cos �, R sin �].

Hence, the white card-dependent rotational displacement vector
for this specific point would be:

WR,0 � �Rcos�
Rsin� � � �R

0� � R � �cos� � 1
sin� � (1)

Any point on the x-axis at a distance r from the origin would
have the same rotational displacement vector WR,0, scaled by r/R.
In the general case of an arbitrary point [x, y] in the cylinder, at a

distance r � �x2 � y2 from the origin and an angular displacement
� � atan (y/x) from the positive x-axis, the white card-dependent
rotational displacement vector is given by:

Wx,y�r � �cos� � sin�
sin� cos� � � �cos� � 1

sin� � (2)

The black card-influenced rotational displacement vector Bx,y is
calculated analogously using ��. The overall rotational displace-
ment of a point [x, y] is the average of its white and black card
rotational displacement vectors, weighted by relative distance to
the two cards, so that the nearer card has proportionally greater
influence. If dw and db are the distances from the point [x, y] to the
centers of the white and black cards, respectively, then the net
rotational displacement is

Drot �
dwBx,y � dbWx,y

dw � db
(3)

The result of this equation is shown in the leftmost plot in
Figure 2. This purely rotational displacement does not accurately

FIGURE 1. Calculation of the rotational displacement vector
Drot for a point [x,y] when the cards are rotated by 2� � �25°.
Dotted arcs show cards in their standard position, solid arcs show
rotated position.
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capture the distortion of relative field locations observed by Fenton
et al. When the two cards move closer together, all field centers are
displaced slightly toward the cards; when the cards move apart,
field centers are displaced away from the cards. Fields close to a
card show less translation, but more rotation, than fields distant
from either card. Fenton et al. added a translational term to their
equation to reproduce this effect. Let Wc be the rotational displace-
ment vector denoting the movement of the white card center from
its standard position to its current location. Let Bc be the rotational
displacement vector for the black card center. The translational
displacement of a point at distances dw, db from the white and
black cards, respectively, is defined as:

Dtrans �
Wc � Bc

c2 � � 1

dw
�

1

db
� (4)

where c2 � 83.4 cm determines the dropoff of the translational
term as distance to the cards decreases. Note that if either dw or db

is small, the denominator of the equation will be large, and the
translational term will be attenuated relative to the rotational term.

But at locations distant from both cards, the translational term is
significant. The contribution of this translational displacement
term is shown in the center plot of Figure 2.

The total displacement of a point is the sum of its rotational and
translational displacements, and is shown in the rightmost plot in
Figure 2:

Dtot � Drot � Dtrans (5)

Figure 3 shows the rotational, translational, and total displace-
ment vectors when the cards are moved apart by 25°. Once again,
the translational component helps overcome the shortcomings of
the rotational component at locations distant from both cue cards.

The Fenton et al. (2000b) model produces a good match to the
experimental data of Fenton and Muller on cards moving together
or apart by 25°. Furthermore, when one card is removed and the
other card rotated, the model correctly predicts that fields will
rotate without distortion, i.e., they rotate in the room frame to
maintain their “standard” position relative to the remaining card.
The original formulation of the model accomplished this by as-
signing an effectively infinite distance to the missing card, but this

FIGURE 2. Calculated displacement vectors when cards are rotated closer together by 25°:
rotational displacement Drot from eq. (3), translational displacement Dtrans from eq. (4), and total
displacement Dtot from eq. (5).

FIGURE 3. Calculated displacement vectors when cards are rotated apart by 25°: rotational
displacement Drot from eq. (3), translational displacement Dtrans from eq. (4), and total displace-
ment Dtot from eq. (5).
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is unnecessary in our revised scheme. Defining the reference point
to be in “standard position” whenever a card is missing gives � �
0 for eq. (2). The values for dw and db in eq. (4) are thus unimpor-
tant, because Wc and Bc are null vectors. The model is already
insensitive to rotations of the cards and cylinder relative to the
room frame, so setting the reference point as if the missing cue card
were in its standard position relative to the remaining card poses no
problem.

A rat could implement this operation without explicitly calcu-
lating a “reference point” by using the one visible cue card to reset
its head direction (HD) system. Skaggs et al. (1995) describe an
attractor-based model of the HD system, in which feature detec-
tors tuned to egocentric bearings of individual landmarks develop
projections to selected HD units as the animal explores the envi-
ronment. Once these projections are established, they keep the
system aligned with the environment. The nature of these attractor
networks is such that when two cards are present and have been
moved together or apart by a modest amount, so that they provide
somewhat conflicting head direction cues, the network will average
their influence. When only a single card is present, it can control
the alignment of the HD system.

MAXIMUM LIKELIHOOD MODEL

Our first alternative to the purely descriptive approach of the
vector field equations (3)–(5) is to look for a theoretically justified
account of map deformation. Let us assume the rat uses a proba-
bilistic method to determine its position, with each landmark an
independent source of position information. In this framework,
each landmark observation generates a probability distribution for
the animal’s current location. When the cue cards are in the stan-
dard configuration, all evidence sources should agree (in the ab-
sence of noise.) But when the cards move closer together or farther
apart, the evidence becomes inconsistent. A reasonable response to
this situation is to take all the evidence into account and choose the
peak of the combined probability distribution as the animal’s most
likely location. This maximum likelihood approach uses the esti-
mate of position to predict the movement of place field centers, on
the assumption that place cell activity indicates where the rat
thinks it is. The approach thus offers a probability-theoretic justi-
fication for why the firing field map distorts with cue card move-
ment.

