Volume 08 Issue 04 Published, November 17, 2004 ISSN 1535-864X

INntel
Technology
Journal

Toward The Proactive Enterprise

Enterprise Client Management
with Internet Suspend/Resume

A compiled version of all papers from this issue of the Intel Technology Journal can be found at:
http://developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm

Enterprise Client Management with
Internet Suspend/Resume

Michael A. Kozuch, Corporate Technology Group, Intel Corporation
Casey J. Helfrich, Corporate Technology Group, Intel Corporation
David O'Hallaron, Carnegie Mellon University
Mahadev Satyanarayanan, Carnegie Mellon University and Intel Corporation

Index words: virtual machine, distributed storage, migration, management

ABSTRACT

Internet Suspend/Resume (ISR) is an exciting new model
for managing client machines in the enterprise. ISR
provides the administrative benefits of central
management without sacrificing the performance benefits
of thick-client, personal computing. This capability is
made possible through the novel combination of two well-
understood technologies: virtual machines and distributed
storage management.

With ISR, a wuser's entire personal computing
environment, including the operating system, applications,
data files, customizations, and current computing state, is
maintained in centralized storage. By leveraging virtual
machine technology, this computing environment may be
transported through the network and rapidly instantiated
on any ISR-enabled client machine. The central
management may include automatic backup, virus
scanning, and maintenance.

Further, the ISR software stack is naturally partitioned
into two parts: the ISR base and the user environment.
The ISR base, which comprises the virtual machine
monitor and management tools, runs directly on the
physical hardware and is centrally managed by the
enterprise Information Technology (IT) department. The
user environment is the familiar software stack, which
comprises the operating system and applications; it may
be managed by the end-user, the IT department, or both.
This separation enables the user environment to rapidly
migrate from physical platform to physical platform to
recover from hardware or software failures, for example.
This separation also enables the IT department to protect
the enterprise network by quarantining badly behaving
user environments.

INTRODUCTION

Over the past two decades, the advent of the Personal
Computer (PC) has transformed the computing industry.
Part of the PC's success in the marketplace is due to its
personal nature. Individual users have their own hardware
resources, manage their own software resources, and are
able to customize their computing environment to suit
their needs. In an enterprise environment, however, this
aspect of persona computing often imposes a
maintenance burden on the Information Technology (IT)
department that manages the hundreds or thousands of
machines that constitute the computing environment of the
enterprise.

Internet Suspend/Resume (ISR) is a new technology that
improves the manageability of computing environments
without sacrificing the personal aspect of modern desktop
computing. Moreover, ISR enables centralized-style
maintenance of personal computing state while till
preserving the performance benefits of thick-client
computing.

Personal computing state, in the context of ISR, refers to
the user's entire computing environment—including the
operating system, applications, data files, customizations,
and current execution state. The ISR system collects each
user’s computing environment into a set of files, called a
parcel, and it maintains these parcels on network servers.

During normal operation, ISR is virtualy invisible to the
end user. In the context of a corporate campus, for
example, as employees prepare to go home in the evening,
they suspend the operation of their computers by clicking
an icon on their desktop. This operation is very similar to
closing the lid on a laptop in that the current execution
state of the computer is collected. However, an ISR
suspend operation also updates the master copy of the
parcel, which is stored on a centrally managed ISR server.

Enterprise Client Management with Internet Suspend/Resume 313

Intel Technology Journal, Volume 8, Issue 4, 2004

Once the user's parcel is updated on the server, the
corporate IT department is able to perform common
mai ntenance tasks such as generating a backup copy of the
user’'s environment, or scanning the parcel for virus
signatures.

When the employee returns to work the next day, he or
she is able to resume the execution of his’her computing
environment. This operation will instantiate the user's
computing environment on that client machine. Execution
will resume with precisely the same state that existed at
the time of suspend: the correct applications will be open,
the user’s data files will be open, and the cursor will be in
the expected location.

Two properties are essential to the usefulness of ISR as a
management tool. Firgt, the IT department administers the
personal computing state of every user according to a
centralized style. Consequently, the IT department is able
to perform traditional centralized maintenance tasks such
as backup copy creation on the user parcels while still
providing the high-performance end-user experience
associated with thick-client computing. Second, the IT
department, not the user, administers the low-level ISR
software that runs on all client machines.

On an ISR client, the user’s environment does not control
the hardware directly. Instead, the ISR client program
instantiates and supports the user’s software. Because the
function of this software is limited to supporting the user,
or guest, software, it is relatively small and simple.
Certainly, this program is much less complex that the
guest software it supports.

Because the ISR client program is small and simple, it
should be less error-prone and easier to maintain than the
massive modern operating systems that 1T departments
currently manage on client machines. Further, the ISR
client program does not have to be customized to the guest
software that it supports. A single instance of the client
program can support many different guest operating
systems, for example. Therefore, the ISR client program
represents a uniform computing base to the IT department.

