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Abstract. In this paper we characterize an important class of hidden
variables in Bayesian networks, essential hidden variables, and conduct
a study on identifying a subclass thereof. The identification of hidden
variables is of great importance because it holds the potential of help-
ing in scientific discovery and advancing human knowledge. This study
exhaustively identifies all possible independence-based essential sets of
hidden variables in Bayesian networks of up to 8 attributes. Our study
verifies the existence of families of distributions that cannot be perfectly
represented by any Bayesian network that does not contain at least one
(essential) hidden variable, and demonstrates that all such networks, up
to the size examined, contain the same structural pattern around the
hidden variables.

1 Introduction

Since the introduction of Bayesian networks by Pearl (1), the automated discov-
ery and use of hidden variables (also called latent variables) to represent unmea-
sured or unmeasurable factors has been an open problem. A Bayesian network
specifies a probability distribution over attributes using a graph in which each
attribute of the distribution 1s represented by a vertex and types of path in the
graph indicate influence (or the absence of influence) hetween attributes.

Informally, hidden variables are hypothesized attributes represented as nodes
in the graph about which no experimental information 1s known. Tt has been
shown that Bayesian networks with hidden variables represent a larger class of
probabilistic distributions than ones represented by Bayesian networks without
hidden variables (2).

The method described in this paper leads to a more concrete understanding of
how Bayesian networks with hidden variables can represent a wider variety of
distributions than the theoretical Stratified Exponential Families/Curved Expo-
nential Families (SEF/CEF) distinction (2; 3) and a more complete result than
the common cause characterization of causal networks (4; 5) for the network
sizes we examine. A method of discovering only sets of hidden variables that
enable this increased expressiveness would impact a variety of fields. To under-
stand why this is the case, it is first important to understand how any hidden
variable affects a Bayesian network.



1.1 Motivating Example

Consider the case of modeling four attributes of individuals who are high school
students: extra-curricular involvement (EC), class attendance (CA), interest in
school (1S), and average teacher rating for the teachers of the student (TR). For
simplicity, assume that each of these attributes can only be high or low.

Let us say that a set of data collected indicates the following about the distri-
bution of individuals in this domain: on average, for a randomly selected student
irrespective of their class attendance (CA), their level of involvement with extra-
curricular activities (EC) does not influence (has no statistical dependence with)
their interest in school (IS). However, for a randomly chosen student with a high
CA| he or she is more likely to be interested in school (high 1S) if involved
in many extra-curricular activities (high EC). For a randomly chosen student,
with low CA, he or she tends to not be interested in school if involved in few
extra-curricular activities. Similarly, the data show no unconditional dependence
between TR, and CA but the same type of accumulating dependence when 1S is
in evidence.

This situation may occur if level of involvement in extra-curricular activities
normally has no correlation with the student’s interest in school and teacher
rating alone does not influence class attendance. The data may indicate that,
among those who attend class more, it tends to be the case that the student
is involved in extra-curricular activities if and only if they already have a high
interest 1n being in school. However, among students who rarely attend class,
those who are bored by school (low TS) also tend to not he motivated to take
part in extra-curricular activities (low EC). Similarly, the population of those
with high TS might exhibit a correlation between how good their teacher is (TR)
and whether they go to class (CA).
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Fig. 1. Two Bayesian networks representing the discussed data (a) without and (b)
with hidden variable AA,| shown shaded.

A possible Bayesian network that represents this situation is depicted in Fig-
ure 1(a). While this network correctly represents finding EC and TR, (uncon-
ditionally) unrelated to TS and CA (respectively), it does not represent the re-
lationship between EC and IS given CA. This relationship can be represented
by adding a hypothetical hidden variable we have labeled PT (“parental involve-
ment”) as shown in Figure 1(b). Even though PT cannot be measured, the ex-
istence of an attribute between class attendance (CA) and interest in school
(TS) allows representation of the relationship between EC and TS given a high



CA. Tntuitively, a high (low) EC and high (low) CA indicates a high (low) PT
which, in turn, indicates that the student will enjoy (dislike) school. Similarly
for the relationship between TR and CA given 1S. However, if we look at a se-
lection of individuals for which we do not know the value of CA| the EC rating
will not influence TS in that group (see Definition 2 for how we determine these
independence relations from a Bayesian network structure).