Let the probability distribution generated by a landmark obser-
vation be a Gaussian function of distance. If the rat perceives its
distance to landmark i to be vi, the probability that its actual
distance to the landmark is di is distributed across a Gaussian
annulus (in unobstructed space; the portion within the cylinder
forms an arc) with a peak at distance vi and a variance �2, which we
assume is proportional to vi

2:

p(di�vi) �
1

Ai
exp� � �di�vi)

2

vi
2 � (6)

where Ai is the area under the annulus. Making � proportional to
the perceived distance to the landmark causes distributions to scale

in accordance with Weber’s law. Weber’s law, a fundamental pre-
cept of psychophysics, states that the magnitude of the just notice-
able difference in a stimulus is proportional to the stimulus inten-
sity. Scaling the width of each Gaussian based on distance from the
controlling landmark was also used in the place field model of
O’Keefe and Burgess (1996).

Within the cylinder, the set of locations at distance di from
landmark i forms an arc centered on the landmark. A single land-
mark is therefore insufficient for a unique determination of loca-
tion, but a pair of landmarks is usually adequate. We assume that
both edges of each cue card are used as landmarks, so four land-
marks are normally visible. When one card is deleted, two land-
marks are still available.

If landmarks are independent evidence sources, then they can be
combined by multiplying their probability distributions. The two
cue cards would be truly independent if cards could overlap. Even
when this is prohibited, the cards are nearly independent. But the
four cue card edges are not independent, since if we know the
location of the left edge of a card, the right edge can only be in one
location, determined by the card’s fixed width. Of course, the rat
might not assume that the width is fixed. We will treat the land-
marks as independent for purposes of evidence combination, as a
naive observer, unaware that a card’s two edges should move in
unison, might do. For our maximum likelihood estimator, we
therefore approximate the joint probability distribution as:

p(x,y�v1, . . . ,v4) � �
i�1

4

p(x,y�vi) (7)

The product of several Gaussian arcs that intersect at a single
point is, roughly, a Gaussian bump. Thus, the Gaussian firing rate
distribution of a place cell whose field center is at distances v1

through v4 from the four landmarks when the cards are in standard
position can be viewed as an estimate of p(x, y). Moving the rat
(changing x and y) samples the cell’s firing rate distribution at
different arena locations. Moving the cue cards alters the observed
combinations of vi’s and thus changes the entire distribution.

The joint probability distribution p(x, y�v1,. . .,v4) need not be
computed directly. It suffices to calculate �xy, the log likelihood,
which has the advantage of eliminating the exponential functions
and replacing a product with a sum:

�xy � log p(x,y�v1, . . . ,v4) � log �
i�1

4

p(x,y�vi)

� �
i�1

4

log p(x,y�vi) � ��
i�1

4 �log Ai�
(di

xy � vi)
2

vi
2 � (8)

The maximum of the log likelihood will be found at the same
location as that of the underlying probability distribution. To find
the location [x*, y*] of the peak of the probability distribution, we
eliminate constant terms and calculate:
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[x*,y*]�argmax
x,y

�
i�1

4 �(di
xy � vi)

2

vi
2 (9)

An interesting consequence of using Weber’s law scaling is that
nearer landmarks have greater influence on the location of the
peak. To see this, consider the one-dimensional case with land-
marks at location l1 and l2 on the real line. At any point x, the
distances to these landmarks are d1

x � x � l1 and d2
x � x � l2.

Suppose we move the landmarks and try to estimate our position
based on the observed distances v1 and v2, using log likelihood:

�x � �(d1
x � v1)

2/v1
2 � (d2

x � v2)
2/v2

2 (10)

The local maximum, attained when d�x/dx � 0, is

x* �
(l1 � v1)v2

2 � (l2 � v2)v1
2

v1
2 � v2

2 (11)

which bears a strong resemblance to eq. (3), substituting l1 � v1 for
Wx,y, v1

2 for dw, l2 � v2 for Bx,y, and v2
2 for db. Equation (3) was

chosen by Fenton et al. to give greater weight to nearby landmarks.
Unlike the vector field model, the maximum likelihood model

operates in room coordinates and makes no assumptions about
head direction reset. When the two cards rotate by equal amounts,
all points rotate around the center by a corresponding amount.
When a card is removed, we simply omit the corresponding terms
from the sum; there is no inconsistency among the remaining cues
so the fields rotate without distortion. But when the cards move
closer together or farther apart, the four Gaussian arcs defined by
the individual landmarks shift relative to each other, and the map
undergoes stretching and shrinking.

We implemented this model with a grid of points spaced 1 cm
apart. The 76-cm-diameter cylinder contained 4,513 of these
points. To plot the vector field with the cards rotated, we calculated
vi� values for the rotated landmarks viewed from all points on the
grid. We then selected an evenly spaced subset of points from the
interior of the cylinder, and for each point [x, y] representing a
firing field center, we found [x*, y*], the peak of p(x, y�v1�,. . .,v4�).
This was the grid location of the cell’s firing field center with the
cards rotated. We then drew a vector from [x, y] to [x*, y*].

As shown in Figure 4a, the results of this formulation do not
always match that of the Fenton et al. (2000b) model. Specifically,
when the two cards move closer together by 25°, most of the
vectors point roughly east, but there is a region around the arena
center where the vectors are noticeably attenuated. This is because,
at the center of the arena, the distance to all four landmarks is equal
to the arena radius, and this distance is unchanged by cue card
rotation. Another striking feature of the plot is the sharp disconti-
nuity in the eastern portion of the arena, around the vertical line
joining the left edge of the white card to the right edge of the black
card. The vectors suddenly switch direction in this region. This is
the result of eq. (9) choosing a single location for the maximum
value of �xy. Points on the line actually have two maxima, one on
either side. As one moves off the line in either direction, the sym-
metry is broken. These unexpected results are a consequence of the
geometry of the arena (a concave, symmetric interior with land-

marks distributed asymmetrically around the edges) and our as-
sumption that distance from landmarks is the rat’s sole source of
evidence for its position.