Most importantly, the user never modifies the ISR client
program. The ISR client architecture effectively divides
the client software stack into two parts: the ISR client
program and the user environment. The IT department
exclusively manages the ISR client program. However, the
user environment, which includes the traditional operating
system and applications, may be managed either by the
user or by the IT department, according to IT policy, just
asin non-1SR computing systems.

We expect this division to be the right compromise
between user control and IT control in many situations.
This organization enables users to modify their software

environment while still providing system administrators
with a stable, uniform management platform.

ISR DESIGN

When designing the ISR architecture, we developed the
following system requirements.

* The user's entire computing environment must be
easily managed by the IT department.

* Inthe event of hardware failure, the user must be able
to resume the environment on a new hardware
platform that is not necessarily identica to the
original.

* The system must enable checkpointing of the user's
environment, and the user must be able to restore a
previously saved checkpoint rapidly.

e Common use scenarios, for example when the user
uses the same client platform every day, must perform
well and must not impose undue load on the ISR
server or network infrastructure.

* The system must support mobile platforms.

e The performance of the system must be comparable
to the performance of atraditional (non-1SR) system.

Considering the above requirements, we developed a
system design that combines virtual machine technology
with network data transport. This combination of two old
(at least, by computer science standards) technologies
forms a new mechanism for managing personal computing
state.

Virtual Machine Technology

Virtual machine technology is a well-understood field of
computer science dating to the 1960s [4]. Historically, the
term, Virtual Machine (VM), referred to abstract software
containers that mimic the operation of physical machines.
Low-level software, called the Virtual Machine Monitor
(VMM), controls the operation of the VM, which includes
virtual versions of the devices found in a physical machine
(e.g., processors, memory, and disks). Guest software
running within a VM container behaves as if it were
running on a physical machine, and assuming that the
VMM is sufficiently complete, the guest software will be
unable to detect that it is interacting with a software
container rather than physical hardware.

In the ISR system, VM technology performs several
functions. First, the VM abstraction provides a natural
interface through which the ISR system can collect the
state of the user's environment. Because the VMM
manages the entire operation of the VM, the VMM must
also maintain the complete state of the VM. At suspend
time, the ISR system simply stores a description of the

Enterprise Client Management with Internet Suspend/Resume 314

Intel Technology Journal, Volume 8, Issue 4, 2004

current VM state into the user’s parcel. In particular, the
ISR system collects this state at the virtual device level
(processor state, memory state, disk state, peripheral state,
etc.). Because the state of the environment is captured at
the virtua hardware interface rather than some layer
within the guest environment, the ISR system need not
modify the guest software, nor does it need to be aware of
which guest software is included in the user's
environment.

The second role performed by the use of VM technology
is isolating users environments from differences in
hardware platforms. For example, suppose that a user
suspends her environment before leaving work at the end
of the day and that, during the night, the user’s hard drive
crashes. Upon realizing this after arriving in the morning,
the user could simply retrieve another 1SR client platform
from the IT department and resume her parcel on that
machine. Resuming on anonymous hardware is possible
because (1) the user’s entire state is maintained on the
server, and (2) the VM interface exported by the ISR
client software isidentical to the old VM interface, even if
the underlying hardware platform is not. The VMM hides
differences between the crash and recovery machines, and
the user's software is unable to detect that the physical
machine has changed.

VM technology provides a third benefit in that the VMM
can support operations that manage the client hardware in
a context outside that of the user's environment. For
example, the VMM might manage the physical network
interfaces in the client platform, and when guest software
initiates traffic through the virtual network interface, the
VMM controls the transfer of that traffic to the physical
network devicee To detect the infection of guest
environments by certain computer worms and viruses, the
corporate IT department could provide software in the
VMM’s virtual network component that monitors network
activity originating in the user environment. If that activity
resembles the traffic patterns corresponding to known
worms or viruses, the VMM could filter the problematic
network traffic at the client and outside the context of the
infected environment. Naturally, the IT department could
also alert the user and/or remotely administer the guest
environment.

Network Data Transport

While VM technology satisfies our requirements for state
encapsulation, hardware isolation, and client
administration, it must be paired with network data
transport in order to realize the full promise of 1SR. Once
the user’'s environment is captured into a parcel, for
example, that parcel must be transmitted to a server for
safekeeping.

ISR does not impose any specific requirements on the
network transport protocol; any mechanism that efficiently
transfers data packets from the client to the server and
back should suffice. Example mechanisms might include
distributed file systems, http-based transport, and session-
based mechanisms such as File Transfer Protocol (FTP)
and secure shell (ssh). In fact, while our early work [1]
relied on a distributed file system, we have recently
included support for an http-based system.

When installing an ISR system, the IT department may
freely choose the data transport mechanism. However, the
ISR installation team should carefully consider several
factors before choosing a particular protocol. For
example, most ISR files are tens to hundreds of kilobytes
in size, and a few are tens of megabytes in size. Will the
protocol efficiently transport medium to large files
through the network? Are there any peculiarities (e.g.,
high latencies or asymmetric links) regarding the intended
network that may affect the performance of certain
protocols? Does the network include firewall, proxy, or
Network Address Trandation (NAT) machines?

