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Abstract

This paper describes the design, implementation, and
evaluation of a parallel indexer called PAMIS ! for a polyg-
onal 2D shape image database. PAMIS is based on a shape
representation scheme called the turning function, which
exhibits the desirable properties of position-, scale-, and
rotation-invariance, and has a similarity metric function that
satisfies the triangular inequality, which is required for ef-
ficient database indexing. Because the goal of the PAMIS
project is to support ’like-this”” image queries, the indexing
scheme we chose, the vantage-pointtree (VPT), uses relative
rather than absolute distance values to organize the database
elements for efficient nearest-neighbor search. We have suc-
cessfully implemented PAMIS on a network of workstations
to exploit the 1/0 and computation parallelism inherent in
the VPT algorithm. We found that it is preferable to make
the VPT node size as small as possible in order to have a
lean and deep VPT structure, and the best-case scheduling
strategy performs the best among the scheduling strategies
considered. Overall, the performance of the VPT algorithm
scales very well with the number of processors, and the in-
dexing efficiency, defined as the percentage of database ele-
ments touched by the search, of PAMIS is 6% and 39% for
’good” queries that ask for 1 and 50 nearest neighbors, re-
spectively.

1 Introduction

The most popular form of content-based image queries is
the so-called like-this query because it bypasses the difficult
problem of specifying the desired data objects in terms of for-
mal query languages, which seems neither technically nor er-
gonomically feasible. Supporting content-based multimedia
object access involves two issues: feature extraction, which

1PArallel Multimedia Index Server

extracts features with distinguishing power from the original
multimedia objects, and feature indexing, which organizes
the objects in the database according to their extracted fea-
tures in such a way that at run time, only a small portion of
the database needs to be explored to retrieve the target ob-
jects. Feature extraction is a very old research area and the
literature abounds in well-known techniques to extract mean-
ingful features from various types of signals such as images,
video and speech. Feature indexing, on the other hand, is less
studied and is the subject of this paper.

In this paper, we describe the design, implementation,
and evaluation of an experimental image index system called
PAMIS, developed at the Computer Science Department of
State University of New York at Stony Brook. The first
PAMIS prototype is fully operational now and can support
content-based image retrieval by returning the most simi-
lar image in the database to the query image entered by the
user. PAMIS employs a shape representation scheme called
the turning function, which is equipped with such desirable
properties as position-, scale-, and rotation-invariance, and
has a similarity metric function that satisfies the triangular
inequality. Based on this representation, PAMIS uses with
a parallel version of the vantage-point tree (VPT) algorithm
[3], which is implemented on a network of high-end PC’s
to exploit the I/O and computation parallelism in the tree
search process, and supports the capability of searching for
N (N > 1) nearest neighbors.

The rest of this paper is organized as follows. In Section
2, we briefly review previous works in this area to set the
contributions of this work in perspective. In Section 3, we
describe the shape representation scheme used in PAMIS and
the associated similarity metric function. Section 4 discusses
the design and the parallel implementation details of the VPT
algorithm. In Section 5, the experimental methodology and
the results and analysis of our experiments on the first PAMIS
prototype are presented in detail. Section 6 concludes this
paper with a summary of the main results from this work as
well as an outline of on-going research.



2 Reated Work

[10] proposed the vantage-point tree for efficient nearest-
neighbor search by organizing database elements based on
their relative distances rather than their absolute feature val-
ues. [3] extended that work by developing an optimistic &
value adjustment mechanism that at once solves the problem
of choosing the initial o value and achieves the optimal bal-
ance between recall and precision rates by dynamically tai-
loring the range of search to the characteristics of the given
queries. The work described in this paper further improves
the previous two efforts by introducing the idea of accumu-
lative vantage-point tree, which allows the propagation of
useful information from parents to children to attain better
pruning efficiency. In addition, a parallel implementation on
a network of workstations is developed that is capable of ex-
ploiting the inherent I/O and computation parallelism in the
search procedure.