We show in this paper that PI is actually an independence-based essential
hidden wariable. This means that no network over the 4 measured attributes
{EC,CA, IS, TR} can represent all the independence relationships described by
our hypothetical data without the presence of a hidden variable. Specifically,
methods we examine give a way to verify that the structure implied by our data
cannot, be represented by a Bayesian network of size 4. Probabilistic inference
using the network in Figure 1(b) will be, on average, more true to the distri-
bution than the network in Figure 1(a). We call this hidden variable essential
to representing the distribution with a Bayesian network because its presence
enables the representation of a property (in this case, a set of independences) in
the underlying distribution strictly more accurately, and no network without it
can accomplish this.

1.2 Overview

Hidden variables are used in Bayesian networks for semantic reasons (e.g., Si-
mon (6)) or for the compactness of the resulting Bayesian network (e.g., (7)).'
Artificial intelligence (AT) research has centered on the use of hidden variables to
simplify Bayesian networks while not necessarily altering the distribution that
the network represents. In this paper, we will focus on finding structurally mean-
ingful hidden variables, an aim closer to the goal of semantic expressiveness.

We begin with notation and definitions (Section 2) and then present an ex-
ploratory algorithm that searches for independence-based essential hidden vari-
ables (Section 3.1). Since the search space is exponential in the size of the net-
work, we also present a number of optimizations to this algorithm (Section 3.2).
We conclude with experimental results from this algorithm (Section 4).

Through a systematic examination of all networks up to size 8, we discover
that an independence-based essential hidden set must have an embedded “W
network” edge set (Definition 8) around each hidden variable. Although we are
not able to produce any independence characterization of the relationships that
must hold for an independence-based essential hidden variable to be present, our
results for small networks may be useful in future work for establishing necessary
and sufficient general conditions for essential hidden sets.

! Many believe these aims are the same (8). The argument is that hidden variables that
optimize the compactness of a network must take advantage of some characteristic
of the underlying probability distribution. Therefore, there must be some semantic
property in the underlying distribution that allows the hidden variable to have a
compacting effect.



2 Notation and Definitions

We assume that the reader is familiar with basic graph terminology (directed
and divergent, simple paths, graph skeletons, cliques, parents (Par(X)) and de-
scendants (Dese(X))) as well as the meaning of probabilistic independence ter-
minology (conditional independence and dependence). We will refer to attributes
of the hypothetical data set as “attributes” rather than “variables” to emphasize
the fact that we are discussing visible, measured attributes of a possible data
set. On the other hand, to emphasize that unmeasured attributes are not present
in the data set, all unmeasured entities will be referred to as “hidden variables”
(see Section 2.2 for further clarification).

We will use capital letters to indicate single attributes, lower case letters to
indicate values of attributes, and bold capital letters to indicate sets of attributes.
X L Y| Z will denote that a set X is independent Y given a value of Z, while
dependence amongst the same sets will be denoted as X [l Y| Z.

Sometimes it is necessary to clarify the context in which an independence exists.
For attributes X, YV, and 7, (X 1LY | Z)p denotes that the independence re-
lation X UL YV | 7 is reflected in probability distribution P while (X 1LY | 7)q
denotes that 1t is reflected 1n graphical model .

2.1 Bayesian Network Formalism

Definition 1 (The Markov Assumption). The Markov Assumption for a
graph G = (V, E) states that

VX € V, {X L[V — Dese(X)] | Par(X)}.

The Markov Assumption is critical for many proofs involving Bayesian networks
that the Markov Assumption holds.

The following formal definitions related to Bayesian networks are adopted from
Pearl (8):

Definition 2 (Independence Map (I-Map)). A graph (¢ is an independence
map of distribution P over attributes V if there is a one-to-one correspondence
between the elements of V and the vertices V of G such that for all disjoint
subsets X,Y,Z of elements we have (X 1L Y| Z)g = (X WL Y| Z)p.

Intuitively, a graph is a I-Map if all independences represented in the graph
are represented in the distribution.

Definition 3 (Minimal I-Map). A graph (G is @ minimal I-map of distribution
P if no edges can be deleted from G without altering the property that (G is an
I-map of P.

Definition 4 (Bayesian Network). Given a probability distribution P on a
set of attributes V, a directed acyclic graph (DAG) D is called a Bayesian net-
work of P if and only if D is a minimal I-map of P.



