Trident Robotics m———

" and Research, Inc.

PUMA100

2516 Matterhorn Drive, Wexford, Pennsylvania 15090-7962
(412) 934-8348

The information in this document is subject to change without notice.

Trident Robotics and Research, Inc. does not guarantee the accuracy of the information contained in this document
and makes no commitment to keep it up-to-date.

Trident Robotics and Research, Inc. makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fithess for a particular purpose.

This device is not intended for use in life support equipment and should not be used in any medical or other

application where intermittent malfunction or failure may directly jeopardize the health or well-being of an
individual or individuals without adequate safeguards.

Address comments concerning this document to:
Trident Robotics and Research, Inc.
User Documentation Dept.
2516 Matterhorn Drive

Wexford, PA 15090-7962
(412) 934-8348

Unimate, VAL, and PUMA are trademarks of Unimation, Inc.

Revised: September, 1997

VAL Simulation Library Page 1

PUMA100 VAL Emulation Library
Version 1.22

1. Installation

1.1. Hardware

Install the TRCOO7 in slot IP1A of the TRC100. This corresponds to slot 3 in the
“TRR_PUMA.CFG” configuration file. Connect the 50-pin cable to the TRC004 to P13 on the
TRC100. Configure the TRC100 for 64-byte address space (see TRC100 User’'s Manual) and,
with the personal computer power off, install the TRC100 in an empty slot. The 50-pin ribbon
cable should be routed through the hole of an adjacent empty slot.

1.2. Software

To initiate file and console support for the TRC100, run the TSR “srvr100.exe.” This is
invoked with “srvr100 <base address>.”

After power up or warm or cold reset of the TRC100, there is a 10-20-second delay while the
system performs self-test and checks serial port A for activity. If nothing is found on the serial
port, the TRC100 waits to download an executable over the PC bus. The program “trident.exe”
downloads S-record files to the TRC100. The file “TRIDENT.CFG” establishes the base address
and other parameters of the TRC100, as well as the default executable file. Invoking “trident” or
“trident <filename>" begins the download sequence.

With these programs running on both the host PC and the TRC100, the VAL emulation
software is ready to receive commands.

2. DOS Commands

potcal
calib
where
teach
speed
do_move
do_moves
do_dmove
do_ready
do_open
do_close
do_relax

3. Library Functions

The header file "val.h" contains the function prototypes for the simulated VAL C library, some
macros, and two sets of #define’d function return values. The functions and macros are described
in subsequent sections. The function return values consist of PC return values:

VAL Simulation Library Page 2

|_OK
|_ ERROR
|_ RANGE
|_ABORT
|_TMOUT

and TRC100 return values:

CMD_OK
BAD_CMD
BAD_SEQ
BAD_DATA
BAD_FILE
BAD_POWER
BAD_EXEC

The return values |_OK and CMD_OK are equivalent. All other values are unique.

3.1. Program Initialization

Every simulated VAL program must call a software initialization function before issuing any
simulated VAL commands. The prototype for this function is:

int initialize()

This function expects to find the configuration files "trident.cfg" and "trr_puma.cfg" in the
local directory. It returns either |_OK or |_ERROR where |_ERROR indicates the inability to
open one of the above files. In this event, a diagnostic message is printed to the console if in text
mode.

3.2. Variable Initialization

VAL defines two types of location variables: precision points and transformations. Precision
points are highly repeatable but are specific to a particular class of manipulator (e.g. Puma 560).
Transformations, on the other hand, are not specific to a particular class of manipulator and are
portable across robots and applications. Both types of location variables are stored in the location
structure defined in val.h.

To create a precision point, allocate space for a location variable and call:

location *ppoint(location *loc_p, float j1, float j2, float |3, float j4,
float j5, float j6)

where the jX values are the six joint angles in degrees. An example of proper use of this function
is contained in the following code fragment:

#include "val.h"

location pointl; [* allocate space for the location */

VAL Simulation Library Page 3

ppoint(&pointl, 0.0, -100.0, 115.0, 0.0, 87.3, 46.8);
This function performs no range checking and retioosp .

To create a transformation, allocate space for a location variable and call:

location *trans(location *loc_p, float x, float y, float z, float o, float a,
float t)

where X,y,z describe the position of the wrist in millimeters and o0,a,t describe the orientation of
the wrist in degrees. An example of proper use of this function is contained in the following code
fragment:

#include "val.h"
location point1;
trans(&pointl, 100.0, -100.0, 300.0, 0.0, 87.3, 46.8);
This function performs no range checking and retioosp .