A plausible alternative hypothesis is that rats determine their
position based on angles between pairs of landmarks, i.e., the dif-
ference in their relative bearings, or equivalently, the retinal angle
subtended by a line connecting them. We explored this possibility
in a second model. With four visible landmarks there are six pos-
sible landmark pairs but, for simplicity, we used just the four pairs
of circularly adjacent landmarks, since the additional pairs would
only provide redundant information. (Only three angles are actu-
ally independent; we use four to maintain symmetry in the model.)
Note that the retinal angle between a card’s left and right edge
decreases with distance from the card, while the retinal angle be-
tween edges of the white card and the black card is a function of
both distances to the cards and the card separation angle.

Let uij be the rat’s perceived angle between landmarks i and j,
and let aij

xy be the actual bearing difference between these land-
marks viewed from location [x, y] with the cards in standard posi-
tion. We can define a Gaussian probability distribution for posi-
tion based on the perceived angle between a pair of distinct
landmarks as:

p(x,y�uij) �
1

K
exp� � �aij

xy � uij)
2

2�a
2 � (12)

where K � �2	�a
2 is a normalization constant, and the variance

�a
2 may either be fixed, or proportional to uij. Note: for circular

values such as bearings, a circular distribution should be used in
place of the normal distribution. But here our feature detectors are
really measuring the lengths of the arcs between pairs of landmarks.
Although these values are bounded by the circumference of the
arena, they are not periodic: an arc subtending a little more than 0°
of the visual field is not similar to an arc subtending almost 360°.
So a normal distribution is used.

Once again, we make the simplifying assumption that evidence
sources are independent, so that the overall probability distribu-
tion is the product of the probability functions for the four land-
mark pairs u12, u23, u34, and u41. The result (Fig. 4b) shows good
behavior in the vicinity of the cue cards but anomalous results in
other parts of the cylinder. This plot was made with �a propor-
tional to uij, using a constant value produced slightly less satisfac-
tory results. In either case, at locations far from either cue card the
angles between landmarks change fairly slowly with position, pro-
ducing a shallow gradient with broad peaks. When the two cards
move in a nonrigid fashion, the location of a firing field peak in the
western half of the cylinder can shift by a large amount even though
the change in magnitude of the probability values is small. There-
fore, angle-based features are also not ideal for determining posi-
tion in the cylinder.

The single landmark feature that produced the best firing field
deformation pattern was allocentric bearing, i.e., bearing to the
landmark with respect to some external coordinate system inde-
pendent of the present heading. The result is shown in Figure 4c.
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Neurons in the rodent head direction system have been shown
to encode the animal’s heading with respect to the environment
(Taube et al., 1990b). This suggests that rats are capable of com-
puting allocentric bearings of landmarks. Behavioral experiments
in gerbils also indicate that rodents can use allocentric bearing
information to disambiguate landmarks (Collett et al., 1986). Fur-
thermore, in a familiar environment the alignment of the rodent
head direction system is known to be controlled by visual land-
marks (Taube et al., 1990a). Therefore, to compute allocentric
bearings in our maximum likelihood model, we assume that the
animal’s heading reference (east) is defined as midway between the
white and black cue cards, just as in our vector field model. Moving
the cards together or apart by equal but opposite amounts leaves

the reference point unchanged, and thus does not affect the align-
ment of the head direction system, although individual landmark
bearings will of course shift. Rotating the cards by identical
amounts rotates the heading reference as well, so the rat does not
notice any bearing change in that situation either.

In the standard cue configuration, the reference point is half a
card width clockwise from the right edge of the white card, and half
a card width counterclockwise from the left edge of the black card.
When one card is deleted, we assume that “east” is in its standard
position relative to the remaining card. Hence, with one card
present, firing field centers can rotate but will not deform.

The overall best result was obtained by combining distance with
either the angle or bearing based features. The distance-based proba-

FIGURE 4. Maximum likelihood estimation of firing field movement when the cards are
rotated closer together by 25°, using (a) distance to landmarks, (b) angles between pairs of land-
marks, (c) allocentric bearings to landmarks, or (d) a combination of distance and angle informa-
tion.
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bility function (Fig. 4a) has a stronger gradient in the western half of
the cylinder than the angle-based function (Fig. 4b). Combining the
log likelihoods by simple addition allows each to compensate for the
other’s shortcomings. As shown in Figure 4d, the resulting vector
fields are very close in appearance to those of Fenton et al. We set �a to
unity in this case. The locations of peak firing were estimated by:

[x*,y*] � argmin
x,y

��
i�1

4 (di
xy�vi)

2

vi
2 � �

i,j

(aij
xy � uij)

2� (13)

Similar results were obtained using distance plus allocentric
bearing.

Figure 5 shows the output of various versions of the maximum

likelihood model when the cards are moved apart by 25°. Once
again, a combination of distance and angle features produces the
best results. Using this combination, the mean horizontal displace-
ment of firing fields was �6.56 cm when the cards were moved
together, versus �7.32 cm when they were moved apart. These
values are somewhat larger than the predictions reported by Fen-
ton et al. (2000b): �5.59 cm for cards together and �5.95 cm for
cards apart. They are also larger than our own numerical simula-
tions of eq. (5) using a grid with 1 cm resolution (�4.71 cm
together, �5.09 cm apart). But in all three simulations, the mag-
nitude of the displacement in the cards-together case is approxi-
mately 90% of that in the cards-apart case. In the maximum like-
lihood model, the larger displacement values can be attributed to

FIGURE 5. Maximum likelihood estimation of firing field movement when the cards are
rotated apart by 25°, using (a) distance to landmarks, (b) angles between pairs of landmarks, (c)
allocentric bearings to landmarks, or (d) a combination of distance and angle information.
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the particular choice of feature values selected (angle plus distance)
and their relative weightings.