To derive the independences represented in Bayesian networks following the
Markov Assumption (as all Bayesian Networks in this paper do), we use the
following d-separation rules:

Definition 5 (D-separation Rules (8)). Given a directed, acyclic graph G
= (V,E), for all disjoint sets X, Y, Z C V, (X 1L Y| Z)¢ if along every path
between a node in X and a node in Y there 1s a node W satisfying one of the
following two conditions: (1) W has converging arrows (called a v-structure at
W between X and Y) and none of W or Desc(W) are in Z, or (2) W does not

have converging arrows and W is in Z.

One can verify, using the rules of d-separation, whether any given conditional
independence relation that logically follow from a Bayesian network structure in
time polynomial in the number of variables in the domain.

We will be primarily interested in distributions that are faithful, as defined by
Spirtes et al. (2000, p. 13):

If all and only the conditional independence relations true in [the proba-
bility distribution] P are entailed by the Markov [assumption] applied to
[graph] (7, we will say that P and (G are faithful to one another. We will,
moreover, say that a distribution P is faithful provided there i1s some
directed acyclic graph to which it is faithful. In the terminology of Pearl
(8), if P and G are faithful to one another then (G is a perfect map of P
and P s a DAG-Isomorph of 5.

As noted by many sources (e.g., (8)), many distributions are not faithful. As
such, one goal of a procedure that generates a Bayesian network could be to
get as close as possible to a perfect Bayesian network for the input distribution.
Often this is balanced against computational efficiency concerns.

2.2 Hidden Variables

Definition 6 (Hidden Variables). An attribute is said to be a hidden variable
if nothing 1s known about the actual distribution of the attribute.

Intuitively, hidden variables are an extreme form of missing data  hidden vari-
ables have all of their data missing. As such, hidden variables can never appear
in any statement about independence in the distribution.

Note that the definition of a hidden variable is more general than just missing
data. Tt includes situations where we also have no knowledge of the parametric
family of distributions that the hidden variable’s distribution is a member of | as
well as when we also lack knowledge about the values of the parameters of the
family. The concept of a hidden variable therefore includes attributes for which
we do not even know the number of states that the variable can take.

Figure 2 depicts an example where H is a hidden variable. Independences
generated from the graph with d-separation would include 1 1.4 |2 and 1 1L 3.



Fig.2. H is labeled as an example hidden variable (attributes 1,2,3,4 are not hidden).

Tt also indicates H 1L 4|2 and 2 1L 3| H but we ignore them because they
reference H directly or have H in evidence.

There are many perspectives on the use of sets of hidden variables in Bayesian
networks. We will focus on hidden sets that enable representation of properties
in the network not possible without a hidden set:

Definition 7 (Independence-Based Essential Hidden Set and Variable).
Consider any distribution P with n attributes U represented by a faithful Bay-
esian network B' (U ,E)} where U = U |J H for some set of hidden wvari-
ables H with cardinality k. If, for the set of independences Ig: implied by B’,
VB € {n attribute legal Bayesian networks representing P with up to k—1 hidden
variables} and independences Ig implied by network B, Ip # Ig/, then H is an
independence-based essential hidden set. If k = 1, we call the hidden variable
an independence-based essential hidden variable.

Informally, an essential hidden set is a set of attributes that, when added to the
visible attributes of a Bayesian network, induces a set, of properties that cannot
exist in any network with the same number of visible attributes and smaller
hidden set. The independence-based essential hidden variable enables us to more
closely approach a perfect Bayesian network through correctly representing a
larger number of independences from the distribution correctly.

In Figure 2, H is an example of an independence-based essential hidden variable
no Bayesian network with 4 attributes can represent the independence and de-
pendence relationships between attributes 1 through 4. Establishing this is one
of the results of our algorithm (Section 3.1). We will call the structure of the
network in Figure 2 the W-network and define its edge characteristics as follows:

Definition 8 (W-Network (Edge Characterization)). A W-network con-
tains 4 measured attributes labeled as 1,2,3,4 and a hidden variable H . Tt satisfies
the following edge constraints:

(1) H—2 (4)4—3
(2) H—3 (5) No edge from H to 1 or from 1 to H
(3)1 =2 (6) No edge from H to f or from J to H

Note that a v-structure exists on either side of H (H to 2to 1 and H to 3 to 4).
This implies that, if we replace the hidden variable with a single edge between
2 and 3, the edge would have to point into both vertices.



