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Learning To Locate An Object in 3D Space From A Sequence Of Camera
| mages

1

In recent years, there has been significant progress in t
field of mobile robotics. Applications such as robots that
guide blind or mentally handicapped people, robots tha%l
clean large office buildings and department stores, robot;
that assist people in recreational activities, etc., arerlyl

Many of these robots must integrat
mobility with manipulation. They must be able to move
around, and they must also be capable of manipulating thel
environment. For such robots, their practical success wil
partially depend on their ability to identify and localize-o
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Abstract

This paper addresses the problem of determin-
ing an object’'s 3D location from a sequence of
camera images recorded by a mobile robot. The
approach presented here allows people to “train”
robots to recognize specific objects, by present-
ing it examples of the object to be recognized. A
decision tree method is used to learn significant
features of the target object from individual cam-
era images. Individual estimates are integrated
over time using Bayes rule, into a probabilistic
3D model of the robot’'s environment. Experi-
mental results illustrate that the method enables
a mobile robot to robustly estimate the 3D loca-
tion of objects from multiple camera images.

INTRODUCTION

jects.

This paper addresses the problem building robots that ¢
be trained to recognize and locate user-specified objects
More specifically, it proposes an algorithm that enable
people to train robots by simply showing a few poses of th
object. Once trained, the robot can recognize these object
and determine their location in 3D space. In contrast to

al
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existing approaches to mobile manipulation, which usually
assumes that objects are located in floor or table-height,
our approach does not make restrictive assumptions as to
where the object is located. This poses new challenges on
the ability to localize objects, as a single camera image is
insufficient to determine the location of an object in 3D
space.

The approach proposed here uses probabilistic representa-
tions to estimate the identity and location of the target ob-
ject from multiple views. It maps camera images into 2D
probabilistic maps, which describe, for each pixel in the
camera image, the likelihood that this pixel is part of the
target object. This mapping is established by a decisi@n tre
applied to local image features, which is constructed dyrin
the training phase from labeled images. The 2D probabilis-
tic map is then projected into the 3D work space, based on
straightforward geometric considerations. Since a single
camera image is insufficient to determine the location of
an object in 3D, our approach integrates information from
multiple images, taken from multiple viewpoints. It em-
loys Bayes rule to generate a consistent probabilistic 3D
odel of the workspace. Our approach also takes into ac-
count the uncertainty introduced by robot motion, by using
probabilistic model of robot motion. As the robot moves
th the environment taking images, it gradually improves the
estimation of the identity and location of an object, uritil i

eTinally knows what and where the object is. Experimental

results using a RWI B21 robot equipped with a color cam-
ra show that multi-part objects can be located robustly and
ith high accuracy.

The remainder of this paper is organized as follows. In sec-
tion 2, we briefly describe decision trees along with the way
Bur approach uses them for characterizing images. In sec-
tion 3, we show how image information is integrated into
a 3D model, and provide a method for accommodating the

euncertainty that is introduced by robot motion. In sectipn 4

e present experimental results, obtained with a RWI B21
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of positive or negative examples found in the leaf. As such,

<o =06 we use the decision tree to representapproximation of
the probability density functioan the output space condi-

tioned on the values of attributes in the input spaceg .of

If appropriately pruned (during a post-pruning phase that

is intended to increase compactness and, more importantly,

generalization over future data), these probabilitiesiate

ally not zero or one because of training set noise in either

the values of the inputs or the output or non-determinism

due to use of a set of input variables that is insufficient to

deterministically modef.
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Figure 1: The top few nodes of an example decision tree. A
leaf represents the probability conditioned on the valdes 021 A PDF FOR CHARACTERIZING AN IMAGE
the attributes. Internal nodes test on the fraction of pa@sit

pixels of a tile that fall in the corresponding hue range. Our approach uses a decision tree to map (filter) camera im-