Perhaps the most ambitious image database project so
far is the QBIC (Query by Image Content) [5] [6] from
IBM Almaden, which uses both automatic and manual im-
age analysis techniques to extract feature vectors, and then
uses conventional multi-dimensional indexing methods such
as R*-trees as the indexing mechanism for low-dimensional
feature vectors. In the case of high-dimensional feature
vectors, a pre-processing step based on principal compo-
nent analysis is used to reduce the dimensionality to two or
three. The pre-processed feature vectors are then indexed
by R*-trees. [2] proposes another algorithm to the multi-
dimensional nearest-neighbor search problem based on a ran-
domization approach. However, this algorithm doesn’t seem
to be as effective as the Vantage-Point Tree method. [7] and
[8] described experiments to retrieve image objects based on
their shapes. However, the emphasis of both is on the im-
age representation schemes to support occlusion or partial
matching, rather than on efficient indexing mechanisms to
speed up the access. The FIBSSR project described in [9]
used a K-D-B tree index mechanism.

3 Polygonal Shape Description
3.1 Representation

The first PAMIS prototype is focused only on polygonal
shape images. We choose the turning function representa-
tion [1], which exhibits the desirable properties of position-
, rotation- and scale-invariance. The turning function of a
polygon represents the tangent of a point on the boundary
with respect to certain reference axis of arbitrary orientation
(Figure 1). As the perimeter of a polygon is traversed, the
tangent at each pointis computed, thus effectively transform-
ing a 2D shape into a 1D turning function while preserving
all information. The point on the shape’s contour from which
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Figure 1. The left is the original polygon while the right
is its corresponding turning function. Note that there are two
degrees of freedom in the turning functions: The choice of
the the origin, O, and the directionality of the reference axis.

the traversal starts corresponds to the O position on the turn-
ing function diagram and is called the origin. The origin
is also chosen arbitrarily. The above definition is general
enough to apply to any type of shape. For closed shapes,
the function repeats itself shifted up by 27 in each succes-
sive period, which is equal to the length of the boundary. In
other words, the first derivative of the turning function of a
closed shape is periodic. Figure 1 shows the turning function
of a simple polygon. To support scale invariance, the length
of one cycle of the traversal around a polygon is normalized
to 1 in the turning function.

Note that rotating the reference axis by 8 degrees shifts
the entire turning function by 8 up or down, depending on
the direction of rotation. The same effect occurs if the poly-
gon is rotated around a point on the plane. Sliding the poly-
gon’s origin along the perimeter effectively shifts the turning
function left or right by the amount. We will see in the next
section that these two parameters, namely the choice of ref-
erence axis and the position of the origin along the boundary,
can be tuned to accomplish a “maximal” match between two
polygons’ turning functions. Their distance is then computed
at the maximally matched configuration.

3.2 Similarity Metric Function

To compare two polygons whose turning functions are
f(s) and g(s), s € [0, 1], we compute a function of the area
between the functions, minimized over all choices of refer-
ence axis (angle ) and origin for the second polygon (po-
sition along the boundary ¢), while keeping the first one’s
reference axis and origin fixed. The distance metric D(f, g)
between two turning functions f(.) and g(.) is

Wo,t) = [ (Fs+0) - als) + 6ds

D(f,9) = min v/h(6,1)

)

An important property of this metric function is that it sat-
isfies the triangular inequality, i.e., D(f,g) < D(f,h) +



D(h, g). Modifying the orientation of the reference axis cor-
responds to rotating the polygon or, equivalently, shifting the
turning function up or down. The optimal angle 8*, as a func-
tion of the origin position can be computed in constant time

0" = —2rt+ [ (a(s) = f(a))ds

This is evident immediately by taking the derivative of
h(6,t) with respect to 8, setting the derivative to 0 and
solving for . Minimizing h(6*,t) over all choices of ¢
takes more than constant time though. In particular, A(6*,t)
reaches a minimum or a maximum for shifts of g(s + ¢) that
result in one breakpoint of g coinciding with a breakpoint
of f. A breakpoint is a point of discontinuity of the turn-
ing function, and corresponds to a vertex along the perime-
ter. Between breakpoint coincidences, h(6*,t) varies lin-
early with ¢. The naive way to compute D is by calculat-
ing the integral over all possible mn choices of shifts that
produce a breakpoint coincidence, where m and n are the
number of vertices in the two polygons. Since computation
of the integral takes O(m + n) time, the time complexity is
O((m+n)mn), or O(n®) if m = n. A faster algorithm, also
presented at [1], making this time O(n? logn) is used in the
PAMIS prototype.

