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Abstract

This paper addresses the problem of determin-
ing an object’s 3D location from a sequence of
camera images recorded by a mobile robot. The
approach presented here allows people to “train”
robots to recognize specific objects, by present-
ing it examples of the object to be recognized. A
decision tree method is used to learn significant
features of the target object from individual cam-
era images. Individual estimates are integrated
over time using Bayes rule, into a probabilistic
3D model of the robot’s environment. Experi-
mental results illustrate that the method enables
a mobile robot to robustly estimate the 3D loca-
tion of objects from multiple camera images.

1 INTRODUCTION

In recent years, there has been significant progress in the
field of mobile robotics. Applications such as robots that
guide blind or mentally handicapped people, robots that
clean large office buildings and department stores, robots
that assist people in recreational activities, etc., are slowly
getting in reach. Many of these robots must integrate
mobility with manipulation. They must be able to move
around, and they must also be capable of manipulating their
environment. For such robots, their practical success will
partially depend on their ability to identify and localize ob-
jects.

This paper addresses the problem building robots that can
be trained to recognize and locate user-specified objects.
More specifically, it proposes an algorithm that enables
people to train robots by simply showing a few poses of the
object. Once trained, the robot can recognize these objects
and determine their location in 3D space. In contrast to

existing approaches to mobile manipulation, which usually
assumes that objects are located in floor or table-height,
our approach does not make restrictive assumptions as to
where the object is located. This poses new challenges on
the ability to localize objects, as a single camera image is
insufficient to determine the location of an object in 3D
space.

The approach proposed here uses probabilistic representa-
tions to estimate the identity and location of the target ob-
ject from multiple views. It maps camera images into 2D
probabilistic maps, which describe, for each pixel in the
camera image, the likelihood that this pixel is part of the
target object. This mapping is established by a decision tree
applied to local image features, which is constructed during
the training phase from labeled images. The 2D probabilis-
tic map is then projected into the 3D work space, based on
straightforward geometric considerations. Since a single
camera image is insufficient to determine the location of
an object in 3D, our approach integrates information from
multiple images, taken from multiple viewpoints. It em-
ploys Bayes rule to generate a consistent probabilistic 3D
model of the workspace. Our approach also takes into ac-
count the uncertainty introduced by robot motion, by using
a probabilistic model of robot motion. As the robot moves
in the environment taking images, it gradually improves the
estimation of the identity and location of an object, until it
finally knows what and where the object is. Experimental
results using a RWI B21 robot equipped with a color cam-
era show that multi-part objects can be located robustly and
with high accuracy.

The remainder of this paper is organized as follows. In sec-
tion 2, we briefly describe decision trees along with the way
our approach uses them for characterizing images. In sec-
tion 3, we show how image information is integrated into
a 3D model, and provide a method for accommodating the
uncertainty that is introduced by robot motion. In section 4,
we present experimental results, obtained with a RWI B21
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Figure 1: The top few nodes of an example decision tree. A
leaf represents the probability conditioned on the values of
the attributes. Internal nodes test on the fraction of positive
pixels of a tile that fall in the corresponding hue range.

robot, followed by a survey of related research (section 5).
Finally, in section 6, we comment on the assumptions and
limitations of the approach and suggest directions for fu-
ture research.

2 DECISION TREE LEARNING

A decision tree is a succinct and explicit way of repre-
senting a multidimensional discrete-valued functionf :Rn � Xm ! Y, whereX andY are finite sets of discrete
elements andR is the set of real numbers. The(n + m)
inputs to this function frequently correspond to discrete
and/or continuous-valued attributes of an object and the
output represents an object’s property that we want to pre-
dict. Each node of the tree is associated with a partition
of the input space. An internal node further partitions its
space into two subspaces based on the value of a single in-
put variable, associating each of the resultant subspaces to
each of the two children. The set of decision trees is com-
plete in the space of discrete-valued functions i.e. any such
function can be represented by at least one decision tree.
An example of a decision tree, obtained in the context of
image analysis in a fashion similar to the one used in this
paper (see below), is illustrated in Fig. 1.