ages into 2D probabilistic maps, which describe the prob-
ability of the presence of a target object at the various lo-
robot, followed by a survey of related research (section 5)cations in the image. More specifically, the inputs to the
Finally, in section 6, we comment on the assumptions andree areimage featuresn a local region (called:tile) in

limitations of the approach and suggest directions for futhe image, and the output is a probability value that mea-

ture research. sures the likelihood of the presence of a target object in the
respective tile. In principle, our approach can be applied
2 DECISION TREE LEARNING to arbitrary image features (e.g., pixels, edges, brigtgne

color, texture, etc.). In our implementatidacal color his-

A decision tree is a succinct and explicit way of repre_togramsare used as inputto the decision tree.

senting a multidimensional discrete-valued functipn: The tree is learned using labeled training examples. More

R™* x X™ — Y, whereX and) are finite sets of discrete specifically, construction of the training, test and prgnin

elements andR is the set of real numbers. Tlie + m) sets is done using the following procedure:

inputs to this function frequently correspond to discrete

and/or continuous-valued attributes of an object and the 1. An input picture is obtained.

output represents an object’s property that we want to pre- 2. A rectangleR is drawn around the object by the user.

dict. Each node of the tree is associated with a partition  This might include parts of the background.

of the input space. An internal node further partitions its 3. The image is divided in a matrix of non-overlapping

space into two subspaces based on the value of a single in-  rectangular tiles, completely covering its surface. The

put variable, associating each of the resultant subspacest size of each tile is small relative to the projection of

each of the two children. The set of decision trees is com-  the object on the imag®. x 8 is used in this paper.

plete in the space of discrete-valued functionsi.e. anfasuc 4. Each tile is used to construct a single positive or nega-

function can be represented by at least one decision tree. tive example. The features that occur in the tile, which

An example of a decision tree, obtained in the context of can be continuous or discrete, are extracted and used

image analysis in a fashion similar to the one used in this  as input values for the example associated with that

paper (see below), is illustrated in Fig. 1. tile.

5. Depending on whether each tile is fully contained
within R or not, the example is assigned to be posi-
tive or negative, respectively.

Our approach uses decision trees to approximate condi-
tional probability density functions. Decision trees ase-u
ally used to answevES/NO queries regarding the output

value off given an inputtuple of values. If, for examplg, This set of examples is equally divided into training, test

'Sa boqlean-output function, querying is typically done byand pruning sets, and these are used in growing a decision
comparing the number of positive and the number of nega:

: - : . L tree for that combination of object and environment that it
tive training examples that were assigned during training t : . ) :
i : . " .-was seen in. The resulting tree, when applied to new im-

the leaf node that is associated with the partition thatrihe i o ; : - .

T . ages within that environment, provides probability densi-
put tuple lies in. The algorithm would then return the value . .

- T ties for the presence of a target object.

(YES/NO) that is in majority in that leaf. In our use of a de-
cision tree we differ in that we instead output the fractionFigure 2 illustrates our method. Shown there, in the top
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(for example, a shoe may be expected to lie on the floor
most of the time), this information can be used to appro-
priately initialize prior probabilities and assign highex-

ues to these locations. During detection, each information
gathering step is followed by an updating of the probability
of each cell according to Bayes law, as described below.
Robot motion also affects the grid due to uncertainty of the
robot’s translational and rotational velocities.

3.1 INFORMATION INTEGRATION

The key idea for mapping 2D image information into a 3D
spatial representation is to map image tiles ipyoamids

