
Essential Hidden VariablesAn Exploratory AlgorithmBrian Patterson and Dimitris MargaritisDepartment of Computer S
ien
eIowa State UniversityAmes, IA 50010 USAAbstra
t. In this paper we 
hara
terize an important 
lass of hiddenvariables in Bayesian networks, essential hidden variables, and 
ondu
ta study on identifying a sub
lass thereof. The identi�
ation of hiddenvariables is of great importan
e be
ause it holds the potential of help-ing in s
ienti�
 dis
overy and advan
ing human knowledge. This studyexhaustively identi�es all possible independen
e-based essential sets ofhidden variables in Bayesian networks of up to 8 attributes. Our studyveri�es the existen
e of families of distributions that 
annot be perfe
tlyrepresented by any Bayesian network that does not 
ontain at least one(essential) hidden variable, and demonstrates that all su
h networks, upto the size examined, 
ontain the same stru
tural pattern around thehidden variables.1 Introdu
tionSin
e the introdu
tion of Bayesian networks by Pearl (1), the automated dis
ov-ery and use of hidden variables (also 
alled latent variables) to represent unmea-sured or unmeasurable fa
tors has been an open problem. A Bayesian networkspe
i�es a probability distribution over attributes using a graph in whi
h ea
hattribute of the distribution is represented by a vertex and types of path in thegraph indi
ate in
uen
e (or the absen
e of in
uen
e) between attributes.Informally, hidden variables are hypothesized attributes represented as nodesin the graph about whi
h no experimental information is known. It has beenshown that Bayesian networks with hidden variables represent a larger 
lass ofprobabilisti
 distributions than ones represented by Bayesian networks withouthidden variables (2).The method des
ribed in this paper leads to a more 
on
rete understanding ofhow Bayesian networks with hidden variables 
an represent a wider variety ofdistributions than the theoreti
al Strati�ed Exponential Families/Curved Expo-nential Families (SEF/CEF) distin
tion (2; 3) and a more 
omplete result thanthe 
ommon 
ause 
hara
terization of 
ausal networks (4; 5) for the networksizes we examine. A method of dis
overing only sets of hidden variables thatenable this in
reased expressiveness would impa
t a variety of �elds. To under-stand why this is the 
ase, it is �rst important to understand how any hiddenvariable a�e
ts a Bayesian network.



1.1 Motivating ExampleConsider the 
ase of modeling four attributes of individuals who are high s
hoolstudents: extra-
urri
ular involvement (EC), 
lass attendan
e (CA), interest ins
hool (IS), and average tea
her rating for the tea
hers of the student (TR). Forsimpli
ity, assume that ea
h of these attributes 
an only be high or low.Let us say that a set of data 
olle
ted indi
ates the following about the distri-bution of individuals in this domain: on average, for a randomly sele
ted studentirrespe
tive of their 
lass attendan
e (CA), their level of involvement with extra-
urri
ular a
tivities (EC) does not in
uen
e (has no statisti
al dependen
e with)their interest in s
hool (IS). However, for a randomly 
hosen student with a highCA, he or she is more likely to be interested in s
hool (high IS) if involvedin many extra-
urri
ular a
tivities (high EC). For a randomly 
hosen studentwith low CA, he or she tends to not be interested in s
hool if involved in fewextra-
urri
ular a
tivities. Similarly, the data show no un
onditional dependen
ebetween TR and CA but the same type of a

umulating dependen
e when IS isin eviden
e.This situation may o

ur if level of involvement in extra-
urri
ular a
tivitiesnormally has no 
orrelation with the student's interest in s
hool and tea
herrating alone does not in
uen
e 
lass attendan
e. The data may indi
ate that,among those who attend 
lass more, it tends to be the 
ase that the studentis involved in extra-
urri
ular a
tivities if and only if they already have a highinterest in being in s
hool. However, among students who rarely attend 
lass,those who are bored by s
hool (low IS) also tend to not be motivated to takepart in extra-
urri
ular a
tivities (low EC). Similarly, the population of thosewith high IS might exhibit a 
orrelation between how good their tea
her is (TR)and whether they go to 
lass (CA).
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TRFig. 1. Two Bayesian networks representing the dis
ussed data (a) without and (b)with hidden variable AA, shown shaded.A possible Bayesian network that represents this situation is depi
ted in Fig-ure 1(a). While this network 
orre
tly represents �nding EC and TR (un
on-ditionally) unrelated to IS and CA (respe
tively), it does not represent the re-lationship between EC and IS given CA. This relationship 
an be representedby adding a hypotheti
al hidden variable we have labeled PI (\parental involve-ment") as shown in Figure 1(b). Even though PI 
annot be measured, the ex-isten
e of an attribute between 
lass attendan
e (CA) and interest in s
hool(IS) allows representation of the relationship between EC and IS given a high