3.3. Location Functions
The function set() copies one location point into another location point.

int set(location *dest_p, location *src_p)
Storel() and loadl() store and load location variables to/from file, respectively.

int storel(char *fname, location *loc_p)

int loadl(char *fname, location *loc_p)

The function here() gets the current location of the robot and places it in the location variable
provided.

int here(location *loc_p)

The function where() prints the current location of the robot to the console. It is incompatible
with Windows.

int where()

3.4. Move Functions

All move commands are affected by a small number of operating parameters. These
parameters include the speed of motion, the configuration of the robot, and the blending of

VAL Simulation Library Page 4

adjacent motion segments. These parameters are set independently of the individual move
commands and remain in effect until explicitly changed.

The function speed() sets the speed of all subsequent move comnududiag subsequent
programs Acceptable values for spd range from 0.01 to 327, but all values less than or equal to
one are equivalent.

int speed(float spd)

The functions valEnable() and valDisable() set VAL switches. The only VAL switch currently
supported is the “CP” switch for continuous path motion. If this switch is disabled, the robot
completely finishes one move before beginning the next. If this switch is enabled (the default), the
robot blends the end of one move with the beginning of the next, producing a smoother transition,
but an inexact trajectory.

int valEnable(int switch)

int valDisable(int switch)

where “switch” can only be the #define’d value “CP”.

Another “switch” that is not VAL compatible is the “TRC_ALTER” switch. By default, this is
disabled. If enabled, a “move” command will interrupt any pending “move” commands, causing an
immediate replanning of the trajectory to the new goal point. This is similar to the VAL “alter”
mode except that strict timing between goal updates is not required. Instead, intermediate goal
points are inserted automatically, as required by the current speed setting.

Move() moves the robot to the location specified by the pointer loc_p in joint-interpolated
mode. This produces unpredictable but controlled motion of the end effector through space as
each joint moves the shortest distance to its destination. Currently, loc_p can be either a precision
point or a transformation.

int move(location *loc_p)

Return values include both PC and TRC100 values with the following meanings:
| RANGE location outside joint limits

| ERROR location not defined properly

BAD_SEQ arm power not on

The move() command, like all motion commands, returns immediately after initiating the
motion. It does not block until the motion is complete. However, the move() command will block
if another motion command is in process. Upon completion of the pending motion command, the
new motion command will automatically unblock.

To force blocking until the completion of a pending motion command, use the valBreak()
instruction.

int valBreak()

VAL Simulation Library Page 5

The precise time of unblocking is determined by the state of the CP switch. If continuous path
motion is enabled (default), unblocking occurs slightly before the robot has settled at the goal
location, when approximately ninety percent of the trajectory is complete. If continuous path
motion is disabled, unblocking occurs when the goal has been reached.

Moves() moves the robot to the location specified by the pointer loc_p in straight-line mode.
The end effector follows a straight line through space while the orientation rotates to the desired
goal pose. Currently, loc_p can be either a precision point or a transformation.

Care must be taken to avoid singularities in the robot’'s workspace. For instance, moves() can
not be executed through a complete extension of joints 2 and 3 or the alignment of joints 4 and 6.

int moves(location *loc_p)

Return values include both PC and TRC100 values with the following meanings:
| RANGE location outside joint limits

| ERROR location not defined properly

BAD_SEQ arm power not on

Occasionally, it is necessary to move the robot with respect to its workspace after locations
have been stored and programs developed. If the locations are stored as transformations, it is easy
to compensate for this with the base() command. Upon initialization, the origin of the robot’s
coordinate frame is reset to the VAL origin at the intersection of the shoulder and waist axes. A
call to base():

int base(float dx, float dy, float dz, float dr)

with dx, dy, anddz representing the motion of the robot’s frame with respect to the original

VAL frame, in millimeters, relocates the position of the robot with respect to previously-defined

transformationsdr represents the incremental rotation of the base around the z-axis, in degrees.
All four of the arguments to the base() command are cumulative from the most recent

initialize() command and are defined relative to the VAL world frame. Precision points are not

affected by the base() command.

To move the end effector simultaneously with the arm, use movet() and movest() for joint-
interpolated and straight-line motions, respectively.

int movet(location *loc_p, float hand)

int movest(location *loc_p, float hand)

The argument “hand” specifies the opening of the end effector. Currently, only pneumatic end
effectors are supported so if hand is positive, the end effector opens. If hand is zero or negative,
the end effector closes. Return values are identical to move() and moves().

Ready() executes a move to the ready position (straight up). The ready position is defined as
the joint angles: 0, -90, 90, 0, 0, 0 in degrees. Return values are identical to move().