Another factor that the ISR installation team may wish to
consider is the physical location of the ISR servers.
Because the ISR system maintains the entire state of each
user’s environment, it provides an attractive approach for
enterprise disaster recovery. Site disasters, such as an
office building fire, can be devastating to a business when
the information maintained on personal computers is lost
in the disaster. An ISR system could help an enterprise
recover from a disaster, even when many personal
computers are lost, provided that the ISR servers survive
the disaster—by being replicated and/or physically
separated from the clients they serve. In the same way that
ISR can help a single user quickly recover from a
hardware failure by resuming on an anonymous platform,
ISR can help a hundred users quickly recover from a
catastrophe by resuming their environments on a hundred
anonymous platforms.

Enterprise Client Management with Internet Suspend/Resume 315

Intel Technology Journal, Volume 8, Issue 4, 2004

User A: Parcel 1 — srv1
User B: Parcel 2 — srv1
User C: Parcel 3 — snv2

User D: Parcel 4 — snv2

Name
— Server
User A =i
-Parcel 1 - .
UserB ||
-Parcel2 ||
Content
Server 1
UserC —1
-Parcel 3
User D H B
Parcel4 | |
Content
Server 2

Centrally Managed ISR Servers

Network

[=——=1

Distributed ISR Clients

Figure1: ThelSR Network Architecture

SYSTEM ARCHITECTURE

Regardiess of the network protocol employed, an ISR
system, which is depicted in Figure 1, consists of three
logical network entities: clients, nameservers, and content
servers. An ISR client is the machine that the user
interacts with directly and can be either a desktop or a
laptop machine. Content servers manage the data
associated with user parcels, and name servers provide a
lookup facility through which ISR software can discover
which content server is associated with a given user and
parcd name. A typical enterprise instalation of ISR
would include many clients, several content servers, but
possibly only one name server.

Client Architecture

Thus far, we have used the terms resume and suspend
loosely to refer to the general operation of the system. In
practice, the system includes several more operations and
the terms resume and suspend refer specifically to starting
and stopping the VM on the client. For example, before a
particular environment may be resumed, the client must
check-out the corresponding parcel from the content
server, and after the environment is suspended, the client
must check-in the parcel. From the user’'s perspective, the
following are the essential ISR operations.

» checkout prepares the parcel to be run on the client by
obtaining the necessary authentication tokens,
decryption keys, software locks, and critical parcel
data

e resume resumes the VM and makes the user's
environment available.

» suspend stops the execution of the VM and saves its
current state to the parcel on the client.

e checkin saves the current state of the parcel to the
content server.

» discard deletes the current state of the environment
on the client without saving it to the server. This is
occasionally useful if the user realizes that something
unfortunate occurred during this resume session, such
as virus contamination.

» hoard caches the entire state of the user's parcel on
this client in order to prepare for a planned or
possible network disruption.

» Isliststhe state of all the user’s parcels.

e dat prints information regarding the state of a
particular parcel.

Each parcel may only execute on one client at a time.
Hence, the operations checkout and check-in associate a
given parcel with a particular client. The resume and
suspend operations control the execution of the VM on
which the user’s environment runs. The discard and hoard
operations control the caching of parcel data on a
particular client, and the Is and stat operations provide
feedback to the user regarding the state of the system.

These operations move the user’'s parcel through various
states as shown in Figure 2. At agiven client, the parcel is
initially not present. When the user executes the checkout

Enterprise Client Management with Internet Suspend/Resume 316

Intel Technology Journal, Volume 8, Issue 4, 2004

operation, the parcel’s critical data are stored on the client
and, consequently, the parcel is logically present, but
unmodified. Once the user executes the resume operation,
the parcel enters the running state and the user may
interact with the reconstructed environment. Upon
suspend, the environment is halted and the new state of
the parcel is stored locally on the client. Note that the
modified state is not propagated to the content server until
the user issues a checkin command. Consequently, the
user may continue using the environment by resuming the
current state, or the user may return to the last saved state
by issuing a discard command.

The hoard command simply populates the client-side
parcel cache. By design, the system is organized in a
manner that permits the user to start a hoard operation
while in either the unmodified or modified state.

~ not L
checkfr{// present 'I\gheckout

hoard - __hoard
/ 3 (\‘\
l.-" present, present, \
modified nmodified
L resume -

Figure 2: Client-side parcel statetransition diagram

In our current implementation, these user commands may
either be executed by the user on the command line or
through the graphical user interface shown in Figure 3.

Internet Su

Figure 3: Prototype | SR graphical user interface

These operations are implemented through the
orchestration of the three components that constitute the
ISR client software depicted in Figure 4. The VMM
supports the operation of the user environment, which
includes the guest operating system and guest
applications. The state files that compose the user’s parcel
are stored in the parcel cache and managed by the parcel
cache manager. The VMM accesses these files on demand
while the user’s environment is running. The ISR client
manager orchestrates the movement of data between the
parcel cache manager and the content server during the
operations listed above.