CA. Intuitively, a high (low) EC and high (low) CA indi
ates a high (low) PIwhi
h, in turn, indi
ates that the student will enjoy (dislike) s
hool. Similarlyfor the relationship between TR and CA given IS. However, if we look at a se-le
tion of individuals for whi
h we do not know the value of CA, the EC ratingwill not in
uen
e IS in that group (see De�nition 2 for how we determine theseindependen
e relations from a Bayesian network stru
ture).We show in this paper that PI is a
tually an independen
e-based essentialhidden variable. This means that no network over the 4 measured attributesfEC;CA; IS; TRg 
an represent all the independen
e relationships des
ribed byour hypotheti
al data without the presen
e of a hidden variable. Spe
i�
ally,methods we examine give a way to verify that the stru
ture implied by our data
annot be represented by a Bayesian network of size 4. Probabilisti
 inferen
eusing the network in Figure 1(b) will be, on average, more true to the distri-bution than the network in Figure 1(a). We 
all this hidden variable essentialto representing the distribution with a Bayesian network be
ause its presen
eenables the representation of a property (in this 
ase, a set of independen
es) inthe underlying distribution stri
tly more a

urately, and no network without it
an a

omplish this.1.2 OverviewHidden variables are used in Bayesian networks for semanti
 reasons (e.g., Si-mon (6)) or for the 
ompa
tness of the resulting Bayesian network (e.g., (7)).1Arti�
ial intelligen
e (AI) resear
h has 
entered on the use of hidden variables tosimplify Bayesian networks while not ne
essarily altering the distribution thatthe network represents. In this paper, we will fo
us on �nding stru
turally mean-ingful hidden variables, an aim 
loser to the goal of semanti
 expressiveness.We begin with notation and de�nitions (Se
tion 2) and then present an ex-ploratory algorithm that sear
hes for independen
e-based essential hidden vari-ables (Se
tion 3.1). Sin
e the sear
h spa
e is exponential in the size of the net-work, we also present a number of optimizations to this algorithm (Se
tion 3.2).We 
on
lude with experimental results from this algorithm (Se
tion 4).Through a systemati
 examination of all networks up to size 8, we dis
overthat an independen
e-based essential hidden set must have an embedded \Wnetwork" edge set (De�nition 8) around ea
h hidden variable. Although we arenot able to produ
e any independen
e 
hara
terization of the relationships thatmust hold for an independen
e-based essential hidden variable to be present, ourresults for small networks may be useful in future work for establishing ne
essaryand suÆ
ient general 
onditions for essential hidden sets.1 Many believe these aims are the same (8). The argument is that hidden variables thatoptimize the 
ompa
tness of a network must take advantage of some 
hara
teristi
of the underlying probability distribution. Therefore, there must be some semanti
property in the underlying distribution that allows the hidden variable to have a
ompa
ting e�e
t.



2 Notation and De�nitionsWe assume that the reader is familiar with basi
 graph terminology (dire
tedand divergent simple paths, graph skeletons, 
liques, parents (Par(X)) and de-s
endants (Des
(X))) as well as the meaning of probabilisti
 independen
e ter-minology (
onditional independen
e and dependen
e). We will refer to attributesof the hypotheti
al data set as \attributes" rather than \variables" to emphasizethe fa
t that we are dis
ussing visible, measured attributes of a possible dataset. On the other hand, to emphasize that unmeasured attributes are not presentin the data set, all unmeasured entities will be referred to as \hidden variables"(see Se
tion 2.2 for further 
lari�
ation).We will use 
apital letters to indi
ate single attributes, lower 
ase letters toindi
ate values of attributes, and bold 
apital letters to indi
ate sets of attributes.X ??Y j Z will denote that a set X is independent Y given a value of Z, whiledependen
e amongst the same sets will be denoted as X 6?? Y j Z.Sometimes it is ne
essary to 
larify the 
ontext in whi
h an independen
e exists.For attributes X, Y , and Z, (X ?? Y j Z)P denotes that the independen
e re-lation X ?? Y j Z is re
e
ted in probability distribution P while (X ?? Y j Z)Gdenotes that it is re
e
ted in graphi
al model G.2.1 Bayesian Network FormalismDe�nition 1 (The Markov Assumption). The Markov Assumption for agraph G = (V;E) states that8X 2 V; fX ?? [V�Des
(X)℄ j Par(X)g:The Markov Assumption is 
riti
al for many proofs involvingBayesian networksthat the Markov Assumption holds.The following formal de�nitions related to Bayesian networks are adopted fromPearl (8):De�nition 2 (Independen
eMap (I-Map)). A graph G is an independen
emap of distribution P over attributes V if there is a one-to-one 
orresponden
ebetween the elements of V and the verti
es V of G su
h that for all disjointsubsets X,Y,Z of elements we have (X ?? Y j Z)G ) (X ??Y j Z)P .Intuitively, a graph is a I-Map if all independen
es represented in the graphare represented in the distribution.De�nition 3 (Minimal I-Map). A graph G is a minimal I-map of distributionP if no edges 
an be deleted from G without altering the property that G is anI-map of P .De�nition 4 (Bayesian Network). Given a probability distribution P on aset of attributes V, a dire
ted a
y
li
 graph (DAG) D is 
alled a Bayesian net-work of P if and only if D is a minimal I-map of P .



