Operating System Resour ce Reservation
for
Real-Time and Multimedia Applications

Clifford W. Mercer

June 1997
CMU-CS-97-155

School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3890

Submitted in partial fulfillment of the requirements for
a degree of Doctor of Philosophy in Computer Science

Thesis Committee;

Elmootazbellah N. EInozahy, Co-chair
Ragunathan Rajkumar, Co-chair
Mahadev Satyanarayanan
Hideyuki Tokuda
Kevin Jeffay, University of North Carolina-Chapel Hill

Copyright (11997 Clifford W. Mercer

This research was supported in part by a National Science Foundation Graduate Fellowship, in part by Bell
Communications Research, in part by U. S. Naval Research and Development, in part by the Office of Naval
Research, in part by Northrop-Grumman, in part by Philips Research, and in part by Loral Federal Systems.
The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of NSF, Bell Communications Research, NRaD,
ONR, Northrop-Grumman, Philips Research, or Loral Federal Systems.

Keywor ds. Resource reservation, Real-time systems, Operating systems, Multimedia appli-
cations, Scheduling, Resource management, Real-Time Mach

For Franke

Abstract

Increases in processor speeds and the availability of audio and video devices for per-
sonal computers have encouraged the development of interactive multimedia applications
for teleconferencing and digital audio/video presentation among others. These applications
have stringent timing constraints, and traditional operating systems are not well suited to
satisfying such constraints. On the other hand, hard real-time systems that can meet these
constraints are typically static and inflexible.

This dissertation presents an enforced operating system resource reservation model for
the design and implementation of predictable rea-time programs. Applications can reserve
resources based on their timing constraints, and an enforcement mechanism ensures that
they do not overrun their reservations. Thus, reserves isolate real-time applications from the
temporal properties of other real-time (and non-real-time) applications just as virtual mem-
ory systems isolate applications from memory accesses by other applications. In addition,
reserves are first class objects that are separated from control abstractions such as processes
or threads. Therefore reserves can be passed between applications, and this model extends
naturally to distributed systems.

Reserves support the development of hard real-time and soft real-time programs, and
programming techniques based on reservesillustrate how to use them effectively. Animple-
mentation of processor reserves in Real-Time Mach shows that reserved multimedia appli-
cations can achieve predictable real-time performance.

Vi

Acknowledgments

| would like to express my appreciation to my advisors, Mootaz Elnozahy and Raj Raj-
kumar, for their guidance, technical expertise, and time which they so generously shared
with me during my doctoral studies. Thanks also to M. Satyanarayanan, Hide Tokuda, and
Kevin Jeffay for their insights, critical comments, and encouragement. | am especially
indebted to Hide Tokuda who was my mentor for several years before | entered the graduate
program at CMU. Hide started the Real-Time Mach Project, which provided the research
environment for this work, and Raj took over the project in the final years of my thesis
work. | am indebted to both of them for their support.

| would like to thank Jim Morris for his guidance and assistance. He helped me better
understand how to do systems research and served as a role model for me. Thanks go to
Roger Dannenberg for the opportunity to work with him and learn from him on several
interesting computer music projects (and for the occasional trumpet duet and brass ensemble
session).

A specia thanks to Joan Maddamma who looked out for me in many ways during my
years at CMU. From the time | was an undergraduate through my years as a graduate stu-
dent, Joan has been avery specia friend.

Many other people who | worked with over the years had a positive influence on me and
on the work contained in this dissertation. | would like to thank Stefan Savage and Jim
Zelenkafor their help with pieces of the implementation of reservesin Real-Time Mach and
for being good friends and colleagues. And | would like to thank Chen Lee, Prithvi Rao,
Andrei Ghetie, Y utaka Ishikawa, Tatsuo Nakajima, Takuro Kitayama, Dan Katcher, Kevin
Kettler, John Sasinowski, and Saurav Chatterjee for being part of the invigorating academic
environment that makes CMU so rewarding.

| would like to thank my father, mother, and sister for their moral support during my
years away at school.

Finaly, | want to thank my wife, Franke, who supported me wholeheartedly in the pur-
suit of my graduate studies. Without her, this work would not have been possible. Thanks
also to my daughters, Caroline and Leigh, for their love and patience with me during the
final years of the thesis work.

vii

viii

Table of Contents

1 Introduction. e 1
L1 MOUVELION . vttt e e e e e 1
1.2 Background. e 2

1.2.1 Programming real-timeapplications 2
1.2.2 Resourcemanagementproblems........................... 3
1.3 RESOUICEIESEIVES. . . o ittt et e e e e e e e 5
14 ContribULIONSottt 7
1.5 Overview of thedissertation. 7

2 Background and Motivation i 9

2.1 Real-time and multimedia application requirements 9
211 TimingcharaCteristiCso 9
212 Criticalityo 13

2.2 Applicationstiming requirementst 16

2.3 Quality of servicemanagement ... 18
231 QOSbhackground 18
2.3.2 Mapping QOSparameterSovi i 19
2.3.3 QOSNEgOLIAtioN. oot 20

2.4 Systemdesignapproaches 21
24.1 Specidlizedhardware. i 21
24.2 Timesharingsystems.t 21
24.3 Read-timeoperatingsystems ... 22
24.4 Softrea-timesystemsupport. ... 23

25 Reserveadbstraction. e 24

3 ResarveModeal 25

31 ReserveabstraCtiont e 25
3.1.1 Reservationguarantee.ttt 25
3.1.2 Scheduling frameworks. 26
3.1.3 Stylesof programmingwithreserves....................... 26

3.2 BaSICIESaIVES o ittt 27
3.21 Reservation specification.t 28
3.22 AdmisSion Control.t 29
323 Scheduling. . ..co i 29
324 Enforcement ... 30

3.3 Reservepropagationiui e 33

3.4 Examplescheduling frameworks. 34
341 RaemONOtONiC vv ittt e 35
3.4.2 DeadlinemonotoNIC.ottt 36

3.5 BasSiCresarVetypesot 38
351 ProCessOrot 39
352 Physical memoryiiiiii i 40
3.5.3 Network bandwidth. i 41

3.6 Reservemanagement.t 42
3.6.1 Default reserves. 42
3.6.2 COMPOSItEIESEIVES . . . oottt e e 42
3.6.3 Reserveinheritance. 43

3.7 Chapter SUMMary.ot e e et ettt e 44

4 Programmingwith Reserves. 45

A1 OVEIVIBIW . .ottt e e e 45

4.2 Usingreservesinapplicationdesign., 46
421 ProgramsStruCturet e 46
4.2.2 Reservationsfor periodic computations 48
4.2.3 Localizedreserveadlocationcoiiiiiiii. 49
4.2.4 Activity-based reservedlocation 52
4.2.5 Coordinating multipleresources. 53

4.3 SiZINgRESEVALIONS. . ..o\t 58
4.3.1 Determining resourcesrequired, 59
4.3.2 Determining initia reservationlevels. 60
4.3.3 Measuringperformance. 61
434 Adaptingo e 67

4.4 Chapter SUMMAIY. . . .ottt e e e 71

5 Implementation. 73

5.1 OVEIVIBW. . .ottt e e 73
52 ReservesinRT-Mach. i 74
5.2.1 Attributesand basicoperations 74
5.2.2 Reservation requests and admissioncontrol. 76
523 Scheduling 77
5.2.4 Usage measurement and enforcement 78
525 Reservepropagation.o.ii i 79
53 ApPPliCationS 81
5.3.1 QuickTimevideoplayer.............ccoiiiiiiiiinnnn. 81
532 MPEGAeCOdercoviii it e 82
5.3 X IV it 83
5.4 Reserved network protocol processing.ovvii i 85
5.4.1 Softwareinterrupt vs. preemptivethreads. 85
542 Mach3.0networkingt 86
5.4.3 Reserved protocol processing.ovve i 88
5.5 QOSMaNager 88
551 INformation SOUMCES oo ittt et e 88
55.2 Admissioncontrol 90
553 EXIENSIONS. . .o\ttt e 90
5.6 TOOIS. oot 91
56.1 ReSErVEMONItOr . ..o v vt 91
5.6.2 USagEMONItOrottt ettt e 93
5.7 Chapter SUMMaryottt e e et et %!
6 Experimental Evaluation 97
6.1 OVEIVIBW. . .ottt e e 97
6.2 Predictability.o 99
6.2.1 Independent syntheticworkloads. 101
6.2.2 Client/server syntheticworkloads 107
6.23 QTPlay/X Servero 115
6.24 mpeg play/X Server.o 122
6.2.5 Protocol processingworkloads.o o 124
6.3 Scheduling Cost.t 131
6.3.1 Measured aggregate schedulingcost 132
6.3.2 Individual operations 133
6.4 Chapter SUMMArYottt e ettt e 136