For example, during the checkout operation, the client
manager first fetches a configuration file describing the
location and organization of the user’s parcel. With that
information, the client manager begins to fetch the
associated data over the network and primes the parcel
cache manager before invoking the VMM to instantiate
the user environment.

user

virtual environment

machine |

interface ISR client
virtual machine manager

CUT e

Figure4: ISR client program

The parcel cache manager is responsible for organizing all
parcel data on the client. The ISR design comprehends on-
demand fetching of parcel data. That is, the client manager
is not required to fetch the entire parcel before invoking
the VMM to restore the user’s environment. Instead, the
client manager need only fetch the critical files needed to
resume the VM. As the environment executes, the VMM
submits data requests to the parcel cache manager. If the
cache manager finds that a requested file does not exist in
the cache, it fetches the file from the content server and
installs it in the cache before supplying the requested data
to the VMM.

In our ISR prototype, the parcel cache manager organizes
parcel data into atraditiona file hierarchy as depicted in
Figure 5. This figure shows an example of the files that
will be present on a client machine when a parcel is
checked out and in use. The first line in Figure 4 describes

Enterprise Client Management with Internet Suspend/Resume 317

Intel Technology Journal, Volume 8, Issue 4, 2004

the root of the directory used for this parcel. The directory
contains two sub-directories: last and cache. The last
directory contains read-only data describing the state of
the parcel a the time of checkout. As the user's
environment is running, changes to the environment and
files fetched to satisfy demand misses are stored in the
cache directory.

In particular, as the client uses the parcel, the cache/disk
directory becomes populated, as parts of the disk are
demand fetched. The client can also explicitly populate
this directory with the hoard command. Until this
directory is fully populated, the user should ensure that the
client machine remains connected to the network because
the client must be able to satisfy demand misses from the
content server. However, once the disk directory is fully
populated, the client can operate in disconnected mode
and requires no further access to the network until the user
wishesto check-in the parcel.

The hoard command enables the user to prepare a client
for disconnection. This function is particularly useful for
preparing a laptop before removing it from the network.
The hoard command and the discard command both
operate on the client’s cache directory. Hoard causes the
cache manager to populate the cache fully. Discard causes
the cache manager to delete the cache without checking it
in to the content server, thereby irrevocably destroying the
data

/home/[username]/.isr/[isr username]/[parcelname]/
|-->/last/memory
|-->/last/meta
|-->/last/keyring (old)
| -->/cache/disk/
| -->/cache /memory
| -->/cache/meta
| ==>/cache/keyring (current)

Figure5: Client parce cache example

Name Server Architecture

Each session on a client typically begins with a checkout
operation, which, in turn, begins by contacting the ISR
name server to determine the location of the user's
parcels. The role of a name server is similar to that of
DNS servers on the Internet. The name server is the only
machine that a user needs to identify to the ISR client
software, as the name server contains information that
describes the location of all other content.

Each username within a name server must be unique
because a <name server, username>-tuple identifies a
single user in the ISR system. Further, the system must
ensure that each parcel name is used only once for each
user as a <name server, username, parcel name>-tuple
uniquely identifies aparcel.

When the user initiates a checkout operation, the ISR
client software executes an authentication sequence with
the name server and fetches the metadata associated with
that parcel. The metadata identifies the content server(s)
responsible for maintaining the parcel. The client software
uses the retrieved metadata to contact the appropriate
content server and begin fetching data.

In some implementations, such as ours, the parcel
metadata may also include encryption keys required for
decrypting the content on the content server. Our current
implementation of the name server is a hardened Linux’
computer running sshd, the secure shell (ssh) daemon. The
client program contacts the machine via ssh and
downloads a single file called parcel.cfg. Parcel.cfg is a
small protected text file that contains all of the necessary
configuration data describing a parcel, including the
protocol used to access the content, the path/URL of that
content, and the master decryption key, called the keyroot.
The parcel.cfg file can aso be extended to contain any
protocol -specific information.

Content Server Architecture

As mentioned previoudly, the ISR system imposes very
few requirements on the operation of the content server.
This component can be implemented as a distributed file
system server, database server, or other distributed storage
system such as a distributed hash table-based service.

Essentially, this component need only be able to deliver
data files as ISR clients request them. However, many
implementations will naturally organize their content as
described in this section. Understanding the structure of a
parcel is essentia to understanding the structure of the
content server. An ISR parcel contains three logical types
of data: memory, disk, and metadata.

The memory data corresponds to the state of the physical
memory in the VM. For example, if the user's VM
includes 512 MB of RAM, this file describes the 512 MB
state of physical memory. In practice, however, we have
observed the size of the memory file to be typically half
the size of the virtua machine RAM once it is
compressed, encrypted, and written to disk. As a special
case, when the VM has been powered off, this file can be
eliminated as the contents of the virtual RAM can be reset
during the next resume operation.