To derive the independen
es represented in Bayesian networks following theMarkov Assumption (as all Bayesian Networks in this paper do), we use thefollowing d-separation rules:De�nition 5 (D-separation Rules (8)). Given a dire
ted, a
y
li
 graph G= (V,E), for all disjoint sets X,Y,Z � V, (X ?? Y j Z)G if along every pathbetween a node in X and a node in Y there is a node W satisfying one of thefollowing two 
onditions: (1) W has 
onverging arrows (
alled a v-stru
ture atW between X and Y) and none of W or Des
(W) are in Z, or (2) W does nothave 
onverging arrows and W is in Z.One 
an verify, using the rules of d-separation, whether any given 
onditionalindependen
e relation that logi
ally follow from a Bayesian network stru
ture intime polynomial in the number of variables in the domain.We will be primarily interested in distributions that are faithful, as de�ned bySpirtes et al. (2000, p. 13):If all and only the 
onditional independen
e relations true in [the proba-bility distribution℄ P are entailed by the Markov [assumption℄ applied to[graph℄ G, we will say that P and G are faithful to one another. We will,moreover, say that a distribution P is faithful provided there is somedire
ted a
y
li
 graph to whi
h it is faithful. In the terminology of Pearl(8), if P and G are faithful to one another then G is a perfe
t map of Pand P is a DAG-Isomorph of G.As noted by many sour
es (e.g., (8)), many distributions are not faithful. Assu
h, one goal of a pro
edure that generates a Bayesian network 
ould be toget as 
lose as possible to a perfe
t Bayesian network for the input distribution.Often this is balan
ed against 
omputational eÆ
ien
y 
on
erns.2.2 Hidden VariablesDe�nition 6 (HiddenVariables).An attribute is said to be a hidden variableif nothing is known about the a
tual distribution of the attribute.Intuitively, hidden variables are an extreme form of missing data|hidden vari-ables have all of their data missing. As su
h, hidden variables 
an never appearin any statement about independen
e in the distribution.Note that the de�nition of a hidden variable is more general than just missingdata. It in
ludes situations where we also have no knowledge of the parametri
family of distributions that the hidden variable's distribution is a member of, aswell as when we also la
k knowledge about the values of the parameters of thefamily. The 
on
ept of a hidden variable therefore in
ludes attributes for whi
hwe do not even know the number of states that the variable 
an take.Figure 2 depi
ts an example where H is a hidden variable. Independen
esgenerated from the graph with d-separation would in
lude 1 ?? 4 j 2 and 1 ?? 3.
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4HFig. 2. H is labeled as an example hidden variable (attributes 1,2,3,4 are not hidden).It also indi
ates H ?? 4 j 2 and 2 ?? 3 j H but we ignore them be
ause theyreferen
e H dire
tly or have H in eviden
e.There are many perspe
tives on the use of sets of hidden variables in Bayesiannetworks. We will fo
us on hidden sets that enable representation of propertiesin the network not possible without a hidden set:De�nition 7 (Independen
e-BasedEssentialHidden Set and Variable).Consider any distribution P with n attributes U represented by a faithful Bay-esian network B0 (U0,E) where U0 = U S H for some set of hidden vari-ables H with 
ardinality k. If, for the set of independen
es IB0 implied by B0,8B 2 fn attribute legal Bayesian networks representing P with up to k�1 hiddenvariablesg and independen
es IB implied by network B, IB 6= IB0 , then H is anindependen
e-based essential hidden set. If k = 1, we 
all the hidden variablean independen
e-based essential hidden variable.Informally, an essential hidden set is a set of attributes that, when added to thevisible attributes of a Bayesian network, indu
es a set of properties that 
annotexist in any network with the same number of visible attributes and smallerhidden set. The independen
e-based essential hidden variable enables us to more
losely approa
h a perfe
t Bayesian network through 
orre
tly representing alarger number of independen
es from the distribution 
orre
tly.In Figure 2,H is an example of an independen
e-based essential hidden variable|no Bayesian network with 4 attributes 
an represent the independen
e and de-penden
e relationships between attributes 1 through 4. Establishing this is oneof the results of our algorithm (Se
tion 3.1). We will 
all the stru
ture of thenetwork in Figure 2 the W-network and de�ne its edge 
hara
teristi
s as follows:De�nition 8 (W-Network (Edge Chara
terization)). A W-network 
on-tains 4 measured attributes labeled as 1,2,3,4 and a hidden variable H. It satis�esthe following edge 
onstraints:(1) H ! 2 (4) 4! 3(2) H ! 3 (5) No edge from H to 1 or from 1 to H(3) 1! 2 (6) No edge from H to 4 or from 4 to HNote that a v-stru
ture exists on either side of H (H to 2 to 1 and H to 3 to 4).This implies that, if we repla
e the hidden variable with a single edge between2 and 3, the edge would have to point into both verti
es.