) ) ) in space. Each image obtained from the environment pro-
Figure 2: Detection of a bottle from previous examples.yjiges us with information about the location of parts of the
The top row contains images where the outlined part congiect. Since we assume a single camera input, we have no
tains the tiles used as positive examples. The rest of they¢,rmation about the depth of features contained in one of
image’s tiles are negative examples. Probabilities ab@e 0 {ha tiles of the image. We therefore make no assumption on
are marked in the previously unseen picture in the bottome gistance of the part from the eyepoint. However, we do
row. Not shown is another set of 18 *background” picturesyain information about the Euler angles (azimétand
consisting of negative examples only. altitude¢) of the feature with respect to the robot’s current
location. In particular we know that it is contained within

he pyramid emanating from the eyepoint whose four con-

row, 1S a series of three training images. The target_ObJec\/erging sides intersect the four corners of the tile on the im
is labeled by hand. The bottom row shows a test image,

. - age plane that is perpendicular to the direction the camera
along with the probability f|e_ld gene_rated by th? tre_:e. ASis facing. Grid cells intersecting this pyramid are therefo
can be seen there, the algorithm assigned high likelihood t :

. . - pdated using Bayes law.
the correct location, but also misclassified a small number
of regions in the image background. From this single cam-An example of the updating is shown in Fig. 3. Here two
era image, it is impossible to determine the location of thedifferent pyramids are shown (projected into ihg plane),
target object in 3D coordinates. The remainder of this pawhich have been generated from camera images taken at
per describes our approach to integrating these probiabilis different locations. Bayes rule is applied to integratestéhe
estimates in 3D space. pyramids, in order to generate a single, consistent belief.

The integration works as follows. The probability that a

3 INTEGRATING MULTIPLE CAMERA part of the object occupying a cell at grid locati@n y, =)

IMAGESIN 3D at timet is denoted byPr[{(z, y, z,t)]. Coordinates:, y
and z are with respect to a fixed, world-centered coordi-

nate system (they are not local robot-centered coordinates
&(z,y,z,t) is a boolean random variable denoting the exis-

tracted from individual images, into a spatial 3D model of . . -
. . .~ . tence of a part of the object at a location somewhere inside
the world. Information about the location of the object is . . . .
the corresponding grid cell. In the following we will uge

repretse(;\te_(zhas a 3D oce upta_mcy gtr;]d Eaghbglr_![d 'fhe”t IS atslhstead of(xz,y, z,t) for the sake of brevity. If(t) denotes
soclated With an approximation of the probabliity that party, . image obtained at timeand D(¢ — 1) the set of pre-

of the object occupies that particular cell. Each such prob- . . : . .
P, ; vious images/motion commands in all previous steps, the
ability is initialized with a number that corresponds to a

prior belief that the object occupies a cell given no infor- probability valuep(¢) at grid cell locatiort is computed as

. X follows:
mation about the world. This number can be learned from

data, typically though counting according to the frequen-

tists’ approach to probability. The exact value of the prior

is not significant in the long term, since the value willcon-  p(§) = Pr[¢ | i(t), D(t — 1)]

verge towards the actual probability after a sufficient num- . Prl¢ | D(t —1)]
ber of observations. However, if there is evidence that the Prli(t) | &, D(t — 1)] Prli(t) | D(t — 1)]’
object in question occurs more frequently in certain areas

Our approach integrates the probabilistic information, ex
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tile corresponding to the cell &k, y, z) by only taking the
current image into account. In estimation problems of this
type, it is common practice to compute theéds-ratiq for
which Pr[i(¢)] andPr[i(¢) | D(t — 1)] cancel out:

odds-ratid¢) = P&

Prig [i(t)] _ Prlg | D{ —1)]
|

|
[=Pr[E ] i(t)] 1—Prf¢ | D(t — 1]
1 - Pr[g]

Prfe]

odds-ratid¢)

M) = T odasrata)

Similar formulas for belief integration can be found in
[Pea88, Thro8b].