4 Parallel Nearest-Neighbor Search

Given the turning function representation for polygonal
shapes, PAMIS organizes the shapes in the database in a spe-
cific form of search tree called the Vantage-Point Tree (VPT)
[3], to speed up the content-based like-this” queries. More-
over, the search tree is striped across a network of worksta-
tions to exploit the computation and I/O parallelism inherent
in the nearest-neighbor search process.

4.1 Vantage-Point Tree

A VPT organizes the database elements into a tree similar
to a B-tree. To construct a VPT, one first chooses a database
element, say V, as the vantage point, computes the distance
metrics between every other database element and V, and
then classifies the database elements into M approximately
equal-sized partitions (in terms of number of database ele-
ments) based on the distance metric values, as shown in Fig-
ure 2. Essentially all the database elements are re-mapped
onto a one-dimensional axis based on their distances with
respect to the vantage point. Each partition 2 is character-
ized by its two boundary distance values, low([:] and highl[d],
where low[i] = high[i — 1],7 = 2,..., M. This process
repeats for each of the partitions recursively until the num-
ber of database elements is small enough to fit into a disk
page. A copy of the VP polygon is stored at each internal
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Figure 2. Mapping and partitioning of the database ele-
ments into disjoint subsets in the distance metric space based
on their distances with respect to the vantage point. Each of
the subsets such as P; corresponds to a tree branch.

node for efficiency. The leaf nodes usually contain most of
the database elements. In PAMIS, the database consists of
polygons, whose representation takes a significant amount of
storage space, and therefore each leaf node actually contains
only a small number of polygons.

When a query polygon g is presented to a VPT rooted at
v, the system first computes the distance D(g, v) between g
and v. Based on this value, the best-case and worst-case dis-
tance estimates between each partition and g can be derived
as follows:

D(g, v) — highli]
best_case[i] = ¢ 0 if  high[t]
lowfi] — D(g, )

worst_caseli] = D(gq,v) + highl[i]

With these estimates, a partition will be pruned if and only
if its best-case estimate is larger than §. The value of § is set
to the distance metric between the currently known nearest
neighbor and ¢ and is updated when that distance changes.
Intuitively, & represents the maximum threshold that users?
are willing to accept as the distance between g and its near-
est neighbor. In other words, if it turns out that the distance
between ¢ and its nearest neighbor is larger than §, users are
not interested. The same search procedure is applied recur-
sively at each level of the VPT to determine which branches
at that subtree can be pruned until reaching the leaf nodes.
At that point, a sequential search through the polygons at the
leaf nodes is required to complete the search.

4.2 Database Organization

The VP tree is stored on the disks in the same way
as a B-tree. However, in this case, each internal node n
stores a vantage point V¥, a set of distance values, D¥,i =
1,...,B* — 1,Df = 0 (implicitly assumed), B* point-
ers to lower-level VPT nodes, and B* counters that store
the number of database elements under each child branch.
BF is called the branching factor and D¥ is the i-th me-
dian among the distance values between the vantage point

2However, users are not responsible for choosing the § value explicitly.

if D(q,v) > highl[i]
> D(g,v) > lowli
if low[i] > D(q,v)



and those database elements under this node. Thus D%’s are
used to separate these database elements into approximately
equal-numbered partitions, Pik,i =0,...,B¥ — 1, each of
which becomes a child branch from this internal node. A
database element e belongs to the j-th partition Pf if and
only if D}, > D(V*,e) > D¥. The leaves contain the ac-
tual polygons in the database, together with a small amount
of administrative information.