3 An Algorithm for Identifying Essential HiddenVariables3.1 Overview of the AlgorithmOur algorithm explores the spa
e of graphs for essential hidden sets based on theidea that a Bayesian network B with n� k attributes and k hidden variables issometimes more powerful than any Bayesian network with only n� k attributesand up to k�1 hidden variables. This happens when the essential hidden set willhave an impa
t on the n�k visible attributes ofB that 
annot be dupli
ated withfewer than k hidden variables. The spe
i�
 set of properties we are examiningfor evaluating the in
rease in representational power is the set of independen
erelations representable by a Bayesian network.Given as input a Bayesian network B with n verti
es, the algorithm pro
eeds asfollows: D-separation rules are applied to B to generate the set of independen
esIB. We then 
hoose a set of attributes H of size k to assume hidden by removingall independen
es in IB referring dire
tly to any H 2 H. While no independen
eis allowed to in
lude H, the d-separation rules may allow H to in
uen
e theindependen
es in B that refer to the remaining variables.For the example network in Figure 2, suppose that we hide H (k = 1). The listof independen
es not dire
tly referring to H = fHg is IB = f(1 ?? 3), (1 ?? 4),(1 ?? 3 j 4), (2 ?? 4), (1 ?? 4 j 2), (1 ?? 4 j 3), (2 ?? 4 j 1)g2.In the general 
ase, we then generate all Bayesian networks with n�k verti
esand up to k � 1 hidden variables (referred to informally as \smaller networks")and 
ompare the sets of independen
es represented by ea
h smaller network toIB. If the set of independen
es generated by some smaller network and IB mat
hexa
tly, we 
on
lude that H is not an essential hidden variable and try hidinga di�erent attribute as a possible hidden variable in B. If the two sets do notmat
h exa
tly, we 
ontinue to the next smaller network. If �nish examining allsmaller networks without �nding a network that generates exa
tly IB , then we
an 
on
lude (by exhaustion) that H is an independen
e-based essential hiddenvariable.
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1 Fig. 3. Example networks with 4 verti
es.Continuing our example, 
onsider the smaller networks over 4 attributes de-pi
ted in Figure 3. Amongst other di�eren
es between the independen
e sets of2 IfH is allowed to be dire
tly referen
ed as if it were visible, many more independen
eswould result from appli
ation of the d-separation rules.



ea
h of these two networks and the W-network (Figure 2), the network in Fig-ure 3(a) does not have independen
e (2 ?? 4) while the network of Figure 3(b) hasthe extra independen
e (2 ?? 3 j 4). Thus these two networks are non-mat
hesfor the distribution the W-network represents. The algorithm then 
ontinues toexamine the remaining networks over 4 attributes, trying to mat
h the indepen-den
es generated by ea
h network with 4 attributes to IB . In this example, IBis not generated by any network with 4 verti
es (and k = 0 hidden variables) soH is identi�ed as an independen
e-based essential hidden variable.The Basi
 Algorithm (Figure 4) presents the pseudo
ode that examines allnetworks with n verti
es for essential hidden sets of size k, for a given k and n.Basi
 Algorithm|Independen
e-based Essential HiddenSet Identifi
ationInput: n (total number of attributes possible), k (size of the hidden setto test)For (ea
h Bayesian network B over n verti
es V ) fL = ;I = The set of independen
es in BFor (ea
h attribute set H of size k, in the network B) fIH = I� any independen
es mentioning any H 2 HFor(j = 1 to k � 1) fFor (network B0 over n� k attributes and j hidden variables) fI 0 =The independen
es in B0If (IH == I 0)H not an essential hidden set, break and try next HggAdd H to LgOutput: (B;L)g Fig. 4. Basi
 Algorithm3.2 OptimizationsThe main problem with the Basi
 Algorithm is that it runs in exponentialtime|the number of possible dire
ted, a
y
li
 graphs over n variables f(n) is
hara
terized by the re
ursion f(n) = Pni=1(�1)i+1�ni�2i(n�i)f(n � i) (9) sof(n) 2 O(2n2�2) (the log of this fun
tion is graphed in Figure 5). We there-fore implemented a number of optimizations so that larger networks 
an bepro
essed more eÆ
iently. The major optimizations of graph isomorphism us-age, the DetermineFaithful algorithm, and other formal spe
i�
ations are