ATTRACTOR BUMPS

Dynamic systems, or “attractor bump” networks, are a popular
approach to modeling aspects of hippocampal place cells (Sam-
sonovich and McNaughton, 1997), and have been widely adopted
by hippocampal modelers (Redish and Touretzky, 1998; Redish,
1999; Doboli et al., 2000; Káli and Dayan, 2000). One-dimen-
sional attractor models have been used to model the head direction
system (Zhang, 1996; Redish et al., 1996; Goodridge and
Touretzky, 2000), orientation tuning in visual cortex (Ben-Yishai
et al., 1997), and the oculomotor system (Seung, 1996). Two-
dimensional (2D) attractor networks have been proposed as mod-
els of hippocampus, superior colliculus (Droulez and Berthoz,
1991; Pouget et al., 2002), and motor cortex (Lukashin et al.,
1996). Here we examine the ability of an attractor network to
function as a deformable map, producing the stretching and
shrinking effects observed in the Fenton and Muller two-card ex-
periment.

We begin with a population of place cells arranged as a 2D grid.
Let each cell have strong excitatory connections to the cells nearby,
weaker excitatory connections to cells somewhat further away, and
inhibitory connections to all the remaining cells. With appropriate
parameter settings, a network organized this way will have an infi-
nite number of stable states, each consisting of a “bump” of activity
localized to some region of the grid. Such a state is analogous to the
population activity observed in the hippocampus, because when
the rat is at a particular location, the place cell whose field is
centered closest to the rat’s location will be firing at its maximum
rate, while cells whose firing fields just overlap with the rat’s loca-
tion will fire at lesser rates, and cells whose fields are far from the
rat’s location will be quiescent. As the rat moves through the envi-
ronment, the activity pattern over the place cell population shifts to
reflect this.

If the units comprising an attractor network are initialized with
random activity levels, the network will settle into a stable state
with a well-formed bump at a random location. However, if a
smoothly varying external input is applied to some region of the
grid, the bump will tend to form in the region of maximal external
input. The attractor network can thus be regarded as a parallel,
distributed mechanism for finding the peak of an input signal
projected onto the grid.

To produce visual control of firing fields, the external input may
be taken from a collection of visual feature detectors tuned to
landmark distances, or bearings, or both. To model the two-card
experiment, we created a separate set of feature detectors for each
landmark. For the ith landmark, there was a set of distance detec-
tors Fi,j tuned to various distances rj, and a set of bearing detectors
Gi,j tuned to various allocentric bearings 
j. The place cell with
firing field centered at [x, y] received an excitatory connection from
feature detector Fi,j or Gi,j if the distance from [x, y] to the ith

landmark was approximately rj, or the allocentric bearing of land-
mark i viewed from [x, y] was approximately 
j.

Once the feature detectors have been wired up to the place cells,
consider the rat entering the environment at the start of a trial. Let
the rat’s perceived distance from its present location to the ith
landmark be vi. Those distance detectors Fi,j whose preferred dis-
tance value is close to vi will be active and will supply excitation to
the appropriate subset of place cells. A similar situation holds for
bearing detectors Gi,j. A bump of activity will then form over the
place cells with its peak centered at roughly the location receiving
the greatest amount of feature detector input. The simulated rat
has thereby estimated its position in the arena.

The estimate would be exact if the external input to the place cell
grid were a circularly symmetric gaussian bump. However, the
projections from individual feature detectors to place cells form
arcs, not bumps. For example, a distance-based feature detector Fi,j

will project to the arc of cells centered at distance rj from landmark
i. If several arcs cross at a single point at roughly equal angles, the
resulting pattern of external input will look bump-like. But this
condition does not always hold. Angle-based feature detectors pro-
duce very broad arcs in the western half of the arena, and the
geometry of the arena and cue cards constrains all arcs to be nearly
coincident in that region. Bearing-based feature detectors were
used instead because they do not suffer this problem. Another
problem is that in the eastern half of the arena, when the cards are
moved, distance arcs that once overlapped now merely pass close
by, producing elongated patterns of external input that are far from
bump-like. These effects were not a problem for the maximum
likelihood model because it only looked at the peak of the input
distribution; the overall shape of the input was ignored. But the
attractor network is sensitive to this shape, and thus requires some
refinement of its input features to assure that the peak of the
external input is close to the center of the input distribution. We
therefore added a feedforward inhibition term IFD from the feature
detectors to the place cells that was strong enough to cancel any
individual arc or intersection of a few arcs, but not the intersection
of many arcs. This “decluttered” the external input signal, produc-
ing a stimulus that was more focused and bump-like. The amount
of this feedforward inhibition was calculated iteratively, using the
procedure in the Appendix. Biologically, it may be considered
analogous to excitatory projections onto interneurons that in turn
make inhibitory projections onto place cells.

The feedfoward inhibition mechanism is separate from the re-
current inhibition component of the attractor network itself. Re-
current inhibition within the attractor network is important for
producing a stable bump of the correct shape. The feedforward
inhibition term ensures that the bump forms in the correct place.

Another difficulty with the projection from feature detectors to
place cells arises close to the arena walls. The 2D attractor grid
extends beyond the arena boundaries, but since the animal cannot
experience the environment beyond the walls, feature detectors
were not wired up to place cells lying outside the cylinder. When
the simulated animal is at a point along the wall, the attractor
bump should be centered on a place cell right at the wall. This cell
will excite (and receive excitation from) its nearby neighbors, both
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those closer to the arena center and those further away (hence
outside the wall). However, only the cells within the wall receive
external input from the feature detectors; the cells outside the wall
do not. Thus, there is a danger that the bump may form some
distance short of the wall, as that is where the center of mass of the
external input lies. To minimize this possibility, we use relatively
weak weights from the feature detectors to the place cell grid, so
that the attractor dynamics dominate; the feedforward inhibition
assures that the location of the peak of the input is more important
than its overall shape.