Our approach uses decision trees to approximate condi-
tional probability density functions. Decision trees are usu-
ally used to answerYES/NO queries regarding the output
value off given an input tuple of values. If, for example,f
is a boolean-output function, querying is typically done by
comparing the number of positive and the number of nega-
tive training examples that were assigned during training to
the leaf node that is associated with the partition that the in-
put tuple lies in. The algorithm would then return the value
(YES/NO) that is in majority in that leaf. In our use of a de-
cision tree we differ in that we instead output the fraction

of positive or negative examples found in the leaf. As such,
we use the decision tree to represent anapproximation of
the probability density functionon the output space condi-
tioned on the values of attributes in the input space off .
If appropriately pruned (during a post-pruning phase that
is intended to increase compactness and, more importantly,
generalization over future data), these probabilities areusu-
ally not zero or one because of training set noise in either
the values of the inputs or the output or non-determinism
due to use of a set of input variables that is insufficient to
deterministically modelf .

2.1 A PDF FOR CHARACTERIZING AN IMAGE

Our approach uses a decision tree to map (filter) camera im-
ages into 2D probabilistic maps, which describe the prob-
ability of the presence of a target object at the various lo-
cations in the image. More specifically, the inputs to the
tree areimage featuresin a local region (called:tile) in
the image, and the output is a probability value that mea-
sures the likelihood of the presence of a target object in the
respective tile. In principle, our approach can be applied
to arbitrary image features (e.g., pixels, edges, brightness,
color, texture, etc.). In our implementation,local color his-
togramsare used as input to the decision tree.

The tree is learned using labeled training examples. More
specifically, construction of the training, test and pruning
sets is done using the following procedure:

1. An input picture is obtained.
2. A rectangleR is drawn around the object by the user.

This might include parts of the background.
3. The image is divided in a matrix of non-overlapping

rectangular tiles, completely covering its surface. The
size of each tile is small relative to the projection of
the object on the image.8� 8 is used in this paper.

4. Each tile is used to construct a single positive or nega-
tive example. The features that occur in the tile, which
can be continuous or discrete, are extracted and used
as input values for the example associated with that
tile.

5. Depending on whether each tile is fully contained
within R or not, the example is assigned to be posi-
tive or negative, respectively.

This set of examples is equally divided into training, test
and pruning sets, and these are used in growing a decision
tree for that combination of object and environment that it
was seen in. The resulting tree, when applied to new im-
ages within that environment, provides probability densi-
ties for the presence of a target object.

Figure 2 illustrates our method. Shown there, in the top
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Figure 2: Detection of a bottle from previous examples.
The top row contains images where the outlined part con-
tains the tiles used as positive examples. The rest of the
image’s tiles are negative examples. Probabilities above 0.8
are marked in the previously unseen picture in the bottom
row. Not shown is another set of 18 “background” pictures
consisting of negative examples only.

row, is a series of three training images. The target object
is labeled by hand. The bottom row shows a test image,
along with the probability field generated by the tree. As
can be seen there, the algorithm assigned high likelihood to
the correct location, but also misclassified a small number
of regions in the image background. From this single cam-
era image, it is impossible to determine the location of the
target object in 3D coordinates. The remainder of this pa-
per describes our approach to integrating these probabilistic
estimates in 3D space.

3 INTEGRATING MULTIPLE CAMERA
IMAGES IN 3D

Our approach integrates the probabilistic information, ex-
tracted from individual images, into a spatial 3D model of
the world. Information about the location of the object is
represented as a 3D occupancy grid. Each grid cell is as-
sociated with an approximation of the probability that part
of the object occupies that particular cell. Each such prob-
ability is initialized with a number that corresponds to a
prior belief that the object occupies a cell given no infor-
mation about the world. This number can be learned from
data, typically though counting according to the frequen-
tists’ approach to probability. The exact value of the prior
is not significant in the long term, since the value will con-
verge towards the actual probability after a sufficient num-
ber of observations. However, if there is evidence that the
object in question occurs more frequently in certain areas

(for example, a shoe may be expected to lie on the floor
most of the time), this information can be used to appro-
priately initialize prior probabilities and assign higherval-
ues to these locations. During detection, each information-
gathering step is followed by an updating of the probability
of each cell according to Bayes law, as described below.
Robot motion also affects the grid due to uncertainty of the
robot’s translational and rotational velocities.