dis
ussed brie
y in this se
tion.3 After all the optimizations are explained, a re-vised version of the Basi
 Algorithm in
luding optimization detail is presented.Graph Isomorphism Equivalen
e Classes A fundamental alteration to theBasi
 Algorithm is to test only Bayesian networks that are not graph isomorphi
to any other Bayesian network that has already been examined. The Basi
 Algo-rithm tests several networks in the same graph isomorphism 
lass. For example,if attribute 0 was identi�ed to be an essential hidden variable in a 5 vertex graph(as in the W-network of Figure 2), attribute 1 would also be an essential hiddenvariable in the network where the identities of 0 and 1 are swit
hed, attribute2 when 0 and 2 are swit
hed, et
. To illustrate the di�eren
e in the numberof graphs that need to be tested, Figure 5 presents the logarithm of the totalnumber of dire
ted a
y
li
 graphs for ea
h vertex 
ount (from (9)) and also thelogarithm of the number of isomorphism 
lasses (from (11)).
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Size of the GraphFig. 5. Size of any dire
ted, a
y
li
 graph (DAG) against the log of the number ofpossible DAGs (solid line) and number of non-isomorphi
 possible DAGs (dotted line).By only testing one graph from ea
h isomorphism 
lass, the sear
h spa
e ofnetworks is greatly redu
ed. Unfortunately, this redu
tion in the sear
h spa
eis only helpful enough to enable sear
h of graphs with up to 8 verti
es. This isbe
ause, while the optimization results in an in
reasing redu
tion in the num-ber of networks tested as number of attributes in
reases, isomorphism still onlyresults in a small redu
tion in number of graphs|as we 
an see from Figure 5,the number of non-isomorphi
 graphs with n verti
es is approximately the total3 One optimization, testing for 
onne
ted 
omponents in the graph, was found toresult in no eÆ
ien
y gain (10) so it has been omitted from this dis
ussion. Anearly optimization, memorization of the independen
es of the smaller networks, isnot ne
essary if DetermineFaithful is used.



number of graphs with n � 1 verti
es (for small n). Also, the problem of eÆ-
iently enumerating all graph isomorphism 
lasses is expensive|it is suspe
tedto not be in P (12).Our modi�ed algorithm generates graph isomorphism 
lasses by reading graphswith 8 or fewer verti
es from �les generated by M
Kay's NAUTY toolkit (13).NAUTY (No AUTomorphisms, Yes?) is a program for 
omputing automorphismgroups of graphs and digraphs. One of its tools, geng (for \generate graphs") gen-erates non-isomorphi
 graph 
lass representatives very qui
kly by taking advan-tage of graph 
ategorizations used by mathemati
ians and the feasible methodsof generating non-isomorphi
 graphs within that 
lass. NAUTY is a
knowledgedas the fastest overall graph automorphism and isomorphism dete
tion toolkitwith tight run time bounds of O(n2) and 
(2n) for the best and worst 
ase(respe
tively) of pro
essing a graph with n verti
es (12).With the testing of only non-graph-isomorphi
 Bayesian networks, it be
amene
essary to be able to determine if two sets of independen
es are isomorphi
.Two sets of independen
es are isomorphi
 if the labeling used in the largernetwork and the smaller network di�er but the independen
es are the samewhen the labels of one set are sorted di�erently. Two sets of independen
es aretested for equivalen
e in the following way:1. Verify that ea
h set of independen
es has the same 
ardinality.2. See if the independen
es are exa
tly the same without altering any labels.3. Make sure the same number of attributes are in eviden
e for ea
h 
orrespond-ing independen
e. For example, if one independen
e set has 3 independen
esand ea
h independen
e has 2 attributes in eviden
e, the other independen
eset must have 3 independen
es with 2 attributes in eviden
e also.4. Re
ursively try every possible relabeling of verti
es in one independen
e set.Although the last step takes O(n!) time to verify there is no su
h relabeling,the probability that two non-mat
hing sets will make it to this step is low. Inpra
ti
e, this step rarely needs to be exe
uted and usually results in �nding amismat
h in far less than O(n!) time.An Algorithm to Test Faithfulness: DetermineFaithful Although littlework has been done to identify essential hidden variables per se in 
ausal net-work resear
h, some of the work in dis
overing 
ausality 
an be used in ourindependen
e-based essential hidden set veri�
ation algorithms.The original indu
tive 
ausation (IC) algorithm (14) assumes that the input at-tributes are 
ausally suÆ
ient. This means that there are no hidden variables me-diating in
uen
e between any of the measured attributes. The algorithm worksby looking at every pair of attributes A and B and determining if there is asubset of the other attributes that separates A and B (
alled a separating setof A and B). If not, by 
ausal suÆ
ien
y we know that either A 
auses B orB 
auses A so we 
an add an undire
ted edge. V-stru
tures are determined bylooking at non-adja
ent verti
es A and B and an additional attribute C su
hthat there is an edge from A to C and from B to C | if C does not render A