4.3 Parallel Implementation

The nodes of the vantage-point tree described in the pre-
vious section are striped across a network of workstations.
PAMIS distributes the VPT using a static cyclic interleaving
technique. The software architecture consists of X compute
processes and one distinct coordinator process. The coor-
dinator maintains two data structures: the results table and
the load table. The results table stores the IDs of the best
N nearest neighbors found so far, their associated VPT node
IDs, their distances with respect to the query point and the
owning processor IDs. The distance value associated with
the worst of the best NV nearest neighbors is 4. The load table
contains an entry for each compute process, which consists of
a busy flag to indicate whether the corresponding processor
is busy or idle, and a counter that records the message bal-
ance of the processor, i.e., the difference between the number
of request messages transmitted and the number of request
messages received. The latter table is used by the coordi-
nator to determine when the entire search process should be
terminated: when all processors are idle and the sum of the
differences in the load table is zero, i.e., when all compute
processes have no more work to do and there is no request
messages still floating on the network.

Each compute process maintains the most recent § and a
request queue, in which the incoming requests for exploring
the internal or leaf nodes of the VPT are stored. The requests
are stored in the queue according to certain scheduling disci-
pline. In PAMIS, we have four alternatives: smallest-best-
case first, smallest-worst-case first, deepest-then-smallest-
best-case and deepest-then-smallest-worst-case first. The
first two are based on the best-case and worst-case estimates
of the nodes specified in the requests, respectively. The idea
behind the former is to explore the most promising nodes
first, while the latter one tries to explore the nodes with the
smallest worst-case value first and thus decrease the value of
4 as soon as possible. The third and fourth are based on the
levels of the nodes. The deeper the node, the higher priority
it gets in being scheduled. The rationale is that as the nodes
get closer to the leaves, the more specific they become and
will produce a smaller distance value than the current esti-
mate derived from their ancestors that are already explored,
thus providing better pruning power.

After a compute process explores a VPT node, it sorts the

actual distance values (if at a leaf node) and/or the worst-
case estimates of the children branches (if an internal node),
and retains those that are better than the local §. Only the
first N of these will be sent to the coordinator to update the
results table. The coordinator processes them in the way
described earlier, possibly lowering é. In the case that § is
indeed lowered, a messages is sent by the coordinator to all
processors, informing them of the new 4. In order to prune
as soon as possible, a processor shortcircuits this updating
by broadcasting directly to all processors a new distance that
is lower than its local §, which may be out of date because
of network lag and processing overhead at the coordinator.
Each processor that receives a notification of a new value of
d adopts it only if it is smaller that its local § (which may be
smaller than the incoming one if it had been updated in the
meantime by another broadcast). Messages containing new &
values are processed immediately in order to prune the search
space as quickly as possible.

Two § adjustment algorithms are implemented in the pro-
totype and compared under various conditions. The first,
called the pessimistic algorithm, starts with a large § value
and lowers it as the computation proceeds. The second one,
called the optimistic algorithm, starts with a small § value,
progressively increases it, and eventually reaches the ulti-
mate ¢ value. The algorithms are described in the next two
sections.

4.4 Pessimistic Strategy

In the pessimistic algorithm the results table is initially
filled with null entries with all the distance values set to in-
finity. The d§ values is also infinity, taken from the N-th ta-
ble entry. At the end of the computation, the results table
contains the N nearest neighbors to the query point in the
database. This table is kept sorted by the coordinator in as-
cending distance order at all times. Every time a polygon
whose distance to the query point is smaller than ¢ is dis-
covered by a compute process, the polygon ID, the owning
processor ID, and the distance value is send to the coordina-
tor. The coordinator, upon receipt of such a message, inserts
the polygon into the results table, pushing down entries of
higher distance values and potentially lowering the value of
d, which then gets broadcast to all compute processes.

To speed up the fill-up process of the results table, we ex-
ploit the worst-case estimates of the branches. For example,
suppose there are two branches from the VPT root. After
the root node has been explored, the branch containing 30
polygons has a worst-case estimate of 7, while the other with
50 polygons has a worst-case estimate of 3. Assuming that
only 5 nearest neighbors are needed, then the results table
should contain the root vantage point plus four estimate en-
tries whose distance values are 3, rather than four null entries
whose distance value fields are infinity, as would be the case
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Figure 3. (a) shows a portion of the vantage-point tree.
When Node 3 is explored, a new nearest neighbor candidate
with a distance value 0.55 is sent to the coordinator to be
integrated into the results table. (b) The left is the results ta-
ble before the insertion of the new candidate, while the right
is after. The first column of the results table indicates the
type of the entry: a for actual entries and e for estimate en-
tries. The second column represents the distance value and
the third denotes the ID of the entry’s associated VPT node,
if it is an estimate entry.

when only one polygon, i.e., the vantage-point polygon at the
root, has been explored.