MODEL DETAILS

Parameter values are given in Table 1. The activity of the feature
detector Fi,j, tuned to distance rj, in response to perceived distance
vi from the ith landmark, is:

Fi,j(vi) � exp� � �vi � rj)
2

2�d
2 � (14)

The activity of feature detector Gi,j, tuned to bearing 
j, in
response to perceived bearing bi from the ith landmark, is calcu-
lated (using circular subtraction) as:

Gi,j(bi) � exp � �
�b i�
j]

2

2�b
2 � (15)

There are 43 distance and 120 allocentric bearing feature detec-
tors (FD) per landmark, giving 652 feature detectors total. Let

FDk
xy denote the activity of the kth feature detector (of either type

F or type G) when the simulated rat is at location [x, y] with the cue
cards in standard position. Let i be the index of the place cell with
firing field centered at [xi, yi]. The strengths of the connections
from feature detectors to the ith place cell, wik

EF, are set equal to the
feature detector activations when the rat is at the location that is to
be the place field’s center: wik

EF � FDk
xi,yi.

The attractor network was implemented as a 45 � 45 grid of
cells, toroidally connected to eliminate edge effects. This assures
that all cells have the same number of neighbors, so that in the
absence of external input, the attractor bump has a uniform shape
everywhere on the grid. The arena was defined as a circular region
38 units in diameter, centered on the grid origin. Each grid unit
therefore covered a surface of 4 cm2. The attractor bump was
roughly 17 units in diameter, so a bump located at one edge of the
cylinder would have minimal effect on cells at the opposite edge via
wrap-around on the torus.

Each place cell’s activation Vi(t) was computed as the sum of
recurrent excitation from other place cells, a global shunting inhi-
bition term, and the external input received from the feature de-
tectors. Shunting inhibition was used because it improves the sta-
bility of the attractor (Káli and Dayan, 2000). The feature detector
input included a previously mentioned feedforward inhibition
term. IFD, and was thresholded at zero:

Vi(t�
t) � �
j

wij
EESj(t) � wEISI(t)Vi(t)

�� �
k

wik
EFFDk � IFD�

�

(16)

Vi(t) is analogous to the cell’s membrane potential. The cell’s
firing rate Fi(t) is equal to this value thresholded at zero, denoted
[Vi(t)]�. The integral of firing rate over time is the cell’s synaptic
drive Si(t), the influence it exerts on other cells, governed by a time
constant �E (Pinto et al., 1996):

Fi(t) � [Vi(t)]�
(17)

Si(t � 
t)�Si(t) � ��Si(t) � Fi(t)�

t

�E
(18)

A global inhibitory unit receives excitation from all place cells
and makes recurrent inhibitory projections back to them and to
itself. The equations for this inhibitory unit are:

VI(t � 
t) � wIE �
j

Sj(t) � wIISI(t) (19)

FI(t) � [VI(t)]
�

(20)

SI(t � 
t) � SI(t) � ��SI(t) � FI(t)�

t

�I
(21)

The strengths of the recurrent connections wij
EE between cells i

and j on the torus are a Gaussian function of the distance dij

between them:

wij
EE � kEE exp� � dij

2/�EE
2 ) (22)

TABLE 1.

Attractor Model Parameters

Parameter Value

No. of place cells 2025 (45 � 45)
No. of landmarks (card edges) 4
Distance FDs per landmark 43
Distance values rj 2j cm, 0 � j � 43
Distance SD �d 2 cm
Bearing FDs per landmark 120
Bearing values 
j 3j deg., 0 � j � 120
Bearing SD �b 6°
Feature detector projection wik

EF per eqs. (14) and (15)
and wik

EF � FDk
xi,yi

Feedforward inhibition IFD per App. A
Recurrent excitation wij

EE per eq. (22)
Recurrent excitation scale factor kEE 0.1125
Recurrent excitation SD �EE 3.1818
Recurrent inhibition wEI �0.35
Inhibitory interneuron drive wIE 0.12
Interneuron self-inhibition wII �1.6
Initial place cell drive Si(0) 6[¥kwik

EFFDk � IFD]�

Initial interneuron drive SI(0) 3.5
Time constants �E, �I 0.0015, 0.004
Time step 
t 0.001

FD, feature detector; SD, standard deviation.
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For each of the four landmarks there were 43 distance-based
Gaussian feature detectors, tuned to even distance values from 0 to
84 cm. �d was 2 cm, and the distance feature detectors were
weighted relative to each other to place more emphasis on detectors
tuned to small distances. The weighting function was 24/(24 � d),
where d is the distance (in cm) to the landmark, so the relative
weights from distance-based feature detectors varied from 1.0
down to 0.22. In addition, there were 120 allocentric bearing
feature detectors tuned to bearing values from 0° to 357° in incre-
ments of 3°. �b was 6°, and all the bearing detectors had uniform
weights. Figure 6 shows typical activation patterns that distance
and bearing-based feature detectors transmit to the place cell grid.

RESULTS FROM THE ATTRACTOR MODEL

Figures 7 and 8 show the map distortion patterns when the cue
cards are moved together or apart by 25°. The results are similar to
the vector field and maximum likelihood models, though a little
less smooth, due in part to the lower resolution of the grid. The
mean horizontal movement of firing fields in this model, measured
on a grid of 1129 points, was �6.70 cm for the cards together case,
and �6.98 cm for the cards apart case. These values are compara-
ble to those of the maximum likelihood model and larger than the
predictions of the vector field model. The cards-together value is
96% of the cards-apart value.