3 An Algorithm for Identifying Essential Hidden
Variables

3.1 Overview of the Algorithm

Our algorithm explores the space of graphs for essential hidden sets based on the
idea that a Bayesian network B with n — k attributes and k hidden variables is
sometimes more powerful than any Bayesian network with only n — k attributes
and up to k—1 hidden variables. This happens when the essential hidden set will
have an impact on the n—k visible attributes of B that cannot be duplicated with
fewer than & hidden variables. The specific set of properties we are examining
for evaluating the increase in representational power i1s the set of independence
relations representable by a Bayesian network.

(ziven as input a Bayesian network B with n vertices, the algorithm proceeds as
follows: D-separation rules are applied to B to generate the set of independences
I'p. We then choose a set of attributes H of size k to assume hidden by removing
all independences in Ig referring directly to any H € H. While no independence
is allowed to include H, the d-separation rules may allow H to influence the
independences in B that refer to the remaining variables.

For the example network in Figure 2, suppose that we hide H (k = 1). The list
of independences not directly referring to H = {H}is Tg = {(1 L 3), (1 1L 4),
(1113 ]4), (211 4), (1 1L4]2), (1 1L 4]3), (2 1L4]1)}2%

In the general case, we then generate all Bayesian networks with n — k vertices
and up to k — 1 hidden variables (referred to informally as “smaller networks”)

and compare the sets of independences represented by each smaller network to
I'n. If the set of independences generated by some smaller network and /g match
exactly, we conclude that H is not an essential hidden variable and try hiding
a different attribute as a possible hidden variable in B. If the two sets do not
match exactly, we continue to the next smaller network. If finish examining all
smaller networks without finding a network that generates exactly g, then we
can conclude (by exhaustion) that H is an independence-based essential hidden
variable.

@ ()

Fig. 8. FExample networks with 4 vertices.

Continuing our example, consider the smaller networks over 4 attributes de-
picted in Figure 3. Amongst other differences between the independence sets of

2 Tf H is allowed to be directly referenced as if it were visible, many more independences
would result from application of the d-separation rules.



each of these two networks and the W-network (Figure 2); the network in Fig-
ure 3(a) does not, have independence (2 L 4) while the network of Figure 3(b) has
the extra independence (2 1L 3
for the distribution the W-network represents. The algorithm then continues to
examine the remaining networks over 4 attributes, trying to match the indepen-

4). Thus these two networks are non-matches

dences generated by each network with 4 attributes to Ig. In this example, /g
is not generated by any network with 4 vertices (and k& = 0 hidden variables) so
H 1s identified as an independence-based essential hidden variable.

The Basic Algorithm (Figure 4) presents the pseudocode that examines all
networks with n vertices for essential hidden sets of size k, for a given k and n.

BASIC ATL.GORITHM INDEPENDENCE-BASED ESSENTIATL HIDDEN
SET IDENTIFICATION

Input: n (TOTAL, NUMBER OF ATTRIBUTES POSSIBLE), k (S1ZF OF THE HIDDEN SET
TO TEST)
FOR (EACH BAYRSIAN NETWORK B OVER n VERTICES V') {
L=0
I = THE SET OF INDEPENDENCES TN B
FOR (EACH ATTRIBUTE SET H OF SIZE k, IN THE NETWORK B) {
Iy = I— ANY INDEPENDENCES MENTIONING ANY H € H
For(j=1T0 k—1) {
For (NETWORK B’ OVER n —k ATTRIBUTES AND j HIDDEN VARTABLES) {
7" =THE INDEPENDENCES IN B’
P (Iyg ==1T)
H NOT AN ESSENTIAL HIDDEN SET, BREAK AND TRY NEXT H
}
}
Apn HTo L

}
Output: (B, 1)

Fig. 4. Basic Algorithm

3.2 Optimizations

The main problem with the Basic Algorithm is that it runs in exponential
time the number of possible directed, acyclic graphs over n variables f(n) is
characterized by the recursion f(n) = Yo (—1)"* (?’)Qi("’*i).f(n — 1) (9) so
f(n) € ()(2"’272) (the log of this function is graphed in Figure 5). We there-
fore implemented a number of optimizations so that larger networks can be
processed more efficiently. The major optimizations of graph isomorphism us-

age, the DETERMINEFATTHFUL algorithm, and other formal specifications are



discussed briefly in this section.® After all the optimizations are explained, a re-
vised version of the Basic Algorithm including optimization detail is presented.