and B independent, the edges must be oriented so that there is a v-stru
turebetween A and B at C.After these two initial steps are 
ompleted, there are a variety of methods toattempt to orient the remaining edges so as not to 
reate a 
y
le or a new v-stru
ture (4). The output of the algorithm is a partially dire
ted a
y
li
 graph(PDAG)4 as, in some 
ases, it is not possible to use the restri
tions of avoiding
y
les and new v-stru
tures to 
onstrain the dire
tion of the edges enough toorient all the edges. The PC Algorithm (5) is a spe
i�
 approa
h to the IC al-gorithm, spe
ifying the order in whi
h we 
onsider separating sets and startingwith a 
omplete graph (rather than one without edges). We 
an input the in-dependen
es generated from the larger graph to the PC Algorithm to dis
overthe PDAG that represents the distribution in graphi
al form. Ea
h time thePC Algorithm queries for independen
e while dis
overing separating sets, theindependen
e holds if and only if the input independen
es do.However, sometimes the PDAG 
reated by the PC Algorithm 
annot be ori-ented into a Bayesian network without in
orre
tly adding or removing indepen-den
es from the input set. Meek (16) provides a method to iteratively generatea member of the family of Bayesian networks representing the independen
es ifthis is possible. If it is not possible, the algorithm will generate a network witha 
y
le or that implies in
orre
t independen
es ((17)). For example, dependingon whi
h v-stru
ture is dis
overed �rst, the independen
es represented by thehidden variable Bayesian network in Figure 2 will result in an edge betweenverti
es 2 and 3 oriented in an arbitrary dire
tion. However, this graph will notrepresent the same independen
es as the network in Figure 2.For k = 1, this algorithm provides a sound and 
omplete way to 
he
k whethera set of independen
es representing a distribution is faithful to a network given
ausal suÆ
ien
y and the independen
es of the distribution. For future referen
e,let us 
all this algorithm DetermineFaithful.When there is more than one hidden variable in the larger network (k > 1) andDetermineFaithful 
annot dis
over a B0, we must resort to 
he
king all graphisomorphism 
lasses of smaller networks over n�k attributes and k�1 or fewerhidden variables. This is be
ause DetermineFaithful is not 
omplete whenthere are hidden variables present | we 
annot use it to look at smaller networksthat in
lude hidden variables as there is no guarantee thatDetermineFaithfulwill just fail to generate the hidden variables in the 
orre
t pla
e(s). A

ording tothe theorems in Neapolitan (17) and our own testing, this pro
edure will resultin the same set of 
on
lusions as just 
he
king all graph isomorphism 
lassesover n� k attributes and k� 1 � � �0 hidden variables but is faster overall as thek = 0 
ase (using DetermineFaithful) is very fast.Formal Simpli�
ations Any Bayesian network with hidden variables 
an beproje
ted into a network where all hidden variables have no parents and exa
tlytwo 
hildren (18). This new Bayesian network is 
alled a proje
tion and is de�nedas follows:4 Also 
alled the essential graph in Gillispie (15).



De�nition 9 (Proje
tion (18)). The proje
tion of a Bayesian network Bover observed attributes Vo is any Bayesian network B0 where1. B0 represents the observed attributes Vo.2. Every hidden vertex in B0 has no parents.3. Every hidden vertex in B0 has exa
tly two 
hildren.4. B and B0 represent the same set of independen
es.De�ne a hidden path as one in whi
h every internal node of the dire
ted pathis hidden. Using this idea, the Proje
tion Algorithm given in Figure 6 takes asinput any Bayesian network with hidden variables B and returns a proje
tionB0 of that network.Proje
tion Algorithm (18)Input: Bayesian network BInitialize network B0 to in
lude the observed attributes and no edges.For (ea
h pair of attributes X and Y ) fIf ( there exists a dire
ted hidden path from X to Y in B)Add edge from X to Y in B0If ( there exists a divergent hidden path from X to Y in B) fAdd hidden variable vX;Y to B0Add edges from vX;Y to both X and Y in B0gg Fig. 6. Proje
tion AlgorithmSin
e the proje
tion algorithm works for any network with hidden variables,we 
an apply it to the 
urrent algorithm to save time. We 
an ignore proposedhidden variables if they have any parents | a

ording to proje
tion (18), therewill be another, equivalent network en
ountered in our sear
h without theseparents. Spe
i�
ally, the network in whi
h the edge to the parent of the hiddenvariable in the skipped 
ase is deleted and repla
ed with a dire
t edge from thatparent to ea
h 
hild of the hidden variable.All of the relevant optimizations above were in
orporated in the Optimized Al-gorithm (Figure 7). Note that we 
ould not in
orporate the limit of two 
hildrenper hidden variable | our algorithm limits the number of hidden variables andthe algorithm in Figure 6 relies on the 
reation of extra hidden variables.4 Experimental ResultsThe goal of the experiments was to dis
over what 
onditions will always holdaround essential hidden sets by analyzing the networks B and 
orresponding listL of essential hidden sets. If a set of edge or independen
e 
onstraints holds in theneighborhood of every hidden variable in every essential hidden set, future workmay be able to prove that these 
onstraints imply essential hidden sets. Other