The attractor network model also reproduces an independent
finding of Fenton et al. (2000a), a reduction in peak firing rates
when the cards were rotated together or apart, as shown in Table 2.
Peak activation levels in dimensionless units for three cells are
shown in Figure 9. The mean peak activation (over all 1,129 cells)
declined by 10% in the cards-apart condition, and by 12% in the
cards-together condition. Fenton et al. report reductions in the

mean centroid firing rate, i.e., the firing rate of a cell in the centroid
pixel of its firing field, of 36% (apart) and 35% (together), and
reduction in the mean in-field firing rate of 21% (apart) and 15%
(together).

The reduction in peak activation in the model is a consequence
of the feature detector input becoming defocused when the cards

FIGURE 6. Feature detector activity projected onto the place cell grid with the cue cards in
standard position. Left: distance-based detectors produce gaussian arcs centered on the four card
edges. Right: allocentric bearing-based detectors produce Gaussian cones emanating from the card
edges.

FIGURE 7. Map distortion in the attractor model with the cards
rotated closer together by 25°.
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are moved out of standard position. The Gaussian arcs from the
various feature detectors no longer intersect perfectly at a single
point, so place cells at the center of the stimulus bump receive less
total input than before.

Figure 9 also shows that the shapes of firing fields distort along
the direction of cue card motion. The least distortion is observed at
the center of the arena, where only the card bearings change, not
the distances.

DISCUSSION

Comparison of Models

The vector field model only addresses movement of place
field centers. The maximum likelihood model makes similar
predictions, but it also predicts the decrease in peak firing rate
seen with cue card movement: because sensory inputs are no
longer in perfect register, the peak likelihood value is lower. The
attractor network model also predicts field movement and re-
duction in peak firing rate, and furthermore, it generates actual
firing fields. The changes in firing field shape predicted to result
from card movement sometimes entail substantial deformations
(Fig. 9, bottom row). These may differ from what is observed
experimentally. However, because many parameters can influ-
ence firing field shape, and we have not tuned these parameters
to optimize this aspect of the model’s behavior, we do not

include changes in firing field shapes among the significant
predictions of the model presented here.

Comparison of Distance Weightings

In the vector field model, a cue card’s influence in the rotational
component [eq. (3)] is weighted inversely by distance in order to
achieve the desired map distortion effect (leftmost plots in Figs. 2
and 3). A similar effect is obtained in the maximum likelihood
model by giving distance-based landmark features a standard de-
viation �d proportional to the perceived distance vi [Eq. (6)], on
the assumption that such perceptual measurements should obey
Weber’s law. The scaled variance gives the evidence from a closer
landmark a steeper gradient than that from more distant land-
marks, hence the position estimate shows greater influence by the
closer card.

In the model of Káli and Dayan (2000), entorhinal cortex cells
are tuned to both distance and egocentric bearing to walls, and the
distance tuning is again sharper for closer walls. It is also sharper for
walls behind the animal versus those ahead of it. (Káli and Dayan
justify this by assuming that if the animal is headed away from a
wall, it has been close to the wall recently, and is thus likely to have
a more accurate distance estimate based on path integration.) The
models described here use allocentric bearing, not relative bearing,
so they do not distinguish landmarks ahead of versus behind the
animal.

The boundary vector cells (BVCs) of Hartley et al. (2000) use a
response function that is a product of two Gaussians: one tuned to
distance and one to allocentric bearing. BVC firing rates are calcu-
lated by integrating this response function over all points on the
surfaces surrounding the rat. We could instead take the firing rate
to be the product of the Gaussian response functions at the specific
bearing and distance of one point landmark. Compare this to our
maximum likelihood and attractor network models which com-
pute the sum of distance-based and bearing-based tuning func-
tions. The log of a product being equal to the sum of the logs, the
two approaches appear similar, and we would expect similar map
deformation results.

However, BVCs are not place cells. Hartley et al.’s place cells
compute a thresholded linear combination of two or more BVCs,

TABLE 2.

Distribution of Peak Activation Levels (in Dimensionless Units) for
All 1,129 Place Cells Within the Arena in the Attractor Network
Model, With the Cue Cards in Standard Position or Rotated Apart
or Together by 25°

Statistic measured
Standard

configuration

Cards
apart

by 25°

Cards
together
by 25°

Mean peak activation level 1.5374 1.3852 1.3517
SD 0.0889 0.0739 0.0860
Maximum peak activation 1.9733 1.7993 1.7554
Minimum peak activation 1.3252 0.9707 0.9430

FIGURE 8. Map distortion in the attractor model with the cards
rotated farther apart by 25°C.
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an extra layer of processing that our model lacks. This appears to be
necessary to derive spatially compact place fields when BVC’s use
entire walls as landmarks. In contrast, our attractor network model
uses recurrent connections and network dynamics to produce its
roughly Gaussian-shaped firing fields, from inputs with quite var-
ied shapes.

One drawback of using only points as landmarks is that our
model does not produce crescent-shaped firing fields along cylin-
der walls as the Hartley et al. model does. Such fields have been
reported by Muller et al. (1987). Their existence suggests that place
cells—at least those associated with boundaries—should be tightly

sensory-bound. Place cells not associated with a boundary are pre-
sumably driven by distal landmarks and recurrent excitation, mak-
ing them robust against landmark deletion.