Graph Isomorphism Equivalence Classes A fundamental alteration to the
Basic Algorithm is to test only Bayesian networks that are not graph isomorphic
to any other Bayesian network that has already been examined. The Basic Algo-
rithm tests several networks in the same graph isomorphism class. For example,
if attribute 0 was identified to be an essential hidden varable in a 5 vertex graph
(as in the W-network of Figure 2), attribute 1 would also be an essential hidden
variable in the network where the identities of () and 1 are switched, attribute
2 when 0 and 2 are switched, etc. To illustrate the difference in the number
of graphs that need to be tested, Figure 5 presents the logarithm of the total
number of directed acyclic graphs for each vertex count (from (9)) and also the
logarithm of the number of isomorphism classes (from (11)).
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Fig.5. Size of any directed, acyclic graph (DAG) against the log of the number of
possible DAGs (solid line) and number of non-isomorphic possible DAGs (dotted line).

By only testing one graph from each isomorphism class, the search space of
networks is greatly reduced. Unfortunately, this reduction in the search space
is only helpful enough to enable search of graphs with up to 8 vertices. This is
because, while the optimization results in an increasing reduction in the num-
ber of networks tested as number of attributes increases, isomorphism still only
results in a small reduction in number of graphs as we can see from Figure 5,
the number of non-isomorphic graphs with n vertices is approximately the total

* One optimization, testing for conmected components in the graph, was found to
result in no efficiency gain (10) so it has been omitted from this discussion. An
early optimization, memorization of the independences of the smaller networks, is
not necessary if DETERMINEFATTHFUL is used.



number of graphs with n — 1 vertices (for small n). Also, the problem of effi-
ciently enumerating all graph isomorphism classes is expensive it is suspected
to not be in P (12).

Our modified algorithm generates graph isomorphism classes by reading graphs
with 8 or fewer vertices from files generated by McKay’s NAUTY toolkit (13).
NAUTY (No AUTomorphisms, Yes?) is a program for computing automorphism
groups of graphs and digraphs. One of its tools, geng (for “generate graphs”) gen-
erates non-isomorphic graph class representatives very quickly by taking advan-
tage of graph categorizations used by mathematicians and the feasible methods
of generating non-isomorphic graphs within that class. NAUTY is acknowledged

with tight run time bounds of O(n?) and §2(27) for the best and worst case
(respectively) of processing a graph with n vertices (12).

With the testing of only non-graph-isomorphic Bayesian networks, 1t became
necessary to be able to determine if two sets of independences are isomorphic.
Two sets of independences are isomorphic if the labeling used in the larger
network and the smaller network differ but the independences are the same
when the labels of one set are sorted differently. Two sets of independences are
tested for equivalence in the following way:

1. Verify that each set of independences has the same cardinality.

2. See 1f the independences are exactly the same without altering any labels.

3. Make sure the same number of attributes are in evidence for each correspond-
ing independence. For example, if one independence set has 3 independences
and each independence has 2 attributes in evidence, the other independence
set, must have 3 independences with 2 attributes in evidence also.

4. Recursively try every possible relabeling of vertices in one independence set.

Although the last step takes O(n!) time to verify there is no such relabeling,
the probability that two non-matching sets will make it to this step is low. In
practice, this step rarely needs to be executed and usually results in finding a
mismatch in far less than O(n!) time.

An Algorithm to Test Faithfulness: DetermineFaithful Although little
work has been done to identify essential hidden variables per se in causal net-
work research, some of the work in discovering causality can be used in our
independence-based essential hidden set verification algorithms.

The original inductive causation (TC) algorithm (14) assumes that the input at-
tributes are causally sufficient. This means that there are no hidden variables me-
diating influence between any of the measured attributes. The algorithm works
by looking at every pair of attributes A and B and determining if there 1s a
subset of the other attributes that separates A and B (called a separating set
of A and B). Tf not, by causal sufficiency we know that either A causes B or
B causes A so we can add an undirected edge. V-structures are determined by
looking at non-adjacent vertices A and B and an additional attribute ' such
that there 13 an edge from A to C' and from B to C'  if C' does not render A



and B independent, the edges must be oriented so that there is a v-structure
between A and B at (.

After these two initial steps are completed, there are a variety of methods to
attempt to orient the remaining edges so as not to create a cycle or a new v-
structure (4). The output of the algorithm is a partially directed acyclic graph
(PDAG)* as, in some cases, it is not possible to use the restrictions of avoiding
cycles and new v-structures to constrain the direction of the edges enough to
orient all the edges. The PC Algorithm (5) is a specific approach to the TC al-
gorithm, specifying the order in which we consider separating sets and starting
with a complete graph (rather than one without edges). We can input the in-
dependences generated from the larger graph to the PC Algorithm to discover
the PDAG that represents the distribution in graphical form. Each time the
PC Algorithm queries for independence while discovering separating sets, the
independence holds if and only if the input independences do.