Optimized Algorithm|Independen
e-based EssentialHidden Set Identifi
ationInput: n (total number of attributes possible), k (size of the hidden setto test)Seen = ;For (ea
h network B with n verti
es not isomorphi
 to a graph in Seen)f Add B to SeenI = the set of independen
es in BL = ;For (ea
h set H of parentless attributes of size k, in B) fIH = I� any independen
es mentioning any H 2 HCall DetermineFaithful with input IH and list of attributesIf ( DetermineFaithful was su

essful )H is not an essential hidden set, break and try another HgFor(j = 1 to k � 1) fSeen' = ;For (ea
h network B0 over n�k attributes and j hidden variablesnot isomorphi
 to a graph in Seen') fI 0 =The independen
es in B0If (IH == I 0)H not an essential hidden set, break and try next HAdd B0 to Seen'ggAdd H to LgOutput (B;L)g Fig. 7. Optimized Algorithmalgorithms may then be able to exploit these experimentally veri�ed 
onstraintsto �nd essential hidden sets through lo
al tests.The algorithms were implemented in Java 1.4.2 on a two-pro
essor 2.8 GhzXeon 
omputer with 2 Gb of RAM.4.1 Edge Test ExperimentsThe edge tests were done to determine whether there exists a 
ommon set of edge
onstraints that the edges of the graph around the essential hidden set 
onformto. It was found that the subset of the edge 
onstraints given in the de�nitionof the W-network (De�nition 8) held around all essential hidden variables|thismeans that the W-network is always found embedded in a network with anessential hidden variable and spe
i�
ally that the hidden variable was always atthe apex of the middle peak in the \W" of the W-network.



4.2 Independen
e Test ExperimentsSimilarly to the edge tests, various sets of independen
e 
onstraints were testedagainst ea
h network that 
ontains an essential hidden set. An example of aset of independen
e 
onstraints that we attempted to verify was (1 ?? 3 j 4),(1 6?? 3 j 2), (1 6?? f2; 4g), and (2 ?? 4 j 1). This example set of independen
esheld in both networks over 5 verti
es that had a single essential hidden variable(see Figure 9). However, neither that set nor any subset of those independen
esheld in all networks with 6 or more verti
es with an essential hidden variable. Noset of independen
e 
onstraints that we tried held in networks over 6 or moreverti
es. This indi
ates that it may not be possible to 
hara
terize essentialhidden variables through independen
es among the visible attributes only.4.3 Summary and ExamplesTable 1. Quantitative Information about the Algorithm RunsSize Alg # HVs Num Nets Found HVs Total Minutes4 B 1 543 0 0.00054 O 1 32 0 0.00134 O 2 32 0 0.00064 O 3 32 0 0.00035 B 1 29280 100 0.05765 O 1 303 2 0.00355 O 2 303 0 0.00125 O 3 303 0 0.00055 O 4 303 0 0.00046 B 1 > 54161 > 2185 > 21606 O 1 5985 107 0.21416 O 2 5985 2 0.06266 O 3 5985 0 0.00986 O 4 5985 0 0.00366 O 5 5985 0 0.00267 B 1 > 800 > 67 > 21607 O 1 243,669 8191 32.11517 O 2 243,669 184 49.35497 O 3 243,669 0 1.53907 O 4 243,669 0 0.25957 O 5 243,669 0 0.14097 O 6 243,669 0 0.15378 B 1 N/A N/A > 21608 O 1 > 2; 927; 649 > 296; 415 > 21608 O 2 > 11; 510 > 74 > 21608 O 3 > 558; 400 > 21 > 21608 O 4 20; 286; 026 1 16.47018 O 5 20; 286; 026 0 23.33068 O 6 20; 286; 026 0 19.64348 O 7 20; 286; 026 0 15.6430