3.1 INFORMATION INTEGRATION

The key idea for mapping 2D image information into a 3D
spatial representation is to map image tiles intopyramids
in space. Each image obtained from the environment pro-
vides us with information about the location of parts of the
object. Since we assume a single camera input, we have no
information about the depth of features contained in one of
the tiles of the image. We therefore make no assumption on
the distance of the part from the eyepoint. However, we do
obtain information about the Euler angles (azimuth� and
altitude�) of the feature with respect to the robot’s current
location. In particular we know that it is contained within
the pyramid emanating from the eyepoint whose four con-
verging sides intersect the four corners of the tile on the im-
age plane that is perpendicular to the direction the camera
is facing. Grid cells intersecting this pyramid are therefore
updated using Bayes law.

An example of the updating is shown in Fig. 3. Here two
different pyramids are shown (projected into thex-y plane),
which have been generated from camera images taken at
different locations. Bayes rule is applied to integrate these
pyramids, in order to generate a single, consistent belief.

The integration works as follows. The probability that a
part of the object occupying a cell at grid location(x; y; z)
at timet is denoted byPr[�(x; y; z; t)]. Coordinatesx; y
and z are with respect to a fixed, world-centered coordi-
nate system (they are not local robot-centered coordinates).�(x; y; z; t) is a boolean random variable denoting the exis-
tence of a part of the object at a location somewhere inside
the corresponding grid cell. In the following we will use�
instead of�(x; y; z; t) for the sake of brevity. Ifi(t) denotes
the image obtained at timet andD(t � 1) the set of pre-
vious images/motion commands in all previous steps, the
probability valuep(�) at grid cell location� is computed as
follows:p(�) � Pr[� j i(t); D(t � 1)]= Pr[i(t) j �;D(t � 1)] Pr[� j D(t � 1)]Pr[i(t) j D(t � 1)] :
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Figure 3: On the top, the robot used in our experiments
is shown. It is equipped with a parallel two-fingered grip-
per for object manipulation. On the bottom, an illustration
is presented of how information from images taken from
two different viewpoint is integrated in the occupancy grid.
Shown to the left are two single projections applied to an
“empty” grid. The picture on the right shows how they are
combined together. The images depict the average values
of grid cell probabilities when viewed from above (i.e. av-
eraging probability values along thez-axis).Pr[� j D(t� 1)] is the prior probability accumulated in the
cell from previous iterations of the procedure, which takes
into account all previous data.Pr[i(t) j �;D(t � 1)] =Pr[i(t) j �] by making a Markov conditional independence
assumption that implies that, given thefactof the existence
or not of part of the object in the cell, the image obtained
does not depend on previous images. Under this assump-
tion, by usingPr[i(t) j �] = Pr[� j i(t)] Pr[i(t)]Pr[�]
we obtainp(�) = Pr[� j i(t)] Pr[i(t)]Pr[�] Pr[� j D(t � 1)]Pr[i(t) j D(t � 1)]
andp(�) = (1 � Pr[� j i(t)]) Pr[i(t)]1� Pr[�] 1� Pr[� j D(t � 1)]Pr[i(t) j D(t � 1)]
where� is the complement of event�. Pr[� j i(t)] is the
probability estimate returned by the decision tree for the

tile corresponding to the cell at(x; y; z) by only taking the
current image into account. In estimation problems of this
type, it is common practice to compute theodds-ratio, for
whichPr[i(t)] andPr[i(t) j D(t � 1)] cancel out:

odds-ratio(�) � p(�)p(�)= Pr[� j i(t)]1� Pr[� j i(t)] Pr[� j D(t � 1)]1� Pr[� j D(t � 1)] �1� Pr[�]Pr[�] )p(�) = odds-ratio(�)1 + odds-ratio(�) :
Similar formulas for belief integration can be found in
[Pea88, Thr98b].

3.2 ROBOT MOTION

Each robot motion introduces uncertainty into the robot’s
estimate of the object’s location because of imperfect actu-
ators and measuring devices. We model the translational as
well as rotational magnitude of the velocity of the robot as a
Gaussian random variable with mean equal to the nominal
velocity given to the robotic motion controller—we make
the assumption that there are no systematic errors. The
standard deviations used are pessimistic estimates of the
deviation around the nominal corresponding velocity mag-
nitude. The accurate determination of the standard devia-
tions does not significantly influence our location estimates
given frequent enough observations. Under this assump-
tion, their actual value is not critical and can be overesti-
mated.