However, sometimes the PDAG created by the PC Algorithm cannot be ori-
ented into a Bayesian network without incorrectly adding or removing indepen-
dences from the input set. Meek (16) provides a method to iteratively generate
a member of the family of Bayesian networks representing the independences if
this 18 possible. Tf it is not possible, the algorithm will generate a network with
a cycle or that implies incorrect independences ((17)). For example, depending
on which v-structure is discovered first, the independences represented by the
hidden variable Bayesian network in Figure 2 will result in an edge between
vertices 2 and 3 oriented in an arbitrary direction. However, this graph will not
represent the same independences as the network in Figure 2.

For k = 1, this algorithm provides a sound and complete way to check whether
a set of independences representing a distribution is faithful to a network given
causal sufficiency and the independences of the distribution. For future reference,
let us call this algorithm DETERMINEFATTHFUT..

When there is more than one hidden variable in the larger network (k > 1) and
DETERMINEFATTHFUT, cannot. discover a B’, we must resort, to checking all graph
isomorphism classes of smaller networks over n — k attributes and k& —1 or fewer
hidden variables. This is because DETERMINEFATTHFUT, is not complete when
there are hidden variables present  we cannot use it to look at smaller networks
that include hidden variables as there is no guarantee that DETERMINEFATTHFRUT,
will just fail to generate the hidden variables in the correct place(s). According to
the theorems in Neapolitan (17) and our own testing, this procedure will result
in the same set of conclusions as just checking all graph isomorphism classes
over n — k attributes and k£ — 1---0 hidden variables but is faster overall as the
k = 0 case (using DETERMINEFATTHFUL) is very fast.

Formal Simplifications Any Bayesian network with hidden variables can be
projected into a network where all hidden variables have no parents and exactly
two children (18). This new Bayesian network is called a projection and is defined
as follows:

* Also called the essential graph in Gillispie (15).



Definition 9 (Projection (18)). The projection of a Bayesian network B
over observed attributes V, is any Bayesian network B’ where

1. B’ represents the observed attributes V,.

2. Bvery hidden vertexr in B’ has no parents.

3. Buvery hidden verter in B’ has exactly two children.
4. B and B’ represent the same set of independences.

Define a hidden path as one in which every internal node of the directed path
is hidden. Using this idea, the Projection Algorithm given in Figure 6 takes as
input any Bayesian network with hidden variables B and returns a projection
B’ of that network.

PROJECTION ALGORITHM (18)

Input: BAYESTAN NETWORK B
INITTATIZE NETWORK B’ TO INCLUDE THE OBSERVED ATTRIBUTES AND NO EDGES.
FOR (EACH PAIR OF ATTRIBUTES X AND V) {
TF ( THERE EXISTS A DIRECTED HIDDEN PATH FROM X TO Y IN B)
ADD EDGE FROM X TO Y IN B’
TF ( THERE EXISTS A DIVERGENT HIDDEN PATH FROM X TO Y IN B) {
ADD HIDDEN VARTABLE vx,y TO B’
ADD EDGES FROM vx,y TO BOTH X anND Y N B’

Fig. 6. Projection Algorithm

Since the projection algorithm works for any network with hidden variables,
we can apply 1t to the current algorithm to save time. We can ignore proposed
hidden variables if they have any parents according to projection (18), there
will be another, equivalent network encountered in our search without these
parents. Specifically, the network in which the edge to the parent of the hidden
variable in the skipped case is deleted and replaced with a direct edge from that
parent to each child of the hidden variable.

All of the relevant optimizations above were incorporated in the Optimized Al-
gorithm (Figure 7). Note that we could not incorporate the limit of two children
per hidden variable  our algorithm limits the number of hidden variables and
the algorithm in Figure 6 relies on the creation of extra hidden variables.