Figure 3: On the top, the robot used in our experiments3.2 ROBOT MOTION

is shown. It is equipped with a parallel two-fingered grip- o o ,
per for object manipulation. On the bottom, an illustrationEach robot motion introduces uncertainty into the robot’s
is presented of how information from images taken fromestimate of the object’s location because of imperfect-actu
two different viewpoint is integrated in the occupancy grid ators and measuring dgwces. We mode_l the translational as
Shown to the left are two single projections applied to anwell as rotational magnitude of the velocity of the robot as a
“empty” grid. The picture on the right shows how they are Gaussian random variable with mean equal to the nominal
combined together. The images depict the average valud€locity given to the robotic motion controller—we make

of grid cell probabilities when viewed from above (i.e. av- the assumption that there are no systematic errors. The
eraging probability values along theaxis). standard deviations used are pessimistic estimates of the

deviation around the nominal corresponding velocity mag-
] ) - ) nitude. The accurate determination of the standard devia-
Pr[¢ | D(t - 1)]is the prior probability accumulated in the jons does not significantly influence our location estirsate
cell from previous iterations of the procedure, which takesgiven frequent enough observations. Under this assump-

intol account all p'fe"ious dataPr[i(t)_ | 3 D_(t - 1] = tion, their actual value is not critical and can be overesti-
Pr[i(?) | ¢] by making a Markov conditional independence ., taq.

assumption that implies that, given taet of the existence _ o o _
or not of part of the object in the cell, the image obtained!f the magnitude of the veIo<_:|t)_/ is normally distributed kit
does not depend on previous images. Under this assumpieanv, and standard deviation,, v ~ N (v, 07) (as-

tion, by using sume one-dimensional for the purpose of this example), the
P (1 Prli(e location of a object with that velocity after tintas a ran-
Prli(t) | €] = rle L] Prfi(?)] dom variabler ~ N (vgt, o2t?), also normally distributed,
Pri¢] with meanw,t and standard deviation,¢. This suggests
we obtain that uncertainty of an objects location increases with time
© Pr[¢ | i(t)] Pr[i(t)] Pr[¢ | D(t —1)] as time goes by, as shown in Fig. 4.
P\¢Q) = ;
Pr(¢] Prlit) [ D(t —1)]
and 4 EXPERIMENTAL RESULTS
— 1-P i(1)]) Prli(t)] 1—P Dt -1
p(&) = ( e i) Prlie)] e | D ) We conducted our experiments on a B21 mobile robot

L= Pri¢] Prli(®) | Dt = 1)] equipped with a single Sony XC-999 color camera with a

where¢ is the complement of eveigt Pr[¢ | i(¢)] is the ~ 6mm focal length lens, mounted on a pan-tilt unit. Images
probability estimate returned by the decision tree for theof size 240 x 256 are acquired through a Matrox Meteor
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Figure 4: Probabilistic model of robot motion. Top im-
age: Belief of the location of the object deteriorates ingim
under uncertainty of the magnitude of the velocity. Here
v ~ N(10,1%). Bottom image: This graph illustrates the
outcome of specific motion commands projected along thé;
z axis (a translation and a rotation).

framegrabber connected to the camera and are used to trafigure 5: Probability map that is the output of the decision
a decision tree in the manner described in section 2.1.  tree trained to recognize the red chair. The brightestitiles
We chose a simple histogram representation of downthe. _probability map (second _col_umn) correspon_d to prob-
sampled versions of the training images as the input fea’Elblllty greater than 0.9. Projection of the map in 3D are
tures to our decision tree algorithm. In particular, we useShOWn in the last three columns, as averages along,the
color histograms for each tile, at resolution of 256 colorandz (rightmost column) axis respectively.