If the magnitude of the velocity is normally distributed with
meanv0 and standard deviation�v, v � N (v0; �2v) (as-
sume one-dimensional for the purpose of this example), the
location of a object with that velocity after timet is a ran-
dom variablex � N (v0t; �2vt2), also normally distributed,
with meanv0t and standard deviation�vt. This suggests
that uncertainty of an objects location increases with time
as time goes by, as shown in Fig. 4.

4 EXPERIMENTAL RESULTS

We conducted our experiments on a B21 mobile robot
equipped with a single Sony XC-999 color camera with a
6mm focal length lens, mounted on a pan-tilt unit. Images
of size240 � 256 are acquired through a Matrox Meteor
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Figure 4: Probabilistic model of robot motion. Top im-
age: Belief of the location of the object deteriorates in time
under uncertainty of the magnitude of the velocity. Herev � N (10; 12). Bottom image: This graph illustrates the
outcome of specific motion commands projected along thez axis (a translation and a rotation).

framegrabber connected to the camera and are used to train
a decision tree in the manner described in section 2.1.

We chose a simple histogram representation of down-
sampled versions of the training images as the input fea-
tures to our decision tree algorithm. In particular, we use
color histograms for each tile, at resolution of 256 color
bins. Therefore each tile represents an example of 256 in-
put features, namely the pixel percentages at each color
bin, and one binary-valued output, corresponding to the
event that the tile is part of the object being trained on.
Even though this choice of input features does not take
into account all information present in the picture, this is
simply an artifact of the current implementation and by
no means imposes any restriction on the choice of input
features of the approach in general. More complex fea-
tures may be employed in future implementations. How-
ever, as we demonstrate below, this simple representation
performs adequately well in certain frequently occurring
situations where the object is sufficiently distinct from the
background, containing enough information for recovering
the approximate location of simple objects in 3D. The “dis-
tinctiveness” is determined by the resolution of our color
histogram, coupled with the amount of hue variation that
changes in light intensity on the object result in.

Figure 5: Probability map that is the output of the decision
tree trained to recognize the red chair. The brightest tilesin
the probability map (second column) correspond to prob-
ability greater than 0.9. Projection of the map in 3D are
shown in the last three columns, as averages along thex, y
andz (rightmost column) axis respectively.

An example application of a decision tree trained on three
examples with an object (in this case, a bottle) and 18
background images (containing negative examples only) is
shown in Fig. 2. The top few nodes of the tree are shown in
Fig. 1. In a similar fashion we constructed a decision tree
to recognize a larger simple object, a red chair, by using
the same all-negative example images and three additional
images containing the chair in different poses. We then
manually maneuvered the mobile robot around the chair
taking 7 new pictures from different angles. These pictures
are shown in Fig. 5. The second column in that figure de-
picts the probability map that is output from the decision
tree for each image. At certain locations we acquired im-
ages and projected the probability map in 3D, with each
probabilitymap element corresponding to a pyramid, as de-
scribed in 3.1. Every cell covered by a pyramid is affected
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by the corresponding probability in the probability map.
The results of projection when viewed along thex, y andz axes are shown in the three rightmost columns in Fig. 5.
Each pixel in these projections has intensity proportionalto
the average probability along the axis of projection passing
from that pixel. Thez-axis projections make the locations
around the chair that the pictures were taken particularly
easy to see.

In reality, the robot does not keep a 3D grid for each im-
age but rather incorporates information incrementally in the
single grid it maintains, which is justified under the Markov
assumption. This is done by applying Bayes law for each
cell individually. There is no normalization done over the
whole grid, which corresponds to the semantics we assign
to the probability stored at each cell: it represent the prob-
ability that a part of the object occupies that cell. As such,
we make no assumptions about the size of the object with
respect to the cell size.

Between images, the robot is maneuvered manually to the
spot where the next image will be taken. These motions
increase our uncertainty in the manner described in sec-
tion 3.2. The robot used in the experiments is a semi-
holonomic one, its motion consisting of rotations and for-
ward or backward motions in the direction it is facing. As
such we model rotational and translational uncertainty in
the magnitude of the velocity.