Unlike in our maximum likelihood model, distance-based fea-
ture detectors in the attractor network model require a fixed vari-
ance, because otherwise, feature detectors tuned to large distance
values would supply excitation to broad swaths of place cells, which
would deform the shape of the input governing the location of the
attractor bump. The maximum likelihood model was unaffected
by broad input excitation because it simply picked the single point
of maximum activation as the animal’s most likely location. But

FIGURE 9. Firing fields of three place cells with cue cards (left)
rotated apart by 25°, (center) in standard position, and (right) rotated
together by 25°. The top row shows a cell whose field, when the cards
are in standard position, is located at the center of the arena. The cell

in the middle row has a field near the black cue card, and the cell in the
bottom row has a field at the west edge of the arena. [Color figure can
be viewed in the online issue, which is available at www.
interscience.wiley.com]
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the attractor model relies on network dynamics to settle the activity
bump over approximately the peak of the input, and is therefore
less tolerant of inputs that depart significantly from a compact,
roughly symmetric, unimodal shape. Pouget et al. (1998) observed
that their recurrent network best approximated a maximum like-
lihood estimator when the input and output encodings were iden-
tical. In our case, that means the afferent projections to place cells
should approximate the shape of a stable activity bump. The feed-
forward inhibition mechanism discussed previously helps to cut off
the tails of an elongated input pattern, but is not sufficient in itself
to ensure a well-conditioned input. Therefore, in order to reintro-
duce the effect of Weber’s law scaling on a distant landmark’s
contribution to the activity gradient, we adopted the inverse dis-
tance weighting for distance-based feature detectors.

Olypher et al. (2003) recently examined the amount of location
information in place cell spikes as rats foraged randomly in the
same arena configuration as the one modeled here. They found
that local information measures in the center of a place cell’s firing
field were higher when that field was close to a cue card than when
it was far from either card (Olypher et al., 2003). If the feature
detectors driving these place cells also carry greater information
content when tuned to nearby landmarks, this might provide an-
other justication for weighting nearby features more highly.

Firing Field Deformations

The strength of the recurrent connections relative to feature
detector afferents determines how the attractor network model
responds to inconsistent cues. Recurrent connections provide both
excitation and inhibition, making firing fields robust against
changes in total input and largely preserving their shapes when the
cards are rotated. If the recurrent connections are too weak, so that
the activity bump with the cards in standard configuration is
mainly a result of feature detector input, the reduction in input
when a cue card is removed could cause the attractor bump to
collapse. And the change in the input distribution when cards are
moved together or apart by a significant amount could cause gross
distortions in firing field shapes.

In contrast, if recurrent connections are too strong relative to the
external input, that input can only influence where on the grid the
activity bump appears, and not its shape. But even with a rigid
bump shape, the shapes of individual firing fields can still change,
since these depend on how the bump moves over the map. In fact,
the map distortions visualized in Figures 7 and 8 as shrinking and
stretching of the grid of firing field centers necessarily entail some
change in firing field shapes. To see this, consider two place cells i
and j whose firing field centers ci and cj move closer together, to
locations ci� and cj�, when the cards are rotated together (Fig. 10).
Assuming the shape of the activity bump remains rigid due to
strong recurrent connections, the firing rate of cell j when the rat is
at location ci� in the rotated environment would be the same as its
firing rate when the rat is at ci in the standard environment. But
since ci� is closer to cell j’s firing field center cj�, then ci is to cj, cell
j’s firing field has changed.

Predictions About Larger Card Movements

Knierim (2002) argues that recurrent connections must be weak
relative to external inputs because in a double cue rotation task
where local and distal cues rotated in opposite directions by sub-
stantial amounts, some cells followed the local cues, some followed
the distal cues, some developed split firing fields, and some
remapped entirely.

The cue card manipulations studied here are sufficiently subtle
that they do not trigger remapping. Moreover, in our models all
cells are influenced by both cue cards; place fields do not dissociate
into two sets, one following the white card and one the black card,
when the cards move relative to each other. But moving the cards
by a greater amount must eventually exceed some threshold be-
yond which the vector field transformation of Fenton et al.
(2000b) no longer applies. Note that rotating the cards apart by
90° is equivalent to a mirror-image reflection of the arena, where
the white and black cards swap places. Unlike in the double cue
rotation experiments (Tanila et al., 1997; Knierim, 2002; Brown
and Skaggs, 2002), where the discordance is between local cues on
a track versus distal cues on the walls, here the discordant cues are
of the same type, and presumably equal in salience. We would
therefore not expect to see place fields dissociate, as such an effect
has never been reported with homogeneous cues. Instead, we pre-
dict that at some critical amount of card rotation at 25–90° either
a complete remapping will occur, or one card will lose its influence

FIGURE 10. Place cells i and j have firing field centers ci and cj

that move to ci� and cj� when the cards are rotated. As a consequence
of map distortion, when the rat is at ci� with the cards rotated, cell j
will be firing at a higher rate than when the rat was at ci with the cards
in standard position.
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over firing fields, and the fields will rotate with the other card
without deforming.

Our current attractor-based model produces neither of these
effects. It cannot undergo remapping because there is only one
map stored in the recurrent connections. Nor can it reject the
influence of one cue card when the inputs from the two cards are so
far apart that they do not overlap. A spatially localized stimulus
applied far from the flank of an attractor bump should be ignored
due to recurrent inhibition (Redish, 1999). However, the feature
detectors in our attractor model of the cylinder have broad projec-
tions (see Fig. 6), so rotating the cue cards still produces inputs that
intersect with and influence the bump location. Thus, for the rat to
ignore one card when the separation is increased to 90°, some
attentional mechanism not considered in the present work would
have to come into play.