Table 1 displays the number of all Bayesian networks with independen
e-basedessential hidden variables as well as average run times for Basi
 (B) and Op-timized (O) Algorithms (see Figures 4 and 7). Tests for more than one hiddenvariable were only run with the Optimized Algorithm. The size of the hiddenset tested k is indi
ated in the \# HVs" 
olumn.The \Num Nets" 
olumn gives the number of Bayesian networks that ea
halgorithm examined while \Found HVs" refers to the number of graphs that
ontain essential hidden sets. Thus, for networks with 6 verti
es, the OptimizedAlgorithm found 107 of 5,985 isomorphism-equivalent 
lasses of graphs 
ontainat least one essential hidden set of size 1. Some algorithm runs 
ould not be
ompleted in 36 hours|this is indi
ated by the \>" notation that more networksexist. There are more essential hidden sets found using the Basi
 Algorithm thanthe Optimized Algorithm be
ause the Basi
 Algorithm iterates over networks,while the Optimized Algorithm iterates over independen
e equivalen
e 
lasses,so the same essential hidden variables are found multiple times using the Basi
Algorithm under di�erent node labelings.Total time for ea
h algorithm run is given in the last 
olumn of Table 1.Note that the results for in
omplete analysis are biased towards smaller, sim-pler graphs on average (as graphs with fewer edges are tested �rst) so the timere
orded are slightly lower than expe
ted. Performan
e on graphs with 9 or moreverti
es is not reported as preparation to pro
ess these graphs took longer thanthe time allowed (36 hours). Test times for the Optimized Algorithm does nota

ount for the time spent to generate the isomorphism 
lasses of graphs|thiswas a total of 0.08 se
onds for 6 verti
es, 2.2 se
onds for 7 verti
es, and 260se
onds for 8 verti
es (for smaller graphs, time was negligible and, for graphslarger than size 8, it took over a day).One result of interest is the average number of Bayesian networks with essentialhidden sets in ea
h run of the optimized algorithm (that is, for ea
h possibleessential hidden set size). This gives us an estimate of the average probabilityof en
ountering unique networks that 
ontain essential hidden sets | if thisaverage is high, it is 
ommon for a network stru
ture with a given number ofattributes and hidden set size to have an essential hidden set.A graph of the average number of Bayesian network with essential hiddenvariables per Bayesian network vs. k is given in Figure 8. As the number ofattributes plus hidden variables (n) in
reases and the number of hidden variablesin the set (k) de
reases, the ratio of networks with essential hidden sets to totalnetworks in
reases. This leads to the supposition that, for n > 8, the probabilityof a given network stru
ture 
ontaining an essential hidden set of any size kwill in
rease with n. This in turn hints that a fundamental understanding of theimpa
t of essential hidden sets be
omes more 
ru
ial as we in
rease the numberof attributes.Lastly, some examples of graphs over 5, 6, 7, and 8 verti
es that were identi�edto 
ontain essential hidden sets are given in Figure 9.



Fig. 8. Number of hidden variables tested for (k) vs. the average number of Bayesiannetwork with essential hidden variables per Bayesian network examined of a given size(optimized algorithm only). Solid line and dots indi
ate size 8, dashed line and squaresindi
ate size 7, dotted line and 
ir
les indi
ate size 6, and the single point indi
atessize 5 ratios.5 Con
lusions and Future Resear
hOur experiments show that networks of the sizes examined all 
ontain the edgespresent in a W-network (De�nition 8) embedded around the hidden variable.Pre
isely all the edges that are and are not allowed and what this implies for theindependen
es between measured attributes has yet to be determined. However,if examining all the networks of a 
ertain vertex 
ount is required, signi�
antoptimizations will be needed to answer these questions within a reasonable timeframe.We had originally hoped to 
reate an intelligent sear
h algorithm of the spa
eof networks but the d-separation rules used to generate independen
es whenhidden variables are present do not allow this method to be more eÆ
ient thana 
omplete sear
h of the spa
e. By examining a subset of possible Bayesian net-works (that is, pla
ing more restri
tions on where hidden variables may appearor what overall distributions we are 
on
erned about), more general 
on
lusionsabout that subset 
an be drawn. If approximation is a

eptable, we 
ould drawa sample of networks and draw tentative 
on
lusions from that sample.An algorithm 
ould be used to analyze the results of our algorithm and gener-ate 
onstraints similar to the independen
e or edge test 
onstraints. This 
ouldilluminate whether an independen
e-based 
hara
terization of essential hiddenvariables exists and whether there is a \universal" edge-based 
hara
terizationof essential hidden sets. These 
onstraints 
ould, in turn, be used to generate
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Fig. 9. Examples of Bayesian networks with essential hidden sets over 5 through 8attributes.



tests for dete
ting whether an essential hidden set is present in attribute setsrather than dedu
ing whi
h variables are in a position to be essential amongstthe attributes.Finally, in our algorithms, we examined only the identi�
ation of a type ofessential hidden set through independen
e 
onstraints|it is possible that otheressential hidden sets 
an be determined using other spe
i�
ation methods. Pearland Tian (19) have made progress in this regard through the proposal of fun
-tional 
onstraints existing around some essential hidden variables. It would alsobe interesting to see what algorithms are optimal for dis
overing these othertypes of hidden sets.A
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k Lutz and Daniel Ashlo
k for theirsuggestions on improvement when this paper was part of a Masters thesis. Hewould also like to thank the Iowa State Department of Computer S
ien
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