The disk data represents the contents of the disk(s) in the
VMs. Disk data can potentially be very large—severa
gigabytes to several tens of gigabytes, and because of this,
much of the research in ISR has been focused on the

" Other brands and names are the property of their
respective owners.

Enterprise Client Management with Internet Suspend/Resume 318

Intel Technology Journal, Volume 8, Issue 4, 2004

management of disk data. To enable quick access to
portions of the disk and to support on-demand fetch, the
disk state is divided into small files that are compressed
individually. Each of these files represents a contiguous
range of sectors on the virtual disk called a chunk. Each of
these files is individualy compressed and encrypted
whenever they are not in use by the virtualization layer on
the client. Carefully encrypting these files is particularly
important because they may contain information of
unknown sensitivity including protected guest files, the
guest swap file, and the virtual disk metadata. The
memory image must also be carefully encrypted for
similar reasons.

The metadata associated with a parcel is a collection of
very small configuration files used by the virtualization
layer, various logs, and one file that contains the
decryption keys for the disk data, called the keyring. For
each of the disk chunks, the keyring contains two 20-byte
entries. The first entry is the disk chunk’s decryption key
and the second entry is the disk chunk’ s lookup tag.

Keyring

The encryption technique that ISR employs for encoding
disk chunks is convergent encryption [3]. Convergent
encryption provides the useful property that two users who
have the same file can both encrypt the file to the same
cipher text without having to exchange any encryption

keys.

This result is achieved by deriving the encryption key
from the data, itself. If both users employ a cryptographic
hash of the data as the encryption key, each will encrypt
the original plaintext to the same cipher text. Each disk
chunk’s key and cipher text are derived in this manner:

key = hash(chunk)
cipher text = encryptye,(chunk)

The motivation for using this encryption technique is the
observation that many users parcels may exhibit
significant data similarity. For example, the parcels of
users whose environments include the same operating
systems and/or applications may have very similar
contents. If these users are able to satisfy disk chunk
reguests amongst themselves, they will possibly (a) reduce
the load on the server, (b) reduce the load on the network,
and (c) reduce the average latency of chunk requests
experienced by the users.

To enable inter-user data exchange, the users must not
only encrypt their data in a common manner, they must
aso maintain a means for addressing those blocks.
Hence, the keyring file aso includes a tag for each chunk
such that the tag is a hash of the cipher text:

tag = hash(cipher text)

The tag now uniquely identifies a disk chunk. An ISR
client can reguest disk chunk files using this tag and
decrypt those files using the associated key.

As an example, suppose that user A isworking on a client
machine that does not contain a fully populated cache for
user A’'s parcel. User B uses the same operating system
and applications as user A, and user B’s client machine is
in an adjacent office. Before resuming the VM, A’s client
has fetched the keyring associated with A’s parcel. At
runtime, if A’s cache manager determines that a particular
chunk file is needed, it can lookup the tag associated with
that chunk in the keyring and request the file by tag value
from B’s client (by using, for example, the techniques
reported in [2]). If B’s client returns the file, A’s client
can decrypt it using the associated key.

Note that while clients do advertise the chunks being
sought using the tag associated with that chunk, the tag
does not reveal any information regarding the contents of
the file and cannot be used to decrypt the file. Only the
keys can be used to decrypt the chunk files, and these are
never exchanged between clients. Instead they are stored
in encrypted form in the keyring on the content server and
only decrypted on the client. The encryption key for the
keyring is the only secret a user will need to unlock access
to his system. This secret is part of the parcel.cfg file that
the client obtains from the name server during a checkout
operation.

While initially intended as a mechanism for maintaining
the association between chunk files and their tags and
keys, the keyring has proven to be a surprisingly useful
tool. For example, the keyring file alows for quick
calculation of disk changes by comparing a newer keyring
with an older one. Because each keyring includes a single
entry for each disk chunk, by comparing the two keyring
files entry-by-entry ISR software can determine which of
the disk chunks has been modified. This technique is used
in our implementation of the checkin operation to
determine which disk chunks need to be uploaded from
the client to the content server.

Content Server Structure

The structure of the content server will vary dlightly,
depending on which protocol it services. Figure 6 depicts
an organization that should be useful for http- or
distributed-file system-based content servers.

Enterprise Client Management with Internet Suspend/Resume 319

Intel Technology Journal, Volume 8, Issue 4, 2004

/content root/
| --> [username01]/
|--> [parcel0l]/
|--> [parcel02]/
|--> [parcel03]/
| --> cache/
| ==> [version01]/
|--> [version02]/
|-=> [version03]/
|--> disk/
|--> 0000/0000
|--> 0000/0XXX etc...
|-=-> 0XXX/0000 etc...
|==> meta
| =-=> memory
| --> lockholder.log
| --> LOCK
|--> last (pointer to current wversion)
| --> [versionXX]/ etc...
|--> [parcelXX]/ etec...
|--> [usernamexx] etc...