There are three types of entries in the results table: null
entries, actual entries that store real polygons, and esti-
mate entries that store worst-case estimates from certain VPT
node. Because of the existence of estimate entries, the re-
placement of the results table becomes a little bit more com-
plicated. When a new nearest-neighbor candidate arrives
at the coordinator, it comes with its entry type, a distance
value3, the ID of the node which it is associated with and the
ID of the parent of its associated node. The coordinator re-
places an estimate entry whose associated node ID matches
the new candidate’s parent Node ID, if there is any. Other-
wise, it is appended to the end of the results table. Then the
entire results table gets re-sorted and only the top N results
are kept. This replacement mechanism ensures that all esti-
mate entries will be eventually instantiated to actual entries.
For example, in Figure 3, a new actual candidate that has a
distance value of 0.55, and is associated with VPT Node 3,
whose parent Node ID is 1, is to be inserted into the results
table. Because the fourth entry is an estimate entry in the re-
sults table whose associated Node ID is 1, the new candidate
will replace the fourth entry. Then the entire results table is
re-sorted to arrive at the table in Figure 3(b).

Note that the approach described above is a pessimistic
one. The computation starts with the worst case § and tries to
minimize it along the traversal process. The other possibility
would be to optimistically start with a small initial §. That
algorithm is described in the next section.

3This value can be either an actual distance value or a worst-case
estimate.

45 Optimistic Strategy

The optimistic algorithm requires multiple iterations of
tree traversal, each with a different §. Along the process, the
algorithm gradually increases 4 until it overshoots, and then
automatically switches to the pessimistic algorithm’s behav-
ior, with the value of § decreasing towards the ultimate value
of the N-th nearest neighbor’s distance from the query poly-
gon. In each iteration of the optimistic phase (4 increasing),
there are not enough polygons found during the search pro-
cess to populate all N entries of the results table, so the value
of § never decreases. When & overshoots, more than N near-
est neighbors can be found to populate the table and § will
start decreasing, as in the pessimistic algorithm.

The formula used in updating the value of § in each itera-
tion is

5¢+1 =41+ A

where

A; 1
Aiy1 = Ai+— (

- F.—E,).
2 \1+|F, - Ei|/E; )*Sgn( )

F; is the number of additional neighbors found in the i-th
iteration only, and E; the number of expected neighbors for
that iteration. The number of expected neighbors in any iter-
ation is set to half the remaining neighbors yet to be found.
Note that the above formula treats F; — E; as an error value
and tries to minimize it. It is also designed to guard against
overshoots due to large step changes when the error is great,
i.e., the fraction converges to +1 or —1 when the error goes
to —oo and oo, respectively. However, as will be shown later
in Section 5.5, the performance penalty associated with an
overshoot is not as high as originally expected. Therefore a
more aggressive update strategy should improve the perfor-
mance. The algorithm saves the results of the work already
by marking the nodes that are already explored in earlier it-
erations and save the intermediate results.

5 Performance Evaluation
5.1 Experiment Setup

The current implementation of PAMIS is built on top of
eleven Pentium-90MHz PCs. One of them (the coordinator)
has 32MB of memory, and the rest have 16MB. The pro-
cesses’ memory needs are modest enough so that they never
need to swap. The workstations are linked via a 100Mbit/s
Fast Ethernet and the operating system used is FreeBSD ver-
sion 2.1.0. The kernel is modified to provide low-latency
communications among workstations using the fast com-
munication facilities of LOCUST [4], a distributed shared
virtual memory system developed in our group. The test
database used consists of the outlines of the 52 characters
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Figure 4. The correlation between the ”goodness” of a
query and its execution time. The experiment is performed
on 10 processors with the best-first scheduling strategy to
search for the 50 nearest neighbors. The database node size
used is 4,096 bytes.