4 Experimental Results

The goal of the experiments was to discover what conditions will always hold
around essential hidden sets by analyzing the networks B and corresponding list
I. of essential hidden sets. If a set of edge or independence constraints holds in the
neighborhood of every hidden variable in every essential hidden set, future work
may be able to prove that these constraints imply essential hidden sets. Other



OPTIMIZED  ALGORITHM INDEPENDENCE-BASED FESSENTIAT,
HImDEN SET IDENTIFICATION

Input: n (TOTAL NUMBER OF ATTRIBUTES POSSIBLE), k (S1Z2F OF THE HIDDEN SET
TO TEST)
SEEN = 0
FOR (EACH NETWORK B WITH n VERTICES NOT ISOMORPHIC TO A GRAPH IN SEEN)
{
ADD B TO SEEN
I = THE SET OF INDEPENDENCES IN B
L=0
FoR (EACH SET H OF PARENTLESS ATTRIBUTES OF SIZE k, IN B) {
Iy = I— ANY INDEPENDENCES MENTIONING ANY H € H
CALL, DETERMINEFATTHFUT, WITH INPUT /5 AND LIST OF ATTRIBUTES
TF ( DETERMINEFAITHFUI, WAS SUCCESSFUL )
H 1S NOT AN ESSENTIAL HIDDEN SET, BREAK AND TRY ANOTHER H
}
For(j=1T0 k—1) {
SEEN’ = 0
For (FACH NETWORK B’ OVER n—k ATTRIBUTES AND j HIDDEN VARTABRLES
NOT ISOMORPHIC TO A GRAPH IN SEEN’) {
" =THE INDEPENDENCES IN B’
P (Ig ==1T")
H NOT AN ESSENTTAT, HIDDEN SET, BREAK AND TRY NEXT H
ADD B’ TO SEEN’
}
}
Apn HTo L

}
OurpuT (B, 1)

Fig. 7. Optimized Algorithm

algorithms may then be able to exploit these experimentally verified constraints
to find essential hidden sets through local tests.

The algorithms were implemented in Java 1.4.2 on a two-processor 2.8 Ghz
Xeon computer with 2 Gb of RAM.

4.1 Edge Test Experiments

The edge tests were done to determine whether there exists a common set of edge
constraints that the edges of the graph around the essential hidden set conform
to. Tt was found that the subset of the edge constraints given in the definition
of the W-network (Definition 8) held around all essential hidden variables this
means that the W-network is always found embedded in a network with an
essential hidden variable and specifically that the hidden variable was always at
the apex of the middle peak in the “W” of the W-network.



4.2 Independence Test Experiments

Similarly to the edge tests, various sets of independence constraints were tested
against each network that contains an essential hidden set. An example of a
set, of independence constraints that we attempted to verify was (1 1L 3 |4),
(1 403]2), (1 /£ {2,4}), and (2 1L 4| 1). This example set of independences
held in both networks over 5 vertices that had a single essential hidden variable
(see Figure 9). However, neither that set nor any subset of those independences
held in all networks with 6 or more vertices with an essential hidden variable. No
set of independence constraints that we tried held in networks over 6 or more
vertices. This indicates that it may not be possible to characterize essential
hidden variables through independences among the visible attributes only.

4.3 Summary and Examples

Table 1. Quantitative Information about the Algorithm Runs

Size Alg # HVs|Num Nets  Found HVs Total Minutes
4 B 1 543 0 0.0005
4 0O 1 32 0 0.0013
4 0O 2 32 0 0.0006
4 0O 3 32 0 0.0003
5 B 1 29280 100 0.0576
5 O 1 303 2 0.0035
5 O 2 303 0 0.0012
5 O 3 303 0 0.0005
5 O 4 303 0 0.0004
6 B 1 > 54161 > 2185 > 2160
6 O 1 5985 107 0.2141
6 O 2 5985 2 0.0626
6 O 3 5985 0 0.0098
6 O 4 5985 0 0.0036
6 O 5 5985 0 0.0026
7 B 1 > 800 > 67 > 2160
7 0O 1 243,669 8191 32.1151
7 0O 2 243,669 184 49.3549
7 0O 3 243,669 0 1.5390
7 0O 4 243,669 0 0.2595
7 0O 5 243,669 0 0.1409
7 0O 6 243,669 0 0.1537
& B 1 |N/A N/A > 2160
8 O 1 [>2,927,649 > 296,415 > 2160
8 O 2 > 11,510 > 74 > 2160
8 O 3 > 558,400 > 21 > 2160
8 O 4 20,286,026 1 16.4701
8 O 5 20,286,026 0 23.3306
8 O 6 20,286,026 0 19.6434
8 O 7 20,286,026 0 15.6430




Table 1 displays the number of all Bayesian networks with independence-based
essential hidden variables as well as average run times for Basic (B) and Op-
timized (O) Algorithms (see Figures 4 and 7). Tests for more than one hidden
variable were only run with the Optimized Algorithm. The size of the hidden
set tested & 1s indicated in the “# HVs” column.