Figure 6: Content server data organization

Figure 6 depicts a content server that provides service for
several users and permits multiple parcels per user. Each
parcel can have many versions; each version represents
the state of the machine at a checkin time during the life of
the parcel. Each version contains enough information to
recover the state of the parcel at that time. The version
pointed to by “last” contains a fully populated parcel,
while the previous versions only contain the delta
information describing what virtual machine state changed
between it and the subsequent version.

Par cel Versioning and Rollback

Rollback is an operation that enables a user to revert the
state of higher environment to the state associated with a
previous checkin point. For example, if a user realizes that
she introduced a computer virus into her environment on
Wednesday, the user could employ the rollback operation
to restore the state of the parcel to the state corresponding
to some version prior to Wednesday’s.

To support this feature, the ISR content server maintains a
version of the user's parcel for every possible rollback
point. Naturally, naively maintaining many copies of the
parcel would require an excessive alocation of storage
space. Instead, we can capitalize on the fact that a parcel
typically does not change much from one version to the
next. Consequently, each version directory only contains
the data that changed between that version and the next.
We expect the delta-encoding format to provide a space
savings of between one and two orders of magnitude.

The number of versions maintained per parcel and the
timing (weekly, monthly, etc.) of those versions are policy
decisons set by the content server administrators.
Fortunately, the delta-encoding format of the versions
enables the system administrator to collapse several
versions when it becomes necessary to reclaim space.

Consequently, the policy may be dynamic; when the
available disk space on the content server falls below
some threshold, a reclamation process may iterate through
all the parcels collapsing versions until sufficient free disk
space becomes available.

Data Transport Protocol

As mentioned previously, we have experimented with two
different content server protocols. The first protocol
requires that the ISR content server data appears to reside
in the local file system of the host. The data could either
be truly local (on an attached portable hard-drive, for
example), or they could appear to be local (in a mounted
distributed file system, for example). In either case, the
ISR client software accesses the data through simple file
operations such as open, close, read, and write.

In the second protocol, the disk data are logically remote,
and the ISR client software must fetch the data explicitly
from a remote server via http or ssh. When a section of
disk is requested and it is not yet cached on the client, the
chunk files are explicitly requested from the content server
and cached on the client to service future access requests.

The system currently supports both approaches. During a
checkout operation, the client fetches the parcel.cfg file
that describes which transport protocol is used for this
parcel. Further, we have defined an abstraction layer in the
client software so that the client can switch between the
various transport protocols by calling into dynamically
loaded libraries. This mechanism also supports the
development of new transport mechanisms.

CHALLENGESAND SOLUTIONS

In developing the ISR architecture and initial
implementation, we encountered a number of challenges.
In this section, we list severa of these challenges and our
current solutions.

Large Environment State

By far, the greatest challenge that ISR presents is the
enormous volume of data associated with a parcel. In
particular, the virtual RAM s typically on the order of a
hundred megabytes and the virtual disk drive is on the
order of gigabytes. A naive approach for data movement,
transferring the complete image between client and server
during every checkout and checkin operation, would be
impractical even over fast corporate networks.
Transferring ten gigabytes over a 100 Mbps network
requires at least 800 seconds (15 minutes).

We have dready described several of the techniques
employed to reduce the impact of the state size. First and
foremost, we have organized the parcel so that the disk
data may be fetched on demand. This reduces the volume
of data that must be fetched when performing a checkout

Enterprise Client Management with Internet Suspend/Resume 320

Intel Technology Journal, Volume 8, Issue 4, 2004

operation on a client with an empty cache to the size of
the memory image rather than the disk image. Further, we
employ standard compression to reduce the footprint of
the memory image. If the compressed memory image is
100 MB, fetching the image over a 100 Mbps network
will require at least eight seconds. In practice, the startup
sequence including authentication, download, decryption,
and decompression requires approximately 30 seconds.

Each of the disk chunks may be fetched separately, and
consequently, each is compressed and encrypted
separately. In our implementation, we have chosen a
chunk size of 128 KB. The compression ratio can range
from 0% to 100%. Portions of the disk that are empty,
because they have not been used by the guest operating
system, compress to 152 bytes while portions that contain
nearly random data are uncompressible.

The chunk size is a parameter chosen by the system
administrator for each parcel. The chunk size is essentially
the cache line size for the parcel cache on the client.
Choosing a larger chunk size will typically reduce the
number of misses observed by the cache but will aso
increase the network bandwidth consumed by the client.
Our experiments indicate that chunk sizes in the range of
64 KB to 256 KB are reasonable.

To compensate for potentially poor network performance,
we rely heavily on client-side caching. Every chunk
fetched by the client software is placed in the client parcel
cache. Further, because this cache is disk-resident and
disk space is relatively inexpensive, we assume that
evictions will be relatively rare events. We aso define the
hoard operation to provide good performance in cases
where the use of a particular client is known a priori. This
operation can also be issued remotely. If a user knows that
sheis going to a remote site with low network bandwidth,
a hoard operation can be issued remotely to ensure that
data are prefetched into the remote client cache while the
user isin transit.