of the English alphabet (upper and lower case). Each letter
is represented by a 50-vertex polygon, and has 1000 polygo-
nal variations of it in the database, each perturbed by a ran-
dom amount from a hand-drawn template. The perturbation
method used changes the position of each vertex in the poly-
gon according to a uniform distribution within a square cen-
tered at the original vertex position. The side of the square is
2% of the minimum of the z— and y—spans of the original
polygon that represents the letter. For each result reported,
we measure the total wall-clock time on unloaded systems,
the time spent in computing the polygon distance function,
the time doing disk I/O, the time spent on communication
and the idle time. The difference between the total time and
the sum of (useful) computation, I/O and communication, is
the overhead time spend on maintaining the compute pro-
cess’ scheduler queue and determining the next node to ex-
plore according to the chosen scheduling strategy.

5.2 Goodness of Queries

query point compared to others in the database. The closer
the nearest neighbor looks, the faster it takes to locate it, be-
cause of the increased likelihood of using a smaller § during
the search process. Therefore, the smaller value the expres-
sion produces, the better a query is. Figure 4 shows that there
is a positive correlation between the ”goodness” expression
value of a query and its overall execution time. Because there
are other factors that affect the query performance, the pro-
posed expression is just a heuristic to predict how “good” a
query point is. For the rest of this section, unless otherwise
noted, we will report only performance results from good
queries, i.e., polygons that are small variations of polygons
in the database. Also, the node size that will be used will be
4,096 bytes, and the smallest-best first scheduling strategy
will be used.

5.3 Delay Measurements

In a traditional database system, I/O usually plays a sig-
nificant role in the overall execution time. As a result, it
is useful to consider both the number of polygons touched,
which corresponds to the computation time, and the number
of VPT nodes, which corresponds to the I/O time. Because
PAMIS is a parallel implementation, there are also commu-
nications delays and other overheads such as interrupt pro-
cessing. Table 1 shows the detailed breakdown of the overall
execution time under different numbers of processors. In the
multi-processor case, only the statistics of the slowest pro-
cess is shown. The Overhead column is computed by sub-
tracting the I/O, communications, and computation from the
total execution time. It shows that the turning function dis-
tance metric computation dominates the entire search time
in all cases. The time taken to compute the distance be-
tween two 50-vertex polygons on a 90MHz Pentium is ap-
proximately 53 msec. Despite the use of O(n?logn) algo-
rithm rather than the naive O(n?) one to compute the dis-
tance function, the problem remains CPU-bound rather than
I/0-bound.

) o No. of Max. No. of Total No. of Execution
Unlike traditional database systems that store only alpha- Proc’s | polygonstouched | polygonstouched | Time (sec)

numeric texts, the performance of an image query is signifi- T 19753 19753 11234
cantly affected by the ”goodness” of the query. Intuitively, a 3 6587 19755 379 6
query is good if the distance between it and its nearest neigh- 3 3972 19757 228. 5
bor in the database is small. An image index system such 7 7843 19759 6 5‘0
as PAMIS is meant to support "good” queries. A bad query :

. . . 10 1991 19762 115.7
sometimes will force the indexer to search almost every el-

ement of the database, thus defeating the whole purpose of

) . . Table 2. The number of polygons touched and VPT nodes
indexing. We use the expression

accessed during the search for the 50 nearest neighbors. The
node size is 4,096 bytes and the best-first scheduling strategy

D(q, N — thNearest_Neighbor
(g, g (9)) is used. The query polygon is the letter D.