Summary

We have argued that the maximum likelihood formalism gives a
satisfying theoretical account of map deformation, in which evi-
dence from multiple independent cues is combined arithmetically
to derive a probability distribution for the location of the animal.
We assume that the activity of hippocampal place cells reflects this
probability distribution. The good agreement between the attrac-
tor network and maximum likelihood models supports previous
observations that attractor networks can efficiently implement
maximum likelihood reasoning (Pouget et al., 1998; Deneve et al.,
2001). If rats make near optimal use of available landmarks, they
may do so via a network of this sort.

However, the success of both the maximum likelihood and the
attractor network models was found to depend on the choice of
feature detectors used, since the distribution of landmarks is not
symmetric. For the maximum likelihood model the best choice was
an equally weighted combination of distance and angle features.
For the attractor network model, a combination of distance and
allocentric bearing features gave the best performance. These mod-
els and the vector field model all predict larger average horizontal
displacements of firing field centers in the cards-apart case than in
the cards-together case, a natural consequence of the landmark
geometry.

The maximum likelihood and attractor network models predict
larger horizontal displacements than the vector field model in both
the cards-together and cards-apart cases, but this might be reme-
died by further tweaking of the feature detectors and their relative
weightings. The vector field model in turn predicts a significantly
larger displacement in the cards-together case (�3.80 cm) than
was observed experimentally by Fenton et al. (�1.80 cm). None of
the models can explain this discrepancy.

Another area in which all the models disagree with the experi-
mental observations is the displacement of fields at the 9 o’clock
position, i.e., close to the wall at the western edge of the arena.
Fenton et al. report almost no horizontal displacement of firing
fields in this region, while the models predict substantial displace-
ments. A potential explanation for this result is that the rat is using
distance from the arena wall as another source of location informa-

tion. In most locations, this is a less salient cue than the cue cards,
but at the 9 o’clock position the cards are maximally distant and
the wall is close, so it may receive greater weight and serve to
“anchor” the firing field. Note that adding distance from the wall as
another type of landmark feature, combined with allocentric bear-
ing information, would allow us to derive crescent-shaped place
fields.

Finally, these models raise the question: what is the threshold for
cue card motion beyond which the hippocampus either remaps or
ignores one of the cards? We are currently investigating a Bayesian
model selection account of remapping that may shed light on this
question (Fuhs and Touretzky, 2003).

Acknowledgments

The authors thank two anonymous referees for helpful com-
ments on the manuscript. This work was supported by National
Institutes of Health award MH59932 (to D.S.T. and W.E.S.); by
National Science Foundation REU supplement to award
IIS-9978403 (to D.S.T. for W. W.); by National Science Founda-
tion IGERT training grant DGE-9987588 (to D.S.T. for M.F.);
by National Institutes of Health awards NS20686 and NS37150
(to R.U.M.); and by Medical Research Council (UK) (to R.U.M.).

REFERENCES

Ben-Yishai R, Hansel D, Sompolinsky H. 1997. Traveling waves and the
processing of weakly tuned inputs in a cortical network module.
J Comput Neurosci 4:57–77.

Brown JE, Skaggs WE. 2002. Concordant and discordant coding of spa-
tial location in populations of hippocampal CA1 pyramidal cells.
J Neurophysiol 88:1605–1613.

Collett T, Cartwright BA, Smith BA. 1986. Landmark learning and visuo-
spatial memories in gerbils. J Comp Physiol A 158:835–851.

Deneve S, Latham P, Pouget A. 2001. Efficient computation and cue
integration with noisy population codes. Nat Neurosci, 4:826–831.

Doboli S, Minai AA, Best PJ. 2000. Latent attractors: a model for context-
dependent place representations in the hippocampus. Neural Comput,
12:1003–1037.

Droulez J, Berthoz A. 1991. A neural network model of sensoritopic maps
with predictive short-term memory properties. Proc Natl Acad Sci
USA 88:9653–9657.

Fenton AA, Csizmadia G, Muller RU. 2000a. Conjoint control of hip-
pocampal place cell firing by two visual stimuli. I. The effects of mov-
ing the stimuli on firing field positions. J Gen Physiol 116:191–209.

Fenton AA, Csizmadia G, Muller RU. 2000b. Conjoint control of hip-
pocampal place cell firing by two visual stimuli. II. A vector-field
theory that predicts modifications of the representation of the envri-
onment. J Gen Physiol 116:211–221.

Fuhs MC, Touretzky DS. 2003. The mixture modeling theory of hip-
pocampal place cell remapping. Soc Neurosci Abs 29:91.20.

Goodridge JP, Touretzky DS. 2000. Modeling attractor deformation in
the rodent head direction system. J Neurophysiol, 83:3402–3410.

Hartley T, Burgess N, Lever C, Cacucci F, O’Keefe J. 2000. Modeling
place fields in terms of the cortical inputs to the hippocampus. Hip-
pocampus 10:369–379.

54 TOURETZKY ET AL.
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APPENDIX

The feedforward inhibition term IFD produces a more focused
and bump-like afferent input from the feature detectors to the
place cells. It is calculated iteratively by making a large initial guess
for IFD and then repeatedly reducing it by 10% until at least 10 grid
cells receive feature detector activation of �0.4. The quantity Bi

below denotes the feature detector afferent input for place cell i,
and Ci is this afferent input with feedforward inhibition and

thresholding applied. Ci is equal to the second summation in eq.
(16). The variables i and k range over place cells and feature detec-
tors, respectively. The expression counti(p) counts the number of
place cells satisfying predicate p:

1. Calculate Bi � ¥kwik
EF FDk for each place cell i.

2. Set initial guess for the inhibition term IFD to max(Bi) � 0.5
3. Define Ci(IFD) as [Bi � IFD]� for each place cell i.
4. While counti(Ci(IFD) � 0.4) � 10 do IFD4 0.9 IFD

5. Return IFD
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