The updating of the grid using the above procedure is
shown in Fig. 6 for one run. This sequence of beliefs cor-
responds to a situation where a robot faces a chair. The
grid size used is100� 100� 100 and each unit along any
direction corresponds to 4cm in the real world. All beliefs
shown in Fig. 6 are projected horizontally.

As can be seen in Fig. 6, the initial location of the target
object(s) is unknown. After taking a first image, the robot’s
belief is a conjunction of pyramids, corresponding to the
output of the decision tree. As the robot moves, it loses
information. As it takes the second snapshot from a dif-
ferent perspective, the belief is refined. After taking seven
images, the location and the shape of the target object are
reconstructed with high accuracy. As these results demon-
strate, our approach can accurately determine the location
of the target object. It is also robust to errors in the robot’s
odometry. This robustness is a result of incorporating our
probabilistic model of robot motion.

5 RELATED WORK

Decision trees [Qui86, Qui93, Mit97] are one of the most
popular inductive machine learning method to date. The
early algorithms were only applicable to problems with

discrete input and output spaces. Decision tree learning
algorithms in AI for real-valued input spaces were pro-
posed by [BFOS84], as a reinvention of earlier work. Tree-
based regression methods for real-valued input and output
spaces can also be found in [Fri91, Moo90]. The work pre-
sented in this paper provides an example where a decision
tree is used to learn a conditional probability density func-
tion. Like the approaches presented in [FI93, MKS94], it
partitions a real-valued high-dimensional input space into
hypercubes. The output nodes, however, represent con-
ditional densities, which are estimated using a frequen-
tist approach [CB90]. This is related to results reported
in [TLS89, Mac92, Mit97], which show that under appro-
priate assumptions, artificial neural networks approximate
conditional probability density functions.

The mathematical approach for integrating information is
adopted from the statistical literature [CB90, Pea88]. The
approach presented in this paper also bears close resem-
blance to occupancy grids [Mor88, Elf89]. Occupancy grid
approaches are popular techniques for learning models of
mobile robot environments from sensor data. Just like the
approach proposed here, they represent the environment us-
ing fine-grained, evenly spaced grids. Each grid point is an-
notated by a probability, which describes the evidence that
a location contains an object/obstacle. The vast majority
of existing approaches differs from the one proposed here
in three aspects. First, they model occupancy, not the lo-
cation of a specific target object. Second they are usually
constructed from range measurements (e.g., sonar, laser),
not from camera images. Third, they are usually two-
dimensional. There are, however, notable exceptions. The
approaches described in [MM94, TBB+98] construct oc-
cupancy grids from sequences of camera images. Moravec
and Martin’s approach [MM94] has probably been the first
to construct 3D grids, instead of the commonly used 2D
representations. Both approaches, however, used stereo
vision to estimate the location of obstacles. Stereo vi-
sion generates distance estimates, which greatly facilitates
the construction of the maps. The approach reported here
estimates distance indirectly, through integrating multiple
camera images recorded at different locations. Unfortu-
nately, the approach in [MM94] is incapable of dealing
with error in the robot’s odometry.

Object-centered 3D object reconstruction has also been in-
vestigated in the context of computer vision. Two ap-
proaches have emerged. One models objects as 3D sur-
faces, typically represented as a polygonal meshes. For ex-
ample, [FL95] uses stereo and intensity matching to con-
struct and fit the mesh. The second approach uses a grid
representation essentially similar to the one used in this pa-
per (e.g. [Col96]), and employs a technique sometimes re-
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Figure 6: Cumulative effects on motion and probability map projection on grid as viewed along thex-axis (that is running
perpendicular from the door facing the interior of the room in the pictures in Fig. 5). The two distinct parts of the chair
(back and seat) are discernible.
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ferred to as “3D voting” to update cell “occupancies.” This
differs from our approach in two ways: first, cells are up-
dated by counting votes in a straightforward if ad hoc man-
ner which employs techniques such as voting for cells in a
radius of the intersecting with the line through the eyepoint
and the line segment. This is necessitated partly from the
inability to model inaccuracies in the viewpoint location,
although in many such applications—for example, military
aerial photography—the camera location is estimated rel-
atively accurately. Second, these techniques do not learn
a probabilistic model of the set of features that are em-
ployed from examples. As such, all features are equally
weighted, necessitating the use of a threshold—in order to
produce a recognizable picture—the selection of which can
be difficult (although see [Col96] for a statistical approach
to threshold estimation).