For situations in which the network conditions are poor,
and the location could not have been predicted, we have
developed an optional performance enhancement to ISR
called Lookaside caching (LKA) [5]. This technique relies
on the user carrying a portable storage device such as a
flash memory device to maintain compressed and
encrypted copies of parcel data. When the user attempts to
access his environment from an ISR client, the ISR client
software can fetch necessary data from the device rather
than from the content server. However, we require the
client to verify the validity of the data on the portable
device with the content server before using it. Again, we
can rely on the keyring to provide this validation. Because
the keyring contains the hash for every disk block, the
client can simply hash data blocks on the portable device
and compare the hashes to the keyring tag to determine if

the portable device contains a correct copy of the data. In
this way, the system never relies on the portable device; it
can be lost, forgotten, or contain old data. The content
server is always considered to contain the authoritative
version of the user’s parcel. Further, because the data on
the portable device are encrypted, other users cannot make
use of the portable deviceif it islost or stolen.

Finally, we rely on delta encoding during both checkin
and rollback operations as well as for reducing the amount
of space occupied on disk by our parcel versioning
system. For example, to represent a virtual machine with
256 MB of RAM and a 10 GB hard drive with Microsoft
Windows’ XP* and Microsoft Office* XP* installed
occupies approximately 2.4 GB of server side storage
after compression. For each rollback point that a user
chooses to keep, delta encoding often reduces the server
storage required to approximately 100 MB per version.

Heter ogeneous Clients

Another potential impediment to widespread | SR adoption
is the diversity of client machines found in the typical
enterprise. Fortunately, the virtualization layer in the
client software stack handles heterogeneous clients
relatively easily.

In fact, virtualization is able to convert this challenge into
a feature. If an enterprise adopts the ISR architecture,
migration from one platform to the next becomes much
easier. Currently, to migrate a user from one platform to a
newer platform with a faster processor, either the IT
department or the user must construct a new environment
on the new machine and carefully consider which files and
programs to install on the new machine before destroying
the old environment. With ISR, simply suspend execution
on the old machine, checkin the parcel, replace the
hardware, checkout the parcel, and resume.

The one requirement that ISR imposes on the
virtualization layer is that al client software provide the
same VM interface. The VMMs on different clients need
not be identical, but they must export the same VM
interface. If the VMMs do not export the same interface,
guest software may become confused when it resumes on
a virtual machine that is different from the suspend site
VM.

On the surface, differences in attached peripherals on
various clients would appear to be a problem, but with the
advent of solid support for plug-n-play devices in modern
operating systems, this issue is largely resolved. Modern
operating systems are able to handle the addition or

7 Other brands and names are the property of their
respective owners.

Enterprise Client Management with Internet Suspend/Resume 321

Intel Technology Journal, Volume 8, Issue 4, 2004

removal of plug-n-play devices (a USB printer, for
example) cleanly and transparently. For example, suppose
that the suspend site client is connected to a USB printer,
but that no printer is connected to the client at resume
time, the guest operating system will simply detect that the
device has been unplugged and respond accordingly.

Similarly, modern operating systems are typically able to
respond well to changing network conditions. When a
modern laptop is disconnected from one network and
reconnected to another network, the operating system is
typically able to reconfigure the network stack
automatically to compensate. In the same way, if a guest
operating system within a VM detects that the network
conditions changed between suspend and resume, the
operating system will reconfigure networking to
compensate.

Naturally, persistent network connections do prove to be a
problem in the ISR system across suspend-resume cycles,
but no more so than in general laptop usage. Persistent
network connections are typically disrupted during laptop
suspend-resume cycles due to time-out, address migration
issues, or both. A suspend-resume cycle in the ISR system
will cause similar results.

OVER-THE-WIRE MOBILITY

While this paper primarily discusses ISR in the context of
enterprise management, the same infrastructure also
supports over-the-wire mobility [1]. In particular, the
same technology that enables a user to resume his or her
environment on an anonymous hardware platform after a
hardware failure enables the user to resume on a different
hardware platform in the absence of failures. The user
simply suspends on one client and resumes on another.

This capability is potentially very interesting in a number
of situations. For example, some environments require a
fluid office alocation; when employees arrive for work,
they are given an office assignment out of a pool of
available offices. ISR supports a clean mechanism for
customizing the computers in those offices. The user
simply sits down at the client machine and resumes his or
her environment.

ISR could also be used to support employees who work at
home some of the time and at work some of the time.
Rather than carrying a laptop to and from work, the
employee can leverage the network to transport her work
environment from work to home and vice versa. This
scenario is a particularly good application of prefetching
as the employee may follow certain patterns such as
arriving at work every day at 8:00 and leaving at 5:00.
Such predictability greatly improves the effectiveness of
the client parcel caches.

CURRENT PROJECT STATUS

We have built a prototype implementation of ISR and
have been using the prototype internaly for
experimentation for some time. The prototype has become
sufficiently robust that we plan to conduct a test
deployment of the system with external volunteer users.

Through this test deployment, we hope to evaluate the
following questions quantitatively:

* How do users use the system? How many times does
the average user checkin, suspend, and discard? Are
users doing something unforeseen and/or interesting
with the system?