The “Num Nets” column gives the number of Bayesian networks that each
algorithm examined while “Found HVs” refers to the number of graphs that
contain essential hidden sets. Thus, for networks with 6 vertices, the Optimized
Algorithm found 107 of 5,985 isomorphism-equivalent classes of graphs contain
at least one essential hidden set of size 1. Some algorithm runs could not be
completed in 36 hours  this is indicated by the “>” notation that more networks
exist. There are more essential hidden sets found using the Basic Algorithm than
the Optimized Algorithm because the Basic Algorithm iterates over networks,
while the Optimized Algorithm iterates over independence equivalence classes,
so the same essential hidden variables are found multiple times using the Basic
Algorithm under different node labelings.

Total time for each algorithm run 1s given in the last column of Table 1.
Note that the results for incomplete analysis are biased towards smaller, sim-
pler graphs on average (as graphs with fewer edges are tested first) so the time
recorded are slightly lower than expected. Performance on graphs with 9 or more
vertices 18 not reported as preparation to process these graphs took longer than
the time allowed (36 hours). Test times for the Optimized Algorithm does not
account for the time spent to generate the 1somorphism classes of graphs this
was a total of 0.08 seconds for 6 vertices, 2.2 seconds for 7 vertices, and 260
seconds for 8 vertices (for smaller graphs, time was negligible and, for graphs
larger than size 8, it took over a day).

One result of interest 1s the average number of Bayesian networks with essential
hidden sets in each run of the optimized algorithm (that is, for each possible
essential hidden set size). This gives us an estimate of the average probability
of encountering unique networks that contain essential hidden sets if this
average is high, 1t is common for a network structure with a given number of
attributes and hidden set size to have an essential hidden set.

A graph of the average number of Bayesian network with essential hidden
variables per Bayesian network vs. k is given in Figure 8. As the number of
attributes plus hidden variables (n) increases and the number of hidden variables
in the set (k) decreases, the ratio of networks with essential hidden sets to total
networks increases. This leads to the supposition that, for n > &8, the probability
of a given network structure containing an essential hidden set of any size k
will increase with n. This in turn hints that a fundamental understanding of the
impact of essential hidden sets becomes more crucial as we increase the number
of attributes.

Lastly, some examples of graphs over 5, 6, 7, and 8 vertices that were identified
to contain essential hidden sets are given in Figure 9.
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Fig. 8. Number of hidden variables tested for (k) vs. the average number of Bayesian
network with essential hidden variables per Bayesian network examined of a given size
(optimized algorithm only). Solid line and dots indicate size 8, dashed line and squares
indicate size 7, dotted line and circles indicate size 6, and the single point indicates
size 5 ratios.

5 Conclusions and Future Research

Our experiments show that networks of the sizes examined all contain the edges
present in a W-network (Definition 8) embedded around the hidden variable.
Precisely all the edges that are and are not allowed and what this implies for the
independences between measured attributes has yet to be determined. However,
if examining all the networks of a certain vertex count is required, significant
optimizations will be needed to answer these questions within a reasonable time
frame.

We had originally hoped to create an intelligent search algorithm of the space
of networks but the d-separation rules used to generate independences when
hidden variables are present do not allow this method to be more efficient than
a complete search of the space. By examining a subset of possible Bayesian net-
works (that is, placing more restrictions on where hidden variables may appear
or what overall distributions we are concerned about), more general conclusions
about that subset can be drawn. If approximation is acceptable, we could draw
a sample of networks and draw tentative conclusions from that sample.

An algorithm could be used to analyze the results of our algorithm and gener-
ate constraints similar to the independence or edge test constraints. This could
illuminate whether an independence-based characterization of essential hidden
variables exists and whether there is a “universal” edge-based characterization
of essential hidden sets. These constraints could, in turn, be used to generate
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tests for detecting whether an essential hidden set is present in attribute sets
rather than deducing which variables are in a position to be essential amongst
the attributes.

Finally, in our algorithms, we examined only the identification of a type of
essential hidden set through independence constraints it is possible that other
essential hidden sets can be determined using other specification methods. Pearl
and Tian (19) have made progress in this regard through the proposal of func-
tional constraints existing around some essential hidden variables. Tt would also
be interesting to see what algorithms are optimal for discovering these other
types of hidden sets.
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