Xi

7 Related Work 137

7.1 SystemImplementation. 137
7.1.1 Multimediasupport 137

7.1.2 QOSarchitectures. e 139

7.1.3 NetWorking 140

7.2 Schedulingtheory i e 141
7.3 ApPPliCatioNS.o 142
7.3.1 Adaptiveapplications i 142

7.3.2 TO0IS .t 142

8 CONCIUSION . . 145
8.1 ContribUtioNS. . ..ot 145
8.1.1 Resourcereservation abstraction. 145

8.1.2 Implementation 146

8.1.3 Experimental evaluation 146

8.2 FUIUredireCtionsottt 147
Bibliography e 149

Xii

List of Figures

2-2
2-3

2-5
2-6

2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
3-1
3-2
3-3
34
35
3-6
3-7
3-8
4-1
4-2
4-3
4-4
4-5
4-6

Schematic of a Time Constrained Computation 10
Periodic Task 11
Aperiodic, Predictable Task. 11
Aperiodic, Unpredictable Task 12
Preemptible Task 12
Non-preemptible Task i 13
Hard (Catastrophic) Deadline Value Function 13
Hard DeadlineValueFunction oo, 14
Ramped Hard DeadlineValueFunction 14
Soft DeadlineVaueFunction. i 15
Non-real-timeVaueFunction. oo 15
Periodic Playback Computations., 16
Playback Application Computing Ahead 17
Interactive Application with Limited Workahead 17
Levelsof QOS Specification.cc i, 19
QOSLevelswithQOSManagerot 20
Periodic Scheduling Framework 29
Enforcement Illustration i 30
Enforcement TiImerst e 32
Reserve Propagationt 33
Deadline Monotonic Scheduling Framework 37
Resourcesand BasiCReESErves.t 38
A COMPOSItERESEIVEt 43
Reservelnheritance. 44
Call Graph for Frame GenerationandDisplay 47
Thread and Reserve Out-of-Phase. i, 48
Call Graph with Separate Client and Server Reserves 49
Switching Reservefrom ClienttoServercoou... 50
Client Requirement with Intermediate Deadline. 51
Call Graph with One Reservefor AllNodes. 52

Xiii

4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
5-1
5-2
5-3
5-4
5-5
5-6
S-7
5-8
59
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22

Xiv

Call Graphfor Video Playback. o i, 54

Call Graph for Video Playback withReserves. 55
Synchronization Problem with Multiple Resources. 56
Multiple Resources Used with Intermediate Deadlines 57
Video Playback with Better Reserve/Computation Mapping. 58
Resource Demand Constantand Reserved. 62
Resource Demand Occasionally Exceeds Reservation. 63
Exceedingly Demanding Computation Aborted. 64
Computation Impinges on Following Computation. 64
Computation Impinges on Subsequent Computations 65
Average Demand Exceeds Reservation 66
Resource Demand Smaller than Reservation 66
Measurements of Multiple Resources., 67
System COomMPONENESt e 73
QTPlay Outline. 81
mpeg_play Outline 82
Networking withtheUX Server............ 86
Networking with the Socket Library 87
Resource Management Schematic, 89
MMONMaIN VIBW. . .o e e 91
rmonDetail VIews 92
ModifyingaReservation i 9
Compute-Bound Periodic Task with No Competition 99
Compute-Bound Periodic Task with Competition.................... 100
Experiment LResults 104
Experiment 2ResultS 105
Experiment SResUlts 106
Experiment4Results 110
Experiment 5ResUItS 111
Experiment 6 Results 112
Experiment 7Results 113
Experiment 8ResUItSt 114
Software Configuration.t 116
Experiment OResults 118
Experiment IOResUltst 119
Experiment 11 ResUltSo 120
Experiment 12 ResultSo 120
Experiment 1I3ResUlts 121
Experiment 14 ResUltSo 123
Experiment ISResUltSo 127
Experiment I6Results 129
Experiment 17 ResultSo 130
Experiment I8ResUlts 131
Scheduling Costo 133

List of Tables

6-2
6-3

6-5
6-6

6-8

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20

Summary of Testbed Platforms. i 98

Experiment L Parameters. 102
Example Parametersfor Experiment2 102
Example Parametersfor Experiment3 103
Experiment 4 Parameters.t e 108
Experiment 6 Parameters. e 108
Experiment 7 Parameters. 109
Experiment 8 Parameters. 109
Experiment 9 Parameters. e 116
Experiment 10 Parameters.o 117
Experiment 11 Parameters. 117
Experiment 12 Parameters. 117
Experiment 13 Parameters.ot 118
Experiment 15 Parameters. 125
Experiment 16 Parameters. 125
Experiment 17 Parameters.o e 126
Experiment 18 Parameters. 126
Reserve SWItCh ... o 134
Replenishment Timer. e 135
Checkpoint CoSt.ot 135

XV

XVi

Chapter 1

| ntroduction

This dissertation presents the design, implementation, and experimental analysis of a
model for operating System resource reservation. The reservation system supports predict-
able performance in real-time and multimedia applications, enabling them to meet their tim-
ing requirements, and facilitating adaptive resource management. This approach is suitable
for real-time programming problems that arise in personal computers and workstations
where users may want to run real-time multimedia applications or other real-time programs.
The approach is also applicable to embedded system design where better resource reserva-
tion abstractions at the system level aid in the design, debugging, and maintenance of such
systems.

1.1 Motivation

Recent increases in processor speed and network bandwidth combined with the wide
availability of digital audio and video devices have enabled a plethora of multimedia appli-
cations and services. Examples of these include audio/video presentation and playback,
audio/video phone and conferencing, persistent multimedia data storage services, telephone
answering and call management, speech processing, and virtual reality applications.

Stringent timing constraints and large volumes of data characterize these applications.
Existing operating systems are not designed to support such applications, especially when
real-time multimedia applications execute alongside a non-real-time workload. A key
requirement of systems for multimedia applications is predictability, and this means that
possible contention for resources must be identified and managed to ensure the timeliness of
multimedia data processing and delivery. Although it is possible to manage contention for
system resources in an ad hoc manner based on the specific requirements of a particular
class of applications, this dissertation describes a more structured approach to managing
contention based on:

* A reservation model that provides an abstraction for resource capacity

reservation and a system-level mechanism for scheduling resources.

* A higher-level layer for implementing resource management policy using
the system-level mechanism.

* Programming techniques for structuring applications in a way that can
take full advantage of the resource reservation model.

The reservation mechanism and allocation policy provide abstractions that relieve the
system designer from relying on complicated high-level application information to make
low-level scheduling decisions. And the programming techniques facilitate the program-
ming of real-time applications that meet their timing constraints.

1.2 Background

Real-time system designers must take timing constraints into account when developing
real-time applications and the systems to support them. The programming techniques and
resource management policies that have been developed for real-time systems typically
apply ad hoc solutions for each application area. Several issues and problems arise which
can be addressed with appropriate system abstractions.

1.2.1 Programming real-time applications

In applications with timing requirements, the software must be designed to satisfy the
timing constraints. The user-level servers and system services used by such applications
must be designed with timing constraints in mind. The resource management policies under-
lying those system services must also be designed to support applications with timing con-
straints.

Traditionally in real-time system design, application programmers use small, simple
operating systems that provide fixed priority processor scheduling, priority queueing for
various system resources such as semaphores and mailboxes, and perhaps priority inherit-
ance protocols. The application programmers must then build many of their own real-time
system services such as database management systems, file systems, and network communi-
cation. These programmers must carefully schedule the various applications running on the
system and manage contention for the processor and other system resources. In doing the
design and scheduling, the computational requirements of applications must be carefully
measured and characterized, and resource sharing must be carefully planned. Applications
are therefore very sensitive to the misbehavior of other applications. For example, if a high-
priority real-time application has a bug that sends it into an infinite loop, the effect on other
applications and the system as a whole would be devastating. The errant application would
take over the processor and would not relinquish it, forcing a system crash.

This extreme sensitivity among applications is the result of a lack of suitable system
abstractions for effectively managing shared resources in real-time systems. Many abstrac-
tions exist in real-time scheduling theories, but typically the assumptions of the theoretical
results are implicitly embedded in real systems. An example of an assumption that many

theories require is that the worst-case execution times (WCET) for computations in real-
time applications are known at system design time. Most systems designed using analysis
techniques that have this assumption do not explicitly check or enforce worst-case execution
times for computations. Appropriate system abstractions would explicitly bring the assump-
tions into the actual system where they could be checked and, in the best case, even
enforced.

1.2.2 Resour ce management problems

Suitable system abstractions could effectively address several problems that arise in
real-time system. These problems fall into three broad areas: resource management policies
that can satisfy timing constraints, mechanisms to support the policies, and analysis tech-
niques based on the available mechanisms.

Many systems do not provide scheduling policies that directly support real-time
resource management. For processor scheduling, most systems provide either fixed priority
or deadline scheduling policies. Both of these policieslack complete information about real -
time requirements and therefore do not address important problems such as how priority
should be assigned or how to prevent overload. The following issues arise in the design of
resource management policies:

* Priority assignment problem: Simple priority schedulers are hard to
use, especially if there are many activities with timing constraints. If
there is no global repository of knowledge about the timing constraints of
different activities in different applications, there is no basis for deciding
what the priority ordering of the activities should be.

* Overload problem: To prevent overload, the scheduling policy requires
information about real-time constraints such as the computational
requirements and frequency of execution. Even if the designer can
express the resource and timing requirements for real-time applications, a
system with no admission control policy cannot protect itself from over-
load.

» Flexibility requirement: The timing constraints and resource require-
ments for dynamic real-time applications may change dynamically dur-
ing execution. The scheduling algorithm must support efficient
adjustment of requirements.

To effectively schedule real-time applications such that applications cannot monopolize
system resources requires some usage measurement and enforcement mechanisms. Informa-
tion gleaned through these mechanisms can be used in the scheduling policy to make deci-
sions about how priorities or deadlines should be dynamically adjusted to reflect the
requirements and usage patterns of applications. The problems that motivate the use of these
mechanisms are described briefly below:

Enforcement problem: An application that specifies resource and tim-
ing requirements may accidentally or deliberately attempt to exceed its

stated requirements. This may interfere with the satisfaction of timing
constraints for other reserved activities, and it may cause starvation
among unreserved activities.

* Measurement problem: Enforcement of resource requirements means
that resource usage of each application must be accurately measured and
compared to the allocation that has been made on its behalf. If the activ-
ity uses external modules, servers, and system services, the measurement
must include that usage as well.

» Coordination problem: Many time-constrained activities are composed
of multiple sub-activities implemented by other modules, user-level serv-
ers, or system services. Allocating resources for a single activity that
spans multiple modules, possibly in different memory protection
domains, is complicated. It is necessary, however, to be able to place tim-
ing requirements on the overall activity and to track the resource usage
for the overall activity.

Other problems deal with higher level issues of how to analyze system behavior given
more sophisticated abstractions and mechanisms for scheduling and resource management.
The following issues arise in this context:

» Didtributed real-time scheduling problem: An activity that uses exter-
nal modules and services may require the use of multiple resources
within certain time constraints. Coordinating usage across multiple
resources to meet timing constraints is a hard problem.

* QOS management problem: Real-time applications may dynamically
change their quality of service (QOS) requirements. In a system with
many such applications, a high-level resource manager (sometimes called
a QOS manager) is needed to resolve conflicts and negotiate between
applications.

In traditional real-time systems design, many of these problems are avoided in the
design phase by careful measurement and analysis of simple computations and their
resource requirements and by ad hoc scheduling techniques. This approach results in inflex-
ible systems that are difficult to maintain [43,68]. In particular, supporting dynamic real-
time activities with timing constraints and resource requirements that may change freely at
run-time stretches the traditional approach beyond its limits.

Recent work in real-time systems addresses some of these problems. Several systems
(e.g. [3,53,113,124,125]) allow specification of timing requirements instead of forcing the
programmer to determine an appropriate priority assignment. A few systems have on-line
admission control policies [3,78,113], but many others use off-line analysis [53,124,125].
Still others have no admission control at all [19,21,90]. Some limited flexibility require-
ments for hard real-time have been addressed recently [122]. This work focuses on mode
changes, which are radical but infrequent changes in the task sets of a real-time system. For
example, the real-time system in an airplane might experience a mode change after takeoff
as it switches from the ground-based task set to the air-based task set.

Very few software systems address the measurement and enforcement problems with
respect to resource usage although most systems can detect and react to missed deadlines
[43,125]. In networks, the notion of enforcement or policing is much more common
[33,98,128]. The work on priority inheritance protocols[8,16,51,86,97,108] addresses some
aspects of the coordination problem.

The distributed real-time scheduling problem is an active area of research [38]. The
QOS problem is another active area of research. Some operating system research in thisarea
focuses on best effort approaches [21] although other research emphasizes guarantees
[46,53,78,81,126].

1.3 Resourcereserves

This dissertation defines a resource reservation model that provides an operating system
abstraction called areserve. Reserves explicitly represent reservations on resources such as
processors, memory pages, disks, and network devices. In particular, reserves support

» gpecification of reservation parameters,

» admission control,

» scheduling based on timing constraints and usage requirements,
* reservation enforcement,

* reserve propagation in the RPC mechanism,

» flexible binding of threads to reserves.

Reserves prevent applications from over-running their allowed resource usage and inter-
fering with other reserved activities or starving unreserved activities. Applications reserve
capacity on the resources they need to carry out their computations. For example, an appli-
cation can reserve 10 ms of computation time on a processor for every 100 ms of real-time.
The application then binds to the reserve, and the processor scheduler uses the information
associated with the reserve to control the scheduling of the application. The system also per-
forms an admission control test before granting the reservation to make sure that the
resource can support the reservation being requested. The enforcement mechanism ensures
that an application does not use more than its reserved time if doing so would interfere with
other reserved activities.

The reservation parameters associated with an application’s reserves are not necessarily
fixed for the lifetime of the application. A dynamic real-time application must be prepared
to change its behavior and timing requirements based on changing requirements of users and
possibly the changing availability of resources. A user may want to change the frame rate on
a video player or change the resolution, and the application must be ready to adjust its
resource reservation levels appropriately. Likewise, reserves must support an operation that
modifies the reservation parameters, subject to the admission control policy.

Reserves are first class objects in the operating system; a reserve is associated with a
particular thread (or process) by explicitly binding the thread to the reserve. This allows an

application to reserve all of the resources it will need for its computation, including
resources that will be needed by various modules, servers, and system services it intends to

invoke. The application can then pass references for its resource reserves to modules or

servers along with the operation invocation. The module or server can bind its thread to this

reserve when performing the operation, and it can then take advantage of the resources that

have been reserved by the client. Having modules and servers charge a caller’s reserve for
work done on behalf of the caller also maintains a consistent view of the resource usage that
is being consumed on behalf of that client.

The reserve model presented in this dissertation addresses the problems identified in the
previous section. The scheduling policies embedded in the reserve model address the prior-
ity assignment problem and the overload problem while remaining flexible in terms of
accommodating dynamic changes in application resource requirements as discussed below.

* Priority assgnment problem: Reserves avoid the priority assignment
problem by accepting reservation specifications that include the timing
constraints and usage requirements.

* Overload problem: The admission control policy of the reservation
mechanism prevents overload. This is possible since the scheduling pol-
icy has information about both the computational resource requirements
and the timing constraints (such as period of invocation) for each applica-
tion.

* Flexibility requirement: Changes in reservation parameters can be
made at any time, subject to the admission control policy.

The reserve model makes use of several system mechanisms that support the abstrac-
tion. These mechanisms provide information about resource usage and that coordinate the
consumption of resources for an activity that crosses memory protection boundaries as fol-
lows:

 Enforcement problem: Reservation enforcement isolates reserved
activities from undue interference from other reserved activities.

* Measurement problem: The flexibility in binding reserves makes it
possible to accumulate resource usage charges for an activity even when
work is done by external modules, servers, or system services.

e Coordination problem: The reserve model supports reserve propagation
which includes a “priority” inheritance mechanism and which takes
advantage of the flexibility in binding reserves to threads.

The reserve model provides an abstraction that can be used for distributed real-time
scheduling and QOS management. The approaches to these problems are described briefly
below:

» Distributed real-time scheduling problem: The reserve model supports
reservations for remote resources, and pipeline-style software architec-
tures are supported. This is not optimal, but future work on this problem
could take advantage of the reserve model as a base.

* QOS management problem: A high-level QOS management layer can
use reserves to carry out resource allocation policy decisions. The QOS
managers can carry out their allocation decisions by manipulating reser-
vation parameters for the applications being managed.

1.4 Contributions

This dissertation describes and analyzes a resource reservation solution to the problem
of supporting predictable execution of real-time and multimedia applications with specific
quality of service parameters. It shows that:

Resource reserves, an enforced operating system resource reserva-
tion abstraction, effectively supports real-time and multimedia
applications. Reserves allow the software designer to specify timing
requirements on resources required, thus providing a method for
guaranteeing deadlines in real-time applications. The reservation
abstraction accommodates non-real-time applications as well as
real-time applications.

This dissertation defines an enforced resource reservation model called reserves and
then describes programming techniques for developing applications using reserves. It pre-
sents an implementation of one type of resource reserves, processor reserves, in Real-Time
Mach along with several real-time applications that use reserves to satisfy their timing con-
straints. These applications included a suite of synthetic benchmark programs, a QuickTime
video player, an MPEG player, and a version of the X server. Experiments with these appli-
cations showed that reserves can indeed provide predictable behavior for real-time applica-
tions even with competition from other real-time and non-real-time applications.

Reserves are a tool that real-time system designers can use to raise the level of abstrac-
tion for resource scheduling in real systems. This allows applications’ timing requirements
to be defined and guaranteed in isolation with the system providing high-level guarantees
that resources will be available when needed by each real-time application.

1.5 Overview of the dissertation

Chapter 2 describes the background and motivation for the dissertation in more detail.
Chapter 3 describes the reserve model, and Chapter 4 discusses techniques for structuring
programs to best take advantage of reserves.

Chapter 5 describes the implementation of processor reserves in Real-Time Mach, a
quality of service (QOS) manager, and several reserved applications and servers. Chapter 6
presents an experimental evaluation that explores the predictability achieved by using
reserves and the overhead involved in providing that predictability.

Chapter 7 discusses related work, and Chapter 8 summarizes the contributions of the
dissertation and presents the conclusions and future directions.

Chapter 2

Background and Motivation

This chapter discusses the requirements of real-time and multimedia applications and
describes some of the problems system designers encounter in attempting to support such
applications. The case is made for an operating system resource reservation approach to the
problem.

2.1 Real-time and multimedia application requirements

Real-time applications require not only that computations result in logically correct
answers, but that the answers are available within certain timing constraints. A logically cor-
rect answer that arrives late is considered incorrect in area-time system [114]. Many multi-
media applications have this property that late computations are useless. For example, if a
video frame or audio sample arrives after the time at which it wasto be displayed or played,
it isno longer useful.

This section gives an overview of different kinds of timing constraints and criticality
characteristics of real-time and multimedia applications. The models described here repre-
sent a compendium of the models that researchers have addressed in the literature.

2.1.1 Timing characteristics

In general, atask in areal-time system has timing constraints that specify when the com-
putation may begin, how long it executes, and the deadline for the completion. Figure 2-1
ilustrates a computation schematically. This generic model is common in the operations
research literature [20]. The computation has a ready time, r, at which the computation
becomes available for scheduling. At some point after the ready time, the computation will
be scheduled and start processing for atotal duration of C. The duration between the ready
time and the start of processing is enclosed in a white box. This indicates that the task is
available for scheduling but has not started yet. The black box represents the computation
that completes at time E. A deadline, d, may be associated with the computation aswell, and

9

the goal is to complete the computation before the deadline. In Figure 2-1, athick vertical
line represents the deadline.

Ready () Scheduled Completed (E) Deadline (d)

YooYy vy

[T |

time

Figure 2-1: Schematic of a Time Constrained Computation

The ready time of acomputation may arise from aclock event, an external interrupt, or a
software event generated by some other computation. The ready event may be an instance of
a periodic computation where the same computation is activated periodically. The ready
event may be aperiodic but predictable, or it may be unpredictable. The computation time
may be fixed or it may be variable or unpredictable. The computation itself may be preempt-
ible, or it may form a non-preemptible critical region. The deadline is usually some fixed
duration after the ready time, but the implications of missing a deadline may vary. Hard
real-time computations take the deadline to be a hard deadline where the computation must
be complete by the deadline time. Alternatively, the deadline may just be arecommendation
or preference for completion of the computation, a soft deadline.

Since a computation may be periodic, we must sometimes distinguish between the over-
all activity and the periodically occurring computations. We call the overall activity atask,
and we refer to an instantiation or individually scheduled computation of the task as a job;
thus atask isa stream of jobs. The jobs of a particular task are considered to be identical for
the purposes of scheduling athough variations can be indicated by a variable or stochastic
computation time. We will use the word task to mean both the stream of instantiations and
an individual instantiation when such usageis clear from the context.

A periodic task has ready times for the task instantiations separated by a fixed period.
Periodic tasks are the main focus of the original rate monotonic scheduling work [67] and
the many extensions that have followed [63,108]. Figure 2-2 shows a periodic task. The fig-
ure shows four instantiations, each with an associated ready time, r;. The ready times are
separated by the period t. The computation time is represented by the black box, and the
preceding white box represents the time when the task is ready by has not yet been sched-
uled to execute. In this example, the computation time is constant across task instantiations,
and the deadline is at the end of the period.

10

time

Figure 2-2: Periodic Task

Aperiodic tasks are more difficult to specify. Some aperiodic tasks are predictable to a
certain extent; it may be possible to predict the arrival of instantiations of an aperiodic task
within some scheduling horizon of h time units. Figure 2-3 shows an aperiodic task with a
scheduling horizon of duration h from the current time. This kind of timing requirement is
used in computer music, for example [5,25]. Within thiswindow of h time units, the ready
times of instantiations of the task are known, but beyond the horizon, nothing is known of
the behavior. The computation time is assumed to be constant across instantiations in the
single task, and the deadlines are left unspecified.

Current
time h
[[I
| | | -
ry r, ra time

Figure 2-3: Aperiodic, Predictable Task

Another class of aperiodic tasks is almost completely unpredictable. It is common, how-
ever, to associate a minimum interarrival time for the instantiations of these unpredictable
aperiodic tasks. Much work has been done on scheduling aperiodic tasks with soft deadlines
[120] and on aperiodic tasks with hard deadlines, which are known as sporadic tasks
[52,111]. Figure 2-4 illustrates an aperiodic task where the arrivals are unpredictable.

11

3 time

Figure 2-4: Aperiodic, Unpredictable Task

The computation time is another dimension along which tasks may vary. The computa-
tion time may be fixed or merely bounded in duration. The computation could also be
described by a statistical distribution, but that case is much harder to analyze.

Figure 2-5. Preemptible Task

Another characteristic of the computation isits preemptibility. It may be completely pre-
emptible (that is preemptible at any point) or it may be non-preemptible. Or it may be pre-
emptible but with one or more non-preemptible critical regions during which scheduling
events are not allowed (possibly during system calls for example). Different assumptions
are made to achieve different results[67,72,82], and in particular, much work has been done
on handling non-preemptible critical regions[8,16,51,97,108]. Figure 2-5 shows an exam-
ple of a preemptible task, P, and its interaction with another task, Q. For this example, we
assume that P is preemptible and has alower priority than Q. P becomes ready at time r, and
begins to execute immediately. At time r,, Q becomes ready, and since Q has priority over
P, Q preempts the ongoing execution of P. After Q completes, the execution of P resumes.

12

| | | | >
r r Ep E 0 time

Figure 2-6: Non-preemptible Task

Figure 2-6 illustrates a similar case where the computation of P is non-preemptible and
where Q has priority over P. P becomes ready at time r, and begins to execute. Q becomes
ready at time r,, but even though Q has priority over P, P cannot be preempted, and Q must
wait until the execution of P completes. After Pisfinished, Q can begin execution.

2.1.2 Criticality

Deadlines may be classified as hard or soft. We can describe various types of deadlines
by means of a value function. Value functions have been used for scheduling [15,55], but
here they are used for purposes of exposition. A value function is a function of time that
indicates the value that completion of the task would contribute to the overall value of the
system. For example, Figure 2-7 shows the value function of atask that has a hard deadline;
the value drops off to negative infinity at t = d. The task becomes ready at timer, and its
deadlineisd. If the task is completed at time t where r <t < d, then the system receives some
value, V. On the other hand, if the task completes after d, the value is negative infinity, a cat-
astrophic failure.

value

time

Figure2-7: Hard (Catastrophic) Deadline Value Function

13

The result of missing a hard deadline may not be catastrophic. Figure 2-8 shows a case
where completion of atask would have some value until the deadline d when the value of
completion of the task goes to zero. This indicates that the system will receive no benefit
from completing the computation after d, and so the task should be aborted, freeing any
resources it holds. In contrast to the previous case, the system can continue to operate,
achieving a positive value even if this particular task is aborted and makes no contribution to
that value.

vaue

fime

Figure 2-8: Hard Deadline Value Function

Other variations on the idea of hard deadline might include a value function that ramps
up to the deadline asillustrated in Figure 2-9. And depending on where the ramp starts, this
type of value function can specify tasks that must be executed within very narrow intervals
of time.

vaue

time

Figure 2-9: Ramped Hard Deadline Value Function

14

The concept of a soft deadlineisillustrated in Figure 2-10 where the value function goes
gradually to zero after the deadline. In this case, there is some value to the system in com-
pleting the task after the deadline, and the task should not be aborted right away asin the
case of the hard deadline.

value

time

Figure2-10: Soft Deadline Value Function

A non-real-time task might be described by the value function shown in Figure 2-11. In
this case, completion of the task always has a positive value associated with it. This indi-
cates no explicit timing constraint, although in practice, few of us are willing to wait indefi-
nitely for a computation to complete.

value

tfime

Figure 2-11: Non-real-time Value Function

15

2.2 Applicationstiming requirements

Many multimedia applications have real-time constraints. Even simple playback appli-
cations have real -time constraints that must be satisfied. For example, an audio player appli-
cation might repeatedly read audio data from afile on disk and then enqueue the data for the
audio device. Figure 2-12 illustrates the periodic computational requirements of such aplay-
back application. The activity of the player is illustrated on the line labeled “P”, and the
activity of the device is represented on the line labeled “D”. In each period, the applications
reads, processes, and enqueues the data to a device. At the end of each period, the device
reads the data out of its buffer, performs D/A conversion, and the analog signals goes to a
speaker.

time

Figure 2-12: Periodic Playback Computations

A potential problem is that the computation of the audio player may be delayed so much
that the device buffer empties and there are no samples for the device to convert to an analog
signal. For a playback application, one solution is to introduce a large buffer and allow the
playback application to execute for many periods to build up a large buffer of data ready to
be played by the device.

Figure 2-13 shows a player with execution history shown on the line labeled “P”. The
player buffers a number of data blocks for a device; the size of the data is indicated in the
area labeled “B” between P and D. The device consumes data from the buffer, and the activ-
ity of the device is indicated on the line labeled “D”. Even if the audio player is delayed for
a period or two, there will still be plenty of data in the buffer and the device will not run out
of data blocks. The player can catch up with the processing that was delayed.

Another potential problem is that if some other activity on the machine is very active
and manages to deprive the audio player of the resources (like processor time) for a very
long time, then audio playback will be noticeably disturbed. This kind of intense competing
activity can be avoided, and with large buffers audio playback will be quite smooth.

16

PL B E N EENEENEENEEEENEERNENN.

5 _wwnnBDRERRRRRRERNNI

.
time

Figure 2-13: Playback Application Computing Ahead
Interactive applications cannot afford to use large buffers to smooth variations in sched-
uling delay. The delay introduced by large buffersis often too great to satisfy stringent end-
to-end delay bounds in interactive applications like video teleconferencing. Instead, the sys-

tems must support applications that can ensure that bounds on the scheduling delay are
observed. Thus the variations can be reduced and less buffering is required.

Pl B E N EENEENENEEEEENEERNENN.

B Nl EN ENI = = = = = S B B B BN B BN BN B B B .

Figure 2-14: Interactive Application with Limited Workahead

Figure 2-14 shows the case where an interactive application can buffer the data gener-
ated in one period, but since thereisa delay constraint, the application cannot afford to com-
pute ahead several periods asin the previous case. The buffer must remain small. In order to
make sure that the buffer is never empty when the device goes to get the next block of data,
the application must make sure that the computations to enqueue the next block of data are
done in time. This means it must also make sure that resources it will need from the system
are avalable in time as well.

17

Other multimedia applications have timing constraints that differ from the periodic tim-
ing of the stream-oriented applications described thus far. For example, computer music
applications involve performing computations to generate musical notes and other musical
events. The number of notes that need to be generated at any point in time may vary widely
depending on what the music calls for, so thereis little periodic structure to describe the
computations to be executed.

Silence-suppressed audio presents a similar problem. For audio conversations, it is not
always necessary to transmit data for the silent portions of the audio streams in a two-way
conversation. Again, the computational requirements become aperiodic when the amount
and timing of data depend on speech patterns.

There are other applications, such as compressed video players, where a periodic execu-
tion pattern exists but where the computation time required within the periods varies. Com-
pressed video data contains frames whose size varies according to the compression
algorithm and the characteristics of the scene and how fast scenes are changing in the video
source.

2.3 Quality of service management

Many multimedia applications have timing requirements and other quality of service
(QOS) parameters that represent the user’s desires and expectations for the performance of
the applications. The complexity of providing for these timing requirements at the system
level is exacerbated by the fact that the user may change those timing requirements at any
time during the execution of the applications; and of course the user may create and termi-
nate multimedia applications at any time.

2.3.1 QOS background

In recent years, researchers in the computer networking and in the telecommunications
communities have been working on ways to express the QOS requirements for multimedia
applications. Some of this work dealt with human perception requirements for various
media [30,117], and other work focused especially on parameters and QOS architectures
that are important in the context of scheduling traffic on a network [14,88]. This work can
be considered an extension of the earlier work done in the telephone companies to character-
ize quality of service for telephone customers [100].

As researchers gained more experience with the idea of building networks that could
provide quality of service levels suitable for different types of multimedia traffic, the ques-
tion of how to ensure quality of service levels for end-to-end applications arose. Achieving
that goal means QOS requirements must be supported in the operating system as well as the
network. This observation was an initial motivation for the work described in this disserta-
tion [76], and other system designers have started to focus on this aspect as well
[3,21,46,53,83,102,126].

18

2.3.2 Mapping QOS parameters

In dealing with QOS management it isimportant to realize that there are different types
of QOS parameters for different levels of the system. Applications must interact with the
user in terms of user-level QOS parameters. For video, these user-level parameters might
include frame resolution (width and height of each frame), number of bits/pixel, frames per
second, maximum delay, and maximum jitter. For audio the user-level parameters might
include sample rate, sample size, maximum delay, and maximum jitter. These are the types
of parameters that might be meaningful to the user of a multimedia application. Or it might
be preferable to offer QOS levels with names like: “worst”, “fair”, “good”, “better”, and
“best” to simplify the interface. It would then be up to the application to translate these
abstract QOS specifications to frame rates and sample rates.

Once the user-level QOS parameters are determined, they have to be mapped into sys-
tem-level QOS parameters that would be meaningful for system-level resource management
mechanisms. These system-level QOS parameters would describe how much time is needed
on various resources. They depend on the user-level QOS parameters and on detailed com-
putations that the application performs on data elements in the media stream.

Simple User-level
QOS Specification Interface

¢

Sophisticated User-level
QOS Specification Interface

v

System-level
QOS Specification

Figure 2-15: Levelsof QOS Specification

Figure 2-15 summarizes these levels of QOS specification. The arrows in the figure
indicate that there are mappings from one level to the next lower level and also that there are
inverse mappings that come into play as well.

To allow the user to specify the QOS parameters desired at the highest level, the applica-
tion must be able to map from user-level QOS parameters to system-level QOS parameters.
The system-level parameters are required for the application to be able to ask for the
resources it will need to execute. If the resources are unavailable, the system-level resource
management mechanism should be able to communicate the fact that those parameters can-
not be guaranteed. It should then initiate a negotiation to arrive at a set of system-level

19

parameters that can be supported by the system. The inverse mapping to user-level QOS
parameters should yield a QOS specification that can be tolerated by the user. Thus, the
inverse mapping from system-level to user-level QOS parametersisjust asimportant as the
forward mapping.

2.3.3 QOS negotiation

The user’'s QOS requirements may sometimes conflict with resource usage limitations,
and therefore the QOS layer may need to negotiate user requirements to resolve such con-
flicts. This negotiation process may be needed throughout the lifetime of certain applica-
tions since user-level QOS requirements may change over the course of execution.

The approach advocated in this dissertation for handling the complexity of a dynamic
execution environment (where programs may have changing real-time requirements) is to
divide the problem into two parts. One part is the dynamic negotiation of resource alloca-
tion. The second part is the resource reservation and scheduling based on the allocation.
These two parts can be addressed with a layering of functionality in the system where a sys-
tem-level QOS management layer handles the resource allocation policy decisions and a
low-level operating system resource reservation mechanism handles the details of dynamic
scheduling and usage enforcement.

Application A Application B
User-level User-level
QOS Specification QOS Specification
System-level System-level
QOS Specification QOS Specification
System-level
QOS Manager

v !

Resour ce Reser vation
M echanism

Figure 2-16: QOS Levelswith QOS Manager

20

Anillustration of the basic outline of the QOS management system appears in Figure 2-
16. Each application has user-level QOS specifications. The applications map the user-level
QOS parameters in to system-level QOS parameters and then negotiate with the system-
level QOS manager to determine a mutually acceptable set of system-level parameters. The
operating system contains a resource reservation mechanism which is used by the system-
level QOS manager to actually allocate the resource capacity, schedule appropriately, and
enforce the resource reservations.

The QOS management layer makes policy decisions about where resource capacity in
the system should be alocated. To do this, it will depend on input from applications as they
make their system-level QOS parameters known. The QOS manager may take input from
user preferences expressed in the form of rules about which applications are more important
than other applications, and it may take input from user interface tools designed to help the
user manage resource allocation in the system. The QOS manager may also coordinate with
other QOS managers on remote hosts for setting up distributed multimedia applications that
require resources on severa different hosts.

2.4 System design approaches

Several approaches have been used in the past to support interactive and playback types
of multimedia applications. These range from hoping for the best, to dedicating expensive
resources, to system support for real-time programming.

2.4.1 Specialized hardware

One approach to supporting real-time multimedia applications is to dedicate hardware to
the tasks that must be performed in real-time. This relieves any contention for resources. As
an example, Pandora’s Box [44] was an early attempt to support multimedia applications in
the context of a desktop workstation. The box contained six transputers, each one dedicated
to a particular activity or class of activity including audio processing, storage/disk manage-
ment, video processing, decompression, network communication, and bus management.
This box was connected to a Sun workstation, to a network, and to a monitor. It coordinated
graphical display from the workstation and video streams from the network or other devices,
combining them and displaying the result on the monitor. The system allowed researchers to
learn much about programming multimedia applications, what kinds of applications where
useful, and user interface issues. However, the cost of the box was very high, and the com-
plexity of programming the box itself was also great.

2.4.2 Time-sharing systems

A number of multimedia applications are available for personal computers and desktop
workstations that run more sophisticated operating systems like UNIX and Windows NT.
These systems use time-sharing scheduling policies that are not particularly well suited for
meeting the timing constraints of multimedia applications.

21

Time-sharing schedulers are tuned to provide fair allocation of resources among users
which are considered equally important. These schedulers also ook at whether a processes
Is compute-bound or not, and they depress the priority of compute-bound processesin favor
of interactive (or 1/0-bound) applications which can benefit from better response times.

This kind of scheduling behavior works well in mainframe systems, but may work
against multimedia applications. For example, a video application that performs a filtering
computation on video frames may ook compute-bound to a time-sharing scheduler and may
therefore get alow priority compared to network and 1/0 activity on the machine. This may
occur even if the video application is the most important activity to the user.

Consider ateleconferencing application that display several video streams on the screen
at the sametime. A fair time-sharing scheduling algorithm would give each of these streams
an equal share of the processor, resulting in the same frame rate for all of the video displays.
This might not be appropriate for the particular application. The user might want more con-
trol over where resources are focused, perhaps to show a higher frame rate for the personin
the conference who has the floor.

In many operating systems such as UNIX [62], VMS [80] and Windows NT [24], the
time-sharing scheduling policy is augmented with a fixed priority extension. The extension
Is usually in the form of a range of fixed “real-time” priorities. With fixed priorities, it is
possible to exercise more control over how the processor is scheduled, but there are other
problems. Many of these issues arise in the context of real-time operating systems as well,
where fixed priority scheduling is commonly used. The next section addresses some of the
difficulties of real-time programming with fixed priority schedulers.

2.4.3 Real-time oper ating systems

Much work in recent years focuses on how to apply real-time systems techniques to
multimedia systems and applications. This includes work directed at methods for using
technology available in commercial real-time operating systems as well as efforts to build
research prototype operating systems.

2.4.3.1 Commercial real-time systems

Most commercial real-time operating systems support fixed priority (FP) scheduling of
processes [99,104]. FP schedulers while useful for real-time scheduling, cannot by them-
selves support multimedia applications.

For example, fixed priority schedulers have no mechanism for dealing with overflow sit-
uations. In general, real-time operating systems do not have the mechanisms for deciding
whether enough resources are available in a system to run a new application; they do not
have support in the system for admission control. Furthermore, there are no mechanisms for
detecting and dealing with overload situations when too many applications are allowed to
run. These issues of load management are typically addressed in an ad hoc manner by sub-
systems specific to particular applications.

22

Even if a system user could determine that a particular collection of applications could
run successfully on a system, the problem of determining what priority assignment should
be used remains unsolved. An application designer may use multiple threads or processesin
the implementation of the program, and that designer will undoubtedly know enough about
the processes’ computational requirements, timing constraints, and precedence relationships
to assign priorities in a reasonable way. However, when running several such applications
developed by different people on the same system, the question arises: How should priori-
ties be assigned to processes in different applications in a way that will result in correct tim-
ing behavior? Without global knowledge of all processes and their timing constraints,
assigning priorities appropriately is exceedingly difficult.

In practice, commercial operating systems are used mainly in embedded applications
where designers carefully measure the resource requirements and coordinate scheduling
based on a scheduling analysis of the specific task set designed for the application [68]. The
system designers have global knowledge about resource requirements, and they use that
information in the scheduling analysis to generate a priority assignment. This makes the sys-
tems rigid and difficult to maintain. Much more flexibility would be desirable.

2.4.3.2 Resear ch prototype real-time systems

Several research prototype operating systems have applied results from real-time sched-
uling theory to multimedia applications [3,53,126]. The DASH kernel [3] used an admission
control algorithm based on a timeline and then used earliest deadline scheduling to actually
sequence the tasks. Other systems used analyses from real-time scheduling theory to guar-
antee timing constraints for applications. For example, YARTOS [53] uses algorithms for
scheduling sporadic tasks [52] to guarantee timing constraints. In order to guarantee perfor-
mance, the computational requirements of the applications must be measured and analyzed
along with the timing constraints such as delay bounds. Then the application can be run with
the expectation that timing constraints will be satisfied.

In RT-Mach [125], much of the work on support for multimedia applications (other than
the work described in this dissertation) used the traditional rate monotonic scheduling algo-
rithm. As with YARTOS, the computational requirements of applications were measured in
advance and analyzed to ensure that timing constraints would be met. The applications
could then run successfully on the system. Much of the work on RT-Mach centered on high-
performance real-time threads packages [92] and QOS managers [127].

These systems took a careful approach to analyzing and guaranteeing timing require-
ments for multimedia applications based on real-time scheduling analyses. They also incor-
porated advanced real-time system features such as priority inheritance protocols [108] and
inheritance protocols for deadline scheduling [16]. These features are essential for support-
ing strong real-time guarantees among programs that share data and interact in other ways.

2.4.4 Soft real-time system support

Several multimedia systems have used scheduling algorithms like earliest deadline first
to make the system more sensitive to timing without necessarily guaranteeing that timing

23

constraints will be met. For example, a system based on Chorus [103] proposed using dead-
line scheduling with no admission control [21]. Other algorithms such as lottery scheduling
[133] attempt to support multimedia applications using proportional sharing of resources
without real-time delay guarantees. A deterministic version of the approach called stride
scheduling [134] was proposed to better support multimedia applications.

These types of systems are able to be more sensitive than time-sharing systems to the
timing constraints of multimedia applications, but without effective admission control, over-
load cannot be prevented.

2.5 Reserve abstraction

The reserve abstraction described in this dissertation addresses several of the key prob-
lems raised above. The abstraction provides a framework for reasoning about resource res-
ervation in an operating system. Other research efforts have focused on reservation of
different resources in isolation. A framework to unify various reservation algorithms is
needed.

The reserve abstraction gives resource reservation first-class status in the operating sys-
tem. Reserves can be allocated independent of any particular process, and references to
reserves can be passed around and bound to different processes as appropriate. For example,
areal-time client might pass information about its timing constraints to a server to ensure
expedited service. Thisisin contrast to the approach where timing constraints and resource
usage requirements are associated directly with processes which makesit difficult or impos-
sible to have one process temporarily take on the timing constraints of another process.

The key feature of the reserve abstraction is the enforcement mechanism. This prevents
applications from overrunning their reservations if that would interfere with the timing
requirements of other reserved activities.

The reservation framework and first-class status of reserves provide the power and flex-
ibility to deal with the problems that arise in real-time system design and practical resource
management. And the enforcement mechanism guaranteed proper resource scheduling. In
combination, these aspects of the reserve abstraction offer an effective solution to the gen-
eral real-time programming problem.

24

Chapter 3

Reserve M odd

This chapter gives a definition of reserves on resources, which form the basis of the res-
ervation model. Reserves provide a framework for integrating admission control, schedul-
ing, and usage enforcement. 1ssues in reserve management are also addressed.

3.1 Reserve abstraction

The reservation model defines the concept of areserve against a particular operating
system resource. A reserveisafirst class object that represents a part of the capacity or a
guantity of the resource that is set aside for a computation which presents that reserve along
with a request to use the resource. The word “capacity” is used in a broad sense here; reserv-
ing a portion of the capacity of a resource means that a thread will have access to the
resource subject to some detailed reservation parameters, and the parameters are specific to
the resource and the reservation system implementation. As an example, a reserve might
specify that 30 ms of computation time on the processor are reserved out of every 100 ms of
real time.

Reserving resource capacity implies that the resource can be multiplexed among several
computations, and the model focuses on multiplexed resources such as processors and net-
work bandwidth. Other types of resources such as physical memory pages and buffers are
not amenable to extremely fine-grained multiplexing, and these are referred to as discrete
resources. In this model, discrete resources are reserved on a per unit basis and the reserva-
tion dedicates the resources units indefinitely rather than implying a multiplexed usage of
capacity over time.

3.1.1 Reservation guar antee
A key requirement in offering a resource reserve abstraction in a system is that the

reserved resource capacity be available, subject to the reservation parameters, to a computa-
tion which presents the reserve and requests the resource. If the system cannot guarantee

25

that the resource capacity will be available as promised, the usefulness of the system islim-

ited. Therefore, the enforcement of resource reservations is of critical importance. Enforce-

ment is important not only to protect against malicious users, which may present a problem

in systems where resources are shared by many, but also to relieve individual applications

from the burden of ensuring that their own performance is strictly predictable and con-

trolled. The system should tolerate applications which may try to use more than their reser-

vation allows, isolating unrelated applications from this kind of behavior. This kind of

temporal isolation is similar in concept to the isolation provided by a virtual memory sys-

tem, which allows a process to try to access memory locations as it wishes, intervening only

when a memory access is not allowed. In no case should a virtual memory system allow a

process to access the memory of another process’s protected memory, and likewise in no
case should a reservation system allow a thread to impinge on the reserved resource capacity
of another thread.

Thus, the system guarantees that resource capacity, given by the reservation parameters,
will be available to the thread that has a reserve. However, it is up to the application pro-
grammer to make sure that the thread is in a position to take advantage of the resource
capacity when it is made available. The reservation system itself makes no claims that a par-
ticular application will meet its timing constraints. For example, if an application blocks
indefinitely waiting for a message, it may not be in a position to take advantage of resource
capacity when it is available. For an application to have predictable real-time performance,
it must have the proper resource reserves, and it must be able to use those resource reserves
in a way that satisfies the timing constraints of the application.

3.1.2 Scheduling frameworks

The reserve abstraction can accommodate different frameworks for admission control,
scheduling, and enforcement. Most of the features of reserves, specifically the operations
available in the reserve abstraction, remain the same even if the scheduling framework
changes. The primary differences in the interface to a different framework are the specifica-
tion of the reservation request parameters for admission control and the resource usage sta-
tistics available from the enforcement mechanism.

3.1.3 Styles of programming with reserves

Reserves can be used in two different styles of real-time programming. Reserves support
strict hard real-time applications and can equally well support more flexible soft real-time
applications. The primary distinction between hard and soft real-time programming in the
discussion of the reservation model is:

» whether resource usage requirements are carefully measured and specified in exact
detail guaranteeing performance before the program is actually deployed (hard
real-time), or

» whether resource usage requirements and resource capacity reservations are
dynamically adjusted based on run-time usage measurements instead of being
matched exactly during the design phase.

26

In either case, the resource reserves guarantee the requests that are admitted to the sys-
tem, and whether or not those reserves are used for hard real-time programming or soft real-
time programming depends on how the applications themselves use the reserves.

Another distinction in real-time programming using reserves is whether resources are
reserved locally for each thread or whether they are reserved globally for an activity that
may span multiple threads in different protection domains and even on different machines.
In the activity-based model of using reserves, the originator of an activity acquires resource
reserves for the activity and then passes those reserves along with any requests made to var-
ious servers. Using this model, accounting for resource usage across clients and serversis
simplified, and the negotiation of quality of service parameters can be simplified as well.
The reserves for each request come in with the request, and the server charges resource
usage to those reserves when servicing the corresponding request. The responsibility of get-
ting the appropriate resource reserves fallsto the original client.

To summarize, several features of reserves are useful for both hard and soft real-time
programming:

1. Take care of global admission control decisions, relieving the designer of doing
global scheduling analysis.

2. Schedule threads on resources according to their reserves.

3. Accumulate usage information that could be useful during development, especially
for adaptation in soft real-time applications.

4. Prevent interference from other real-time applications and non-real-time applica-
tions and activities that may be competing for the same resources.

5. Andfinaly, reserves can serve either to separate the resource allocation and man-
agement of modules from each other or to integrate the resource allocation and
management of modules, allowing reservations to span multiple threads and pro-
tection domains of asingle activity.

3.2 Basicreserves

The basic reserve provides an abstraction for capacity on a particular resource. Note that
this statement about basic reserves does not guarantee that applications will meet their tim-
ing requirements. The only guarantee is that capacity will be reserved and available to be
used. We will explore the issue of what guarantees can be made at a higher level about the
behavior of applications that use reserves.

The reserve itself is an operating system abstraction that is orthogonal to control struc-
tures like threads. A thread may bind to a resource reserve in which case the scheduler will
use the information in the reserve when making scheduling decisions about the thread. Mul-
tiple threads may be bound to a single reserve, but typically a reserve will have only one
thread bound to it at atime. The scheduler will always find an associated reserve, although
sometimes that reserve will be a default reserve which has no actual reservation and just

27

serves to accumulate the resource usage of all threads that make unreserved use of the
resource.

The specification of the reservation depends on the type of resource. Multiplexed
resource reservations include information about the amount of work to be done per period of
real time. They may also include a delay requirement. This parameter would specify the
maximum amount of time after the beginning of each period the thread will have to wait
before getting its reserved time on the resource. Discrete resources reservations just specify
acount of the units of discrete resource required; they include no notion of time.

Despite the differences between multiplexed and discrete resource reservations, they
share the same basic structure. They both require:

1. areservation specification interface,
2. anadmission control policy,

3. ascheduling policy, and

4. an enforcement mechanism.

For discrete reserves like memory pages and network buffers, the reservation specifica-
tion gives a number of units of resource being requested. The admission control policy for
discrete resources would just check the availability of the requested number of units of
resource. Since discrete reserves are by definition not multiplexed, they require no schedul-

ing.

It is important to note that the basic reserve abstraction is independent of the admission
control and scheduling policies used. For multiplexed resources, reserves provide a frame-
work to request resource capacity reservations, do admission control, schedule computa-
tions, and enforce capacity reservations. The choice of admission control and scheduling
policies will impact the way reservation regquests are specified and the way the enforcement
mechanism tracks their behavior, but the framework is general enough to accommodate dif-
ferent policies. The following sections illustrate the reserve model in terms of a periodic
scheduling framework.

3.2.1 Reservation specification

The reservation system must provide a way for applications to specify the resource
capacity they would like to reserve. The form of the specification differs from resource to
resource, and different admission control and scheduling policies may require different res-
ervation specification parameters. In the most general sense, reservations specify a duration
of usage with some time constraints be available, used, and replenished by some specific
regimen.

As an example of the kind of parameters that might appear in a specification, a resource
reservation may specify an amount of time to be spent on the resource per period of real
time, and it may specify a start time for the periods as well. For example, a reservation
request might specify 30 ms every 100 ms starting at 1:00pm.

28

Figure 3-1 illustrates how the reserved time might be consumed in a simple computation
time per period of real time framework for reserves. The reserved computation timeis avail-
able to be used during each reservation period. The computation time is guaranteed to be
available at some point during the period; it is not guaranteed to be in any particular place
such as the front of the period or the end of the period.

Reserved
computation
time

__‘__‘__>

. time

Reservation period

Figure 3-1: Periodic Scheduling Framework

There are many different scheduling policies and scheduling analysis techniques that
could be used to provide areserve abstraction, each of which would require a corresponding
admission control test, scheduling policy, and enforcement mechanism.

3.2.2 Admission Control

An admission control policy associated with each resource decides which reservation
requests for that resource can be admitted and which must be denied. It makes this decision
based on the parameters provided in the reservation request and information about the other
reservations that have already been granted for that resource. The admission control policy
necessarily depends on the scheduling policy in order to do an admission control analysis.

3.2.3 Scheduling

The scheduling algorithm for a resource makes decisions about the order in which
threads receive time on aresource. The scheduler |ooks at the reserve owned by each thread
that is ready to run, and uses information in the reserve to determine which thread will get
access to the resource. The algorithm supports the decision made by the admission control

policy.

The scheduler must also coordinate with the enforcement mechanism to make sure that
it does not try to schedul e threads associated with areserve that has already used its reserved
resource time for a particular reservation period. Thus areserve which still has time left on
its reservation is in “reserved mode” and one that has run out of time is temporarily in “unre-
served mode.” This represents a significant departure from other real-time scheduling algo-
rithms, which generally assume that the resource usage requirements of application are
accurately characterized and need not be enforced [67].

29

3.2.4 Enfor cement

The reservation system must ensure that processes do not use more than their reserved
capacity or reserved units of a resource. Enforcing reservations on discrete resources is
straightforward; the system ensures that a resource dedicated to one process is not re-allo-
cated to another process. Enforcing multiplexed reservations requires the system to keep
accurate usage numbers that describe how much capacity has been consumed against each
reservation. If athread attempts to use some capacity beyond its reservation, the system
must recognize this and actively prevent the process from consuming any additional capac-
ity in reserved mode (consuming additional capacity in an unreserved mode may be
alowed.)

If for some reason the reserved time on aresource is not used by the owner of areserve
in agiven reservation period, that allocation of timeislost to the owner. The owner may not
bein aposition to use theresourceif it is blocked waiting for some other resource to become
available or for synchronization or communication with another computation. The resource
will not necessarily be idle for that amount of time since the scheduling policy is free to
allow an unreserved computation to use the resource (as long as the unreserved computation
can be preempted to allow the reserve owner to use the resource). This implies that a com-
putation may not save up reserved time (by not using it) and then useit all at oncein aburst.
The alocation of resource timeis available during each period, but cannot be carried over
past the end of the period.

On the other hand, if the thread that owns a reserve consumes the entire reserved alloca-
tion for a reservation period and attempts to continue executing, the thread will compete
with the other unreserved computations for the resource under whatever policy the resource
scheduler uses for unreserved computations. Thus areserve may be in reserved mode where
it still has some resource usage allocation left for the current reservation period, or it may
temporarily be in unreserved mode where the allocation for the current reservation period is
depleted (until the next reservation period).

Reserve Reserve - Reserved time
replenished replenished :
Reserve Reserve E Unreserved time
depleted depleted

< > time

Reservation period

Figure 3-2: Enforcement Illustration

30

Figure 3-2 shows the reserved time made available on a particular resource for asingle
reservation. At the beginning of each reservation period, the allocation of reserved timeis
replenished, and the thread that has this reservation uses the resource in “reserved mode.”
After the reserved time allocated for that period is depleted, the enforcement mechanism
generates a scheduler event to indicate that the reserved time has been consumed for that
period. The scheduler is responsible for using that information in making scheduling deci-
sions. In the figure, the thread continues to use the resource in “unreserved mode,” consum-
ing more time on the resource at the discretion of the scheduler. The execution history
shown in the figure is based on the assumption that no other threads compete for the
resource and that the policy lets it run in timing-sharing mode after its reservation has
expired, and so the thread can get time in unreserved mode. At the beginning of the next res-
ervation period, the reserve is replenished and the thread can run in reserved mode again.
The main point of this figure is that the enforcement mechanism tracks resource usage and
raises this “reserve depleted” event for the scheduler. The scheduler can then use this infor-
mation in making future scheduling decisions. For example, it can give other reserved activ-
ities preference or allow unreserved time-sharing activities to use the resource.

Three important issues arise in the design of the enforcement mechanism:
1. how to accurately accumulate resource usage,
2. how to notice that a thread has depleted its reserve for a resource,
3. how to know when to replenish the allocation of a reserve.

To accurately accumulate the resource usage for each reserve, the system records the
time during each reserve switch. A reserve switch occurs in two cases: when a thread con-
text switch is performed or when a thread is changing the reserve against which it will
charge its computation time. In the case of a thread context switch, the reserve switch
records the current time, cancels the overrun timer (which signals the reserve depletion
event as described below), computes the time the old thread ran, and adds that time to the
accumulated usage of the old thread. The reserve switch mechanism then saves the current
time for use later in computing the computation time of the new thread and sets the overrun
timer. A reserve switch triggered by a thread changing the reserve to which it wants to
charge its computation time works the same way, the only difference is how the reserve
switch is triggered. Figure 3-3 illustrates how timers are used in enforcement. In the execu-
tion history on the timeline, it shows the reserved activity of interest in a solid pattern and
some other activity (associated with other reserves) in a striped. The reserve switches (also
context switches in this example) between these activities occur where the striped boxes and
the stippled boxes meet.

31

Reservation period

- -
Reserve replenished, Reserve replenished,
Replenishment timer set Replenishment timer set

Overrun timer expires,
Reserve depleted

—Iﬁ

P> time

[Reserved time
[] Unreserved time

Overrun Overrun Overrun o
timer timer timer [Other activity
set set set

Figure 3-3: Enforcement Timers

The overrun timer is set during the reserve switch to expire at the end of the new
thread’s remaining reserved computation time or at the end of its reservation period, which-
ever is earlier. If the new thread is preempted before its reserved computation time is com-
pleted, the overrun timer will be cancelled. If the new thread consumes all of its reserved
time, the overrun timer expires, and the scheduler is called to take some action based on that
event. Figure 3-3 shows where the overrun timer is set for the reserve of interest; the over-
run timer may also be set for the other activity if it is reserved, but that is not shown in the
figure. The overrun timer in the figure does not actually expire until the last time it is set.

The handle replenishment, each reserve has a replenishment timer which is started at the
reserve start time and which expires periodically at each reservation period. The replenish-
ment timer records the usage accumulated on the corresponding reserve at the time of the
reservation period and records that along with the current time as a “usage checkpoint.”
Then the timer handler changes the state of the reserve to reflect a new allocation of
resource usage and resets the periodic replenishment timer. This replenishment model corre-
sponds to a deferrable server [120] replenishment scheme; other replenishment methods are
described and analyzed by Sprunt [111,112]. Figure 3-3 illustrates where the replenishment
timer is set relative to the reservation period.

32

3.3 Reserve propagation

One important feature of the reserve model isthat reserves can be passed from clients to
servers, enabling the server to take advantage of the resources the client reserves for its
entire computation. Passing reserves also enables the server to charge the resource usage it
consumes to the appropriate client, preserving system-wide consistent usage accounting.
Thisis called reserve propagation.

C

lient

L

\ (Reserve§

Figure 3-4: Reserve Propagation

Figure 3-4 illustrates a client/server interaction with reserve propagation. Assume that
the client acquires resource reservations sufficient for the computation that it will perform
locally as well as the computations to be done by servers on the client’s behalf. In the figure,
these reserves appear in the clients as two small rectangles. The interaction is a straightfor-
ward remote procedure call from the client to the server. For simplicity, assume that the cli-
ent sends an RPC request to the server and waits for the reply. The server processes the
request and sends an RPC reply, and then the client receives the reply.

When the client send the service request, it also sends references to the reserves that it
has allocated. These reserves are to be used by the server as it processes the client’s request.
Thus, the server must start charging its resource usage to the client’s reserves when it starts
processing that request, and it must stop charging to those reserves when it finishes with the
request and sends back the response.

Ideally, a server would schedule service requests to execute in the same order that the
computations would execute if the clients could do them instead of the server. For example,
the processor scheduler orders ready threads based on the processor reserve parameters.
This ordering can be seen as a sort of “priority” ordering among those activities. If a thread
makes a request of a server, the server should take the “priority” in the scheduler’s ordering
while it is servicing that request. Then the fact that a client relies on a server for some com-
putation does not affect the progress of its computation with respect to other threads.

To help the server achieve this ideal, the RPC mechanism should propagate the reserve
“priority”, as represented by the reserve and its reservation parameters, of the client to the
server. The queue of service requests for the server must be maintained in reserve “priority”

33

order, and a kind of “priority inheritance” must be used to prevent priority inversion in the
access to the server.

On the receipt of a new service request, his “reserve priority inheritance” mechanism
enqueues the request in the priority queue, and then it checks to see if the thread that will
service the requests is waiting for new requests or servicing a previous request. If the thread
Is busy and the “priority” of the new request is greater than the “priority” of the currently
processing request, the RPC mechanism sets the priority of the thread so the priority of the
new request. It does not, however, change the reserve that the thread is charging against.
When the server thread finishes the previous request and receives the new request, it keeps
the priority of that new request (which it inherited before) and also begins charging to the
reserves associated with the new request. When the request is finished, the server thread
stops charging against the client’s reserves.

The “priority” inheritance mechanism described here, which is referred to as “reserve
propagation”, differs from traditional priority inheritance in two ways:

1. reserve propagation specifies how a server should change the reserves it charges to
based on the client it is servicing whereas traditional priority inheritance has no
notion of charging to a reserve or account,

2. the “priority” of the server may change during the course of the request processing
if the reserved resources are depleted during that time whereas with traditional