« What are the hardware requirements for the system?
What is the load on the server? What is the load on
the network? How much disk space is consumed per
checkin?

* How satisfied are users with the system? Does the
system fulfill an interesting need? Will users continue
to use it? Will users recommend it to their friends?

e Does ISR improve enterprise management? Does
system administration time increase or decrease in the
context of ISR?

To answer these questions, we have instrumented both the
server-side and client-side ISR code. The instrumentation
will gather various statistics such as average number of
bytes sent per checkin and frequency of checkin. The
users will be fully aware that this information is being
gathered, but we will try to protect their privacy by
making the collected data anonymous and not observing
activity within the guest environment.

We hope to start with approximately ten users and to
increase that number to approximately 100 at the peak of
the trial. Additionally, we hope to attract tolerant usersin
the early stages as we work out any bugs that remain at the
beginning of the deployment. In the later stages, we plan
to open the deployment to more novice computer users so
that we can better evaluate a typical user’'s impression of
the system.

CONCLUSION

ISR leverages virtual machine technology and network
accessible storage to improve the management of
enterprise clients by (1) cleanly separating the client
software stack into a portion that is managed by IT and a
portion that can be managed by the user, (2) providing
centralized management of the entire user software
environment, and (3) providing a mechanism for simple,
rapid environment migration. Through this combination,
ISR is able to simultaneoudly deliver the administrative

Enterprise Client Management with Internet Suspend/Resume 322

Intel Technology Journal, Volume 8, Issue 4, 2004

benefits of centralized management and the rich user
experience of thick-client computing.

REFERENCES

[1] Kozuch, M., Satyanarayanan, M., Bressoud, T.,
Helfrich, C., Sinnamohideen, S., “Seamless Mobile
Computing on Fixed Infrastructure,” IEEE Compuiter,
July 2004, pp. 65-72.

[2] Bressoud, T., Kozuch, M., Helfrich, C., and
Satyanarayanan, M., “OpenCAS. A Flexible
Architecture for Building and Accessing Content
Addressable Storage,” 2004 International Workshop
on Scalable File Systems and Storage Technologies,
September 15, 2004.

[3] Douceur, J., Adya, A., Bolosky, W., Simon, D., and
Theimer, M., “Reclaiming space from duplicate files
in a serverless distributed file system,” Proceedings of
the International Conference on Distributed
Computing Systems (ICDCS 2002), Vienna, Austria,
July 2002.

[4] Goldberg, R., “Survey of Virtua Machine Research,”
IEEE Computer, June 1974, pages 34-45.

[5] Tolia, N., Harkes, J, Kozuch, M., and
Satyanarayanan, M., “Integrating Portable and
Distributed Storage,” Proceedings of the 3rd USENIX
Conference on File and Storage Technologies, 2004.

AUTHORS BIOGRAPHIES

Michae Kozuch is a senior researcher for Intel
Corporation. Mike received a B.S. degree from Penn State
University in 1992 and a Ph.D. degree from Princeton
University in 1997, both in electrica engineering. Mike
has worked for Intel research labs since 1997, four years
in Oregon and three years in Pittsburgh, Pennsylvania. His
research focuses on novel uses of virtua machine
technology. His e-mail is makozuch at ichips.intel.com.

Casey Hédfrich is a research engineer at the Intel
Research Lab in Pittsburgh. He received a Bachelor's
degree in Physics from Carnegie Mellon University in
2001 and an additional B.S. degree in Computer Science
from Carnegie Mellon University in 2002. He joined the
Pittsburgh lab at its inception and helped design and build
the IT infrastructure for Intel Research. His e-mail is
casey.j.helfrich at intel.com.

David O'Hallaron has been a faculty member of the
Carnegie Mellon University School of Computer Science
since 1989. His interests include high-performance
distributed systems, Internet services, distributed search,
and scientific computing. David has co-authored three
books including Computer Systems: A Programmer’s

Perspective and won the 2003 Gordon Bell award for
special achievement. His e-mail isdroh at cs.cmu.edu.

Mahadev Satyanarayanan is the Carnegie Group
Professor of Computer Science at Carnegie Mellon
University. His research interests include mobile
computing, pervasive computing, and distributed systems
(especially distributed file systems). From 2001 to 2004
he was the founding director of Intel Research Pittsburgh,
where the Internet Suspend/Resume project was initiated.
He is a Fellow of the ACM and the IEEE, and the
founding Editor-in-Chief of IEEE Pervasive Computing.
Hise-mail is satya at cs.cmu.edu.

Copyright © Intel Corporation 2004. This publication was
downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

Enterprise Client Management with Internet Suspend/Resume 323

http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Intel Technology Journal, Volume 8, Issue 4, 2004

THISPAGE INTENTIONALLY LEFT BLANK

Enterprise Client Management with Internet Suspend/Resume 324

For further information visit:

developer.intel.com/technology/itj/index.htm

Copyright © 2004 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