AVGzeDa,tabase D(qa z)

to quantitatively measure the ”goodness” of a query. This

expression measures how the nearest neighbor looks to the Table 2 shows the relationship between the number of



Pessimistic Algorithm
Processors | 1/0 (%) | Commun. (%) | Idle(%) | Overhead (%) | Computation (%)
1 491 0.01 0.38 1.13 93.57
3 4.47 0.09 1.22 1.06 93.16
5 4.01 0.10 2.10 1.09 92.70
7 2.40 0.13 3.89 1.19 92.39
10 0.64 0.16 5.59 1.33 92.28
Optimistic Algorithm
Processors | 1/0 (%) | Commun. (%) | Idle(%) | Overhead (%) | Computation (%)
1 523 0.02 0.37 3.41 90.97
3 4.61 0.31 1.87 4.19 89.02
5 433 0.37 4.03 3.96 87.13
7 4.05 0.45 6.09 3.81 85.60
10 1.76 0.49 11.24 3.45 83.06

Table 1. Detailed breakdown of the search time for the first 50 nearest neighbors. Node size is 4,096 bytes and the best-first scheduling

strategy is used with both algorithms. The query polygon is letter D.

polygons touched, i.e., the number of distance metric func-
tions called during the search, and the overall execution time.
The second column is the maximum number of polygons
touched by any single processor, and correlates very well
with the overall execution time because it essentially repre-
sents the amount of work that the slowest process has to do.
The third column represents the total number of polygons
touched by all processors. The fact that the total number of
polygons touched is not very different in different processor
configurations means that most of the parallelism exploited
is not speculative. Because the maximum number of poly-
gons touched by any single processor is very close to the
total number of polygons touched divided by the number of
processors, there doesn’t seem to be any serious load imbal-
ance problem. This suggests that the cyclic interleaving data
layout strategy used in PAMIS is reasonably efficient. For a
good query that requires 50 nearest neighbors, the efficiency
of the PAMIS indexing scheme is better than 39%, i.e., it
touches fewer than 39% of the whole database to answer the

query.

Processors 1 3 7 10
Node size 2048 | 900.3 | 302.7 | 131.7 | 92.1
Node size 4096 | 1121.4 | 3754 | 166.0 | 1154

Table 3. The impact of the block size or VPT node size
of the database on the query performance. The experiment
is performed with the pessimistic algorithm and the best-first
scheduling strategy to search for the first 50 nearest neigh-
bors and the query polygon is the letter D. The results mea-
sure real time elapsed and are in seconds.
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Figure 5. The impact of the scheduling strategy used in
each compute process on the query performance for the pes-
simistic algorithm. The query asks for the 50 nearest neigh-
bors to the polygon representing letter D.

5.4 Impact of VPT Node Size

To investigate the performance impact of the structure of
the VP tree, we constructed two databases with VPT node
sizes of 2,048 and 4,096 bytes. Table 3 shows the query per-
formance decreases as the VPT node size increases. It seems
that because of the dominance of the distance computation
time, it is better to have a lean and deep tree rather than a
wide and shallow tree. The reduction in the amount of se-
quential search at the leaf nodes outweigh the increase in I/O
time due to smaller block sizes.

5.5 Impact of Scheduling Strategy

As mentioned in Section 4.3, there are four scheduling
strategies that the compute process uses in determining the
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Figure 6. Comparison of the pessimistic and the optimistic
algorithms under the smallest-best -first scheduling strategy.
The query polygon is the letter D.

service order of the entries in the request queue: best-case
ascending, worst-case ascending, deepest-then-smallest-best
and deepest-then-smallest-worst first. Figure 5 shows that
among the four, the best-case ascending scheduling strategy
performs significantly better than the other three in the case
of the pessimistic algorithm. Scheduling strategies do not
make much difference for the optimistic algorithm and the
results are thus omitted. It is worthwhile to note that in all
our experiments the numbers of polygons touched with the
pessimistic algorithm with best-case scheduling, and the op-
timistic algorithm are identical, and are in fact minimal. That
is, running the experiment with the initial § set to the ulti-
mate 50-th nearest neighbor distance would explore exactly
the same number of polygons. This result is surprising be-
cause it suggests that the pessimistic algorithm with the right
scheduling strategy can perform as good as the optimistic al-
gorithm.