VAL Simulation Library Page 6

int ready()

Dmove() executes a "delta move." The jX values are increments from the current joint
positions in degrees. Return values are identical to move(). This is not a feature of VAL-Il and is
provided only for convenience.

int dmove(float j1, float j2, float j3, float j4, float |5, float j6)

Draw() executes a "delta cartesian move” in translation only. The dX values are increments
from the current cartesian positions in millimeters. Return values are identical to moves(). This is
a feature of VAL and was removed from VAL-II. It is provided only for convenience.

int draw(float dx, float dy, float dz)

Teach() allows teaching of points via the keyboard. The numbers "1" through "6" select a joint
and the keys "+" and "-" increment and decrement the joint position. The keys "d" and "h" double
and halve the step size, respectively, increasing or decreasing the effective speed of motion.
Pressing <enter> returns |_OK while pressing "a" returns |_ABORT.

Teach() is incompatible with Windows.

int teach()

3.5. Gripper Functions
The following functions immediately open, close, and relax the gripper pneumatic lines:

int openi()

int closei()

int relax()

3.6. Calibration

There are two types of calibration that must be performed: power-up calibration and pot
calibration. In general, these functions are executed from the DOS command line rather than a
user executable. However, subroutine calls have been provided. These calls are not compatible
with the Windows OS.

Power-up calibration is the day-to-day process of initializing the high-precision incremental
joint position encoders with the help of low-precision potentiometers at each joint. The
potentiometers maintain absolute position information through power cycles while the encoders
"forget” where they are every time the robot is powered down.

To perform power-up calibration, first a lookup table is loaded from the file "puma.pot”. This
lookup table contains an accurate encoder value for every corresponding value of the
potentiometer. Then the joints are moved to find the "index pulse" of each encoder. The lookup
table provides the exact encoder value which is loaded into the encoder counter.

VAL Simulation Library Page 7

The prototype for this function is:
int calibrate()

The function first asks for confirmation. If the arm is already calibrated and the command is
aborted, it returns |_ABORT. If the command is aborted and the arm is not calibrated, it returns
| ERROR.

If calibration is not aborted and the lookup table is not loaded, arm power is turned off while
file access is underway. When the "Ready to Calibrate” message appears, arm power is enabled.
Once the "Arm Power On" button is pressed, motion begins immediately.

Some runtime errors can cause the arm to shutdown without stopping the calibration routine.
If this occurs, simply turn arm power back on.

Pot calibration is the process of generating the lookup table and storing it in the file
"puma.pot"”. In order to do this, potcal relies on a set of six "magic numbers." These magic
numbers must be identified the first time potcal is executed and any time major maintenance is
performed involving the removal or adjustment of a motor, encoder, or transmission element.
Once these numbers have been identified, they should not be changed unless a major maintenance
procedure is performed.

The function prototype is:

int potcal()

Potcal() expects to find the file "potcal.cfg" in the local directory. The format of this file must
not change, including the number and location of blank lines and comments. A flag in this file is
set to "1" to find the magic numbers automatically, or "0" for normal operation.

To perform potcal, it is necessary to position the arm in the ready position (straight up). See
the Unimate manual for the exact definition of the ready position. If magic numbers are to be
found, it is of the utmost importance that the arm be positigagdaccuratelyin the ready
position. The magic numbers determine the kinematic accuracy of joint positions and have a
profound impact on straight-line motions and transformations. Subsequent executions of potcal
that rely on existing magic numbers must begin in the ready position, but initial accuracy need
only be in the realm of +/- 1 degree. Higher accuracy is demanded to extract magic numbers!

Upon starting potcal, turn on arm power and each joint will be moved through its full range of
motion in sequence. The actual range of motion of each joint is specified in the file "potcal.cfg”.
The workspace must be clear of obstructions as the range of motion of each joint determines the
range over which "calibrate()" can be executed successfully.

4. Administrative Functions

A small number of commands have been provided for system administration. To use these,
include the header file “valadmin.h”.

The function logVars() logs certain PUMA variables to the text file “test.dat”. Logging is
turned on if “flag” evaluates to true. Logging is turned off and the data is saved if “flag” evaluates
to false. PUMA arm power will also turn off while the data is being saved to disk.

VAL Simulation Library Page 8

int logVars(int flag)

LogVars() returns a TRC100 return value.

The function TRCversion() returns the current version number of the VAL emulation library.
If “flag” is zero, it also prints the version number to the console. The flag must be non-zero for
Windows programs.

float TRCversion(int flag)

VAL Simulation Library Page 9