bins. Therefore each tile represents an example of 256 in-

put features, namely the pixel percentages at each color

bin, and one binary-valued output, corresponding to theAn example application of a decision tree trained on three
event that the tile is part of the object being trained on.examples with an object (in this case, a bottle) and 18
Even though this choice of input features does not takdackground images (containing negative examples only) is
into account all information present in the picture, this isshown in Fig. 2. The top few nodes of the tree are shown in
simply an artifact of the current implementation and byFig. 1. In a similar fashion we constructed a decision tree
no means imposes any restriction on the choice of inputo recognize a larger simple object, a red chair, by using
features of the approach in general. More complex feathe same all-negative example images and three additional
tures may be employed in future implementations. How-images containing the chair in different poses. We then
ever, as we demonstrate below, this simple representatiomanually maneuvered the mobile robot around the chair
performs adequately well in certain frequently occurringtaking 7 new pictures from different angles. These pictures
situations where the object is sufficiently distinct froneth are shown in Fig. 5. The second column in that figure de-
background, containing enough information for recoveringpicts the probability map that is output from the decision
the approximate location of simple objects in 3D. The “dis-tree for each image. At certain locations we acquired im-
tinctiveness” is determined by the resolution of our colorages and projected the probability map in 3D, with each
histogram, coupled with the amount of hue variation thatprobability map element corresponding to a pyramid, as de-
changes in light intensity on the object result in. scribed in 3.1. Every cell covered by a pyramid is affected
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by the corresponding probability in the probability map. discrete input and output spaces. Decision tree learning
The results of projection when viewed along they and  algorithms in Al for real-valued input spaces were pro-
z axes are shown in the three rightmost columns in Fig. 5posed by [BFOS84], as a reinvention of earlier work. Tree-
Each pixel in these projections has intensity proportitmal based regression methods for real-valued input and output
the average probability along the axis of projection pagsin spaces can also be found in [Fri91, Moo90]. The work pre-
from that pixel. Thez-axis projections make the locations sented in this paper provides an example where a decision
around the chair that the pictures were taken particularlyree is used to learn a conditional probability density func
easy to see. tion. Like the approaches presented in [FI93, MKS94], it
partitions a real-valued high-dimensional input space int

. : o . hypercubes. The output nodes, however, represent con-
age butrather incorporates informationincrementallpent 7' i, ) . .
ditional densities, which are estimated using a frequen-

single grid it maintains, which is justified under the Markov tist approach [CB90]. This is related to results reported

assgmpn_on. This is dOT‘e by applylr_lg Bayes law for eachm [TLS89, Mac92, Mit97], which show that under appro-
cell individually. There is no normalization done over the

. . : . Hriate assumptions, artificial neural networks approxemat

whole grid, which corresponds to the semantics we assign | 1 onal probability density functions

to the probability stored at each cell: it represent the prob P y y '

ability that a part of the object occupies that cell. As such,The mathematical approach for integrating information is

we make no assumptions about the size of the object witlidopted from the statistical literature [CB90, Pea88]. The

respect to the cell size. approach presented in this paper also bears close resem-

Between images, the robot is maneuvered manually to thte)lance to occupancy grids [Mor_88, Elf89]. Ocqupancy grid
. : . approaches are popular techniques for learning models of

spot where the next image will be taken. These motions” ' . . .

. LS : . mobile robot environments from sensor data. Just like the

increase our uncertainty in the manner described in sec-

tion 3.2. The robot used in the experiments is a Semi__approach proposed here, they represent the environment us-

holonomic one, its motion consisting of rotations and for- "9 fine-grained, evenly spaced grids. Each grid pointis an-

. ; AT . notated by a probability, which describes the evidence that
ward or backward motions in the direction it is facing. As . . : L
. . " " alocation contains an object/obstacle. The vast majority
such we model rotational and translational uncertainty in . .
. . of existing approaches differs from the one proposed here
the magnitude of the velocity. . .
in three aspects. First, they model occupancy, not the lo-
The updating of the grid using the above procedure ication of a specific target object. Second they are usually
shown in Fig. 6 for one run. This sequence of beliefs cor-constructed from range measurements (e.g., sonar, laser),
responds to a situation where a robot faces a chair. Thaot from camera images. Third, they are usually two-
grid size used i200 x 100 x 100 and each unit along any dimensional. There are, however, notable exceptions. The
direction corresponds to 4cm in the real world. All beliefs approaches described in [MM94, TBB8] construct oc-
shown in Fig. 6 are projected horizontally. cupancy grids from sequences of camera images. Moravec

and Martin’s approach [MM94] has probably been the first

In reality, the robot does not keep a 3D grid for each im-

AS. can b_e seen in Fig. 6, the_|n|t|al_locgt|on of the targ?tto construct 3D grids, instead of the commonly used 2D
object(s) is unknown. After taking a firstimage, the robot’s :

S ) . ; : representations. Both approaches, however, used stereo
belief is a conjunction of pyramids, corresponding to the

o : vision to estimate the location of obstacles. Stereo vi-
output of the decision tree. As the robot moves, it IosesSion enerates distance estimates. which areatly faedita
information. As it takes the second snapshot from a dif- 9 ' 9 Y

ferent perspective, the belief is refined. After taking seve the_ constrU(_:tlon of t_he_maps. The approach r_eported _here
: : ; estimates distance indirectly, through integrating nplati
images, the location and the shape of the target object aré ; . .
R camera images recorded at different locations. Unfortu-
reconstructed with high accuracy. As these results demon- : L .
. . hately, the approach in [MM94] is incapable of dealing
strate, our approach can accurately determine the Iocatlovr\}i,[h arror in the robot’s odometr
of the target object. It is also robust to errors in the rabot’ Y-
odometry. This robustness is a result of incorporating ouObject-centered 3D object reconstruction has also been in-
probabilistic model of robot motion. vestigated in the context of computer vision. Two ap-
proaches have emerged. One models objects as 3D sur-
faces, typically represented as a polygonal meshes. For ex-
ample, [FL95] uses stereo and intensity matching to con-
o _ _ _ struct and fit the mesh. The second approach uses a grid
Decision trees [Qui86, Qui93, Mit97] are one of the mostrepresentation essentially similar to the one used in tivs p

popular inductive machine learning method to date. Theper (e.g. [Col96]), and employs a technique sometimes re-
early algorithms were only applicable to problems with

5 RELATED WORK
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Figure 6: Cumulative effects on motion and probability mapjgction on grid as viewed along theaxis (that is running
perpendicular from the door facing the interior of the roanthie pictures in Fig. 5). The two distinct parts of the chair
(back and seat) are discernible.
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ferred to as “3D voting” to update cell “occupancies.” This ities are mapped into 3D pyramids in global world co-
differs from our approach in two ways: first, cells are up-ordinates. Multiple pyramids, obtained from camera im-
dated by counting votes in a straightforward if ad hoc man-ages recorded from different viewpoints, are integrated us
ner which employs techniques such as voting for cells in ang Bayes rule into a single probabilistic model of the ob-
radius of the intersecting with the line through the eyepoin ject location. Noise in robot motion is accounted for by a
and the line segment. This is necessitated partly from therobabilistic model of robot motion. Experimental results
inability to model inaccuracies in the viewpoint location, demonstrate that the method can robustly localize objects
although in many such applications—for example, militaryin 3D space.

aerial photography—the camera location is estimated reIA kev advantage of the current approach is its generalit
atively accurately. Second, these techniques do not lea y 9 P 9 Y-

f e : : .
a probabilistic model of the set of features that are em-ﬂ(;.ea;zu(r;ptﬂ?]: Z‘rzdso?;ggimg? tg]ﬁ;){)ﬂiﬁlelggitrl)o nT?]fe
loyed from examples. As such, all features are equally ) 9., they ; ; : ‘
pio o . approach can also be trained easily to recognize new, user-
weighted, necessitating the use of a threshold—in order tg ified obi : X _

. . . . pecified objects. While our current implementation uses
produce arecognizable picture—the selection of which can

be difficult (although see [Col96] for a statistical appitoac Color as the primary cue for object re<_:ogn|t|0n, the m_ethod
o9 can equally be applied to a much richer range of image
to threshold estimation).

features, making it fit for a large class of target objects (.
Our approach is similar to Markov localization [BFHS96, objects that can be recognized from local image features).

NPB95, SK95, Thr98a], a method for probabilistically es- - . .
Our approach rests on several limiting assumptions. First

timating the pose of a mobile robot in a (known) environ- ) .
N : ... _of all, it assumes that object does not move. To accommo-
ment. Markov localization relies on the same statistical . :
rinciples for integrating multiple sensor readings into adate moving objects, our approach would have to be ex-
P tended by a probabilistic model of object motion. Such a

single belief. In fact, the approach in [BFHS96] uses therggdel might characterize thgpical motion speed of the

same basic represe_nta_tions as our approach: evenly Spactarget object. It is unclear, however, if such an approach

gggsthgﬁﬂg\e/ :2@:3};72}]20;’:;&?&r?ﬁfrggégewfos:empwou'd be_ able to gath_er suff_icient _information to estimate
L . ' .. the location of a moving object with the necessary accu-

location is to be estimated. Our approach can handle situ-

ations that contain a variable (unknown) number of targe{ acy.

objects. Our approach also assumes that the training images ac-

Finally, the problem of finding and manipulating objects curgtely represent the S|tqat|0n durlng_te_:stmg. In our ex-
periments, we usually enriched the training set by a small

has received considerable attention within the Al commu- ; . .
. . o number of pictures recorded at random locations in our
nity (see [Hor94] and various papers in [Sim95, KBM98]). . : -
. lab. These pictures were used as negative training exam-
For example, Buhmann et al. [BB®5] described an ap- . .
. . ..ples when growing the tree. We found that these addi-
proach where a robot could be trained to recognize specmg . . .
. o . ; ional images increased the robustness of the image analy-
objects. Most existing approaches in the mobile robot com- ; . e
) . - .~ sis, thereby improving the overall estimation results. How
munity, however, make the assumption that the object is lo- : o .
. : . . . ever, the method might fail if the robot encounters an object
cated in floor-height, in which case camera coordinates can, . o : .
) . which similar to the target object, but which has not been
directly be converted to real-world coordinates. Our ap- art of its training set
proach is specifically designed to find objects at arbitrar)P g set.
locations in space. This is important in many real-worldThe spatial resolution in the experiments described in this
applications, as objects may frequently be found in tablespaper is low, due the enormous complexity involved in up-
chairs, etc. dating 3D grids. By choosing a 4cm resolution, the compu-
tational overhead was manageable. Denser and larger grids
are desirable, but unfortunately the computational cost of
6 DISCUSSION AND FUTURE of updating the grid is cubic in the number of grid cells.
RESEARCH An interesting extension of the current approach would be
_ o to use variable-resolution representations, such agees-t
This paper presented a novel approach to estimating thgsam89b, Sam89a, Moo90], for representing object loca-
3D location of an object with a mobile robot. Individ- tion. Such representations could balance the computationa
ual camera images are interpreted using a decision tregnd memory resources, by modeling regions coarsely that
method, which maps image regions (tiles) into probabilis-are unlikely to contain a target object. If the density of tar
tic estimates for the presence of target objects. Based ogjet objects is low (which is usually the case), such an ex-
a straightforward geometric consideration, these prdbabi
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tension could improve the computational efficiency of the[Mac92]
approach substantially.

Another promising extension of the current approach[Mit97]
would be to devise methods thettivelycontrol the robot

S0 as to maximize information gain. In the experiments[MK894]
presented here, a human manually positioned the robot. In

our previous work [Thr98b], however, we already devel-

oped successful methods for active information gatheringy g4
which were applied in the context of learning 2D occu-

pancy grid maps. In the context of object localization, such
methods could lead to a behavior where a robot investigates

the object from multiple viewpoints, in order to estimate it [M0090]
location accurately. The development of such methods is

subject to future research.
[Mor88]
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