A comparison between the pessimistic and optimistic al-
gorithms, under the best-case scheduling strategy, is shown
in 6. In all our experiments, the pessimistic algorithm
quickly lowers the value of § from infinity to a value very
close to the ultimate one. This fact explains why it explores
only the minimal number of polygons. The optimistic one
slowly increases 4 until it overshoots, and then quickly con-
verges to the ultimate value. It should be noted that the op-
timistic algorithm is always expected to perform better than
the pessimistic one in theory, barring the overhead of mul-
tiple iterations, because it starts its pessimistic-like behavior
from a ¢ value that is much smaller than infinity. In practice
though it is slightly slower than the pessimistic one because
of the additional per-iteration overhead and larger commu-
nication overhead. Therefore it would be advantageous to
execute as few iterations as possible, and an aggressive pol-
icy for increasing & between iterations, such as increasing
the expected percentage of nearest neighbors found in each
iteration, would be preferable.
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Figure 7. The search performance vs. the number of near-
est neighbors required by the query. The experiment is per-
formed with the best-first scheduling strategy with 10 com-
pute processors. The query polygon is letter D.
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Figure 8. The search performance vs. the number of com-
pute processors used. Both strategies are optimal. The slight
difference is due to the increased overhead of the optimistic
algorithm. The experiment is performed with the best-first
scheduling strategy. The query polygon is letter D.

5.6 Impact of Query Size

Because PAMIS is mainly used to prune undesirable im-
ages based on the query, users usually request more than
one nearest neighbor and browse through them to identify
the desirable ones. Figure 7 shows the relationship between
the execution time and the number of nearest neighbors re-
quired by the queries. As expected, the more nearest neigh-
bors required, the larger the overall execution time. This is
because the minimum § will increase when the number of
nearest neighbors requested increases. Moreover, the rate of
increase in the execution time slows down as the number of
nearest neighbors required increases. That is, the execution
time grows slower than linear to the number of nearest neigh-
bors requested. Again the difference between the optimistic
and pessimistic algorithms is mainly due to the per-iteration
overhead.



The VPT algorithm’s scaling performance under different
numbers of compute processors follows, as expected, the law
of diminishing returns. However, the performance does not
seem to have saturated at the 10-processor configuration, be-
cause the parallelization overhead is still relatively insignifi-
cant compared to the cost of distance function computation,
as shown in Table 1.

6 Conclusion

This paper describes the design, implementation, and
evaluation of a parallel index system called PAMIS, specif-
ically for 2D polygonal image shape databases. PAMIS em-
ploys the turning function representation to represent polyg-
onal image shapes, and uses the accumulative vantage-point
tree algorithm to index image shape databases. We have suc-
cessfully implemented the first PAMIS prototype on a net-
work of Pentium workstations, and carried out a compre-
hensive performance evaluation of the prototype against a
large-scale test database, which to our knowledge is the first
such experiments whose results have ever been reported in
the area of image shape database. We examine the perfor-
mance impacts of such architectural parameters as VPT node
size, scheduling strategies, and the detailed breakdown of
the query performance cost. Because of the dominance of
the polygon distance function computation, it is preferable
to make the VPT node size as small as possible in order to
have a lean and long VPT structure. We also found that the
best-case scheduling strategy performs the best among the
scheduling strategies considered, and the pessimistic algo-
rithm with best-case scheduling performs as well as the opti-
mistic one. The performance of the VPT algorithm scales
reasonably well with the number of processors, and load
imbalance doesn’t appear to cause performance problems.
Overall, the indexing efficiency of PAMIS is better than 39%
for a good query that request 50 nearest neighbors.

We are currently pursuing the notion of multi-resolution
indexing, where different degrees of approximations to the
image shapes are stored and indexed. Because distance func-
tion computation accounts for the dominant portion of the
query execution time, and the distance function computation
complexity depends on the number of vertices in the poly-
gons, it seems appealing to use low-resolution indices during
the early pruning stage, and only resort to high-resolution
indices when reaching the leaves of the search tree. Along
a similar line, we are also interested in experimenting with
spline-based rather than piecewise-linear representations to
approximate smooth shapes, hoping to reduce the number
of vertices needed and thus the distance computation time.
Also, we will experiment the VPT algorithm with other
feature extraction techniques such as color histograms or
wavelet coefficients.
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