Our approach is similar to Markov localization [BFHS96,
NPB95, SK95, Thr98a], a method for probabilistically es-
timating the pose of a mobile robot in a (known) environ-
ment. Markov localization relies on the same statistical
principles for integrating multiple sensor readings into a
single belief. In fact, the approach in [BFHS96] uses the
same basic representations as our approach: evenly spaced
grids. Markov localization, however, rests on the assump-
tion that there is exactly one object (i.e., the robot) whose
location is to be estimated. Our approach can handle situ-
ations that contain a variable (unknown) number of target
objects.

Finally, the problem of finding and manipulating objects
has received considerable attention within the AI commu-
nity (see [Hor94] and various papers in [Sim95, KBM98]).
For example, Buhmann et al. [BBC+95] described an ap-
proach where a robot could be trained to recognize specific
objects. Most existing approaches in the mobile robot com-
munity, however, make the assumption that the object is lo-
cated in floor-height, in which case camera coordinates can
directly be converted to real-world coordinates. Our ap-
proach is specifically designed to find objects at arbitrary
locations in space. This is important in many real-world
applications, as objects may frequently be found in tables,
chairs, etc.

6 DISCUSSION AND FUTURE
RESEARCH

This paper presented a novel approach to estimating the
3D location of an object with a mobile robot. Individ-
ual camera images are interpreted using a decision tree
method, which maps image regions (tiles) into probabilis-
tic estimates for the presence of target objects. Based on
a straightforward geometric consideration, these probabil-

ities are mapped into 3D pyramids in global world co-
ordinates. Multiple pyramids, obtained from camera im-
ages recorded from different viewpoints, are integrated us-
ing Bayes rule into a single probabilistic model of the ob-
ject location. Noise in robot motion is accounted for by a
probabilistic model of robot motion. Experimental results
demonstrate that the method can robustly localize objects
in 3D space.

A key advantage of the current approach is its generality.
No assumption is made concerning the typical location of
objects (e.g., they are not assumed to lie on the floor). The
approach can also be trained easily to recognize new, user-
specified objects. While our current implementation uses
color as the primary cue for object recognition, the method
can equally be applied to a much richer range of image
features, making it fit for a large class of target objects (i.e.,
objects that can be recognized from local image features).

Our approach rests on several limiting assumptions. First
of all, it assumes that object does not move. To accommo-
date moving objects, our approach would have to be ex-
tended by a probabilistic model of object motion. Such a
model might characterize thetypical motion speed of the
target object. It is unclear, however, if such an approach
would be able to gather sufficient information to estimate
the location of a moving object with the necessary accu-
racy.

Our approach also assumes that the training images ac-
curately represent the situation during testing. In our ex-
periments, we usually enriched the training set by a small
number of pictures recorded at random locations in our
lab. These pictures were used as negative training exam-
ples when growing the tree. We found that these addi-
tional images increased the robustness of the image analy-
sis, thereby improving the overall estimation results. How-
ever, the method might fail if the robot encounters an object
which similar to the target object, but which has not been
part of its training set.

The spatial resolution in the experiments described in this
paper is low, due the enormous complexity involved in up-
dating 3D grids. By choosing a 4cm resolution, the compu-
tational overhead was manageable. Denser and larger grids
are desirable, but unfortunately the computational cost of
of updating the grid is cubic in the number of grid cells.
An interesting extension of the current approach would be
to use variable-resolution representations, such as oct-trees
[Sam89b, Sam89a, Moo90], for representing object loca-
tion. Such representations could balance the computational
and memory resources, by modeling regions coarsely that
are unlikely to contain a target object. If the density of tar-
get objects is low (which is usually the case), such an ex-
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tension could improve the computational efficiency of the
approach substantially.

Another promising extension of the current approach
would be to devise methods thatactivelycontrol the robot
so as to maximize information gain. In the experiments
presented here, a human manually positioned the robot. In
our previous work [Thr98b], however, we already devel-
oped successful methods for active information gathering,
which were applied in the context of learning 2D occu-
pancy grid maps. In the context of object localization, such
methods could lead to a behavior where a robot investigates
the object from multiple viewpoints, in order to estimate its
location accurately. The development of such methods is
subject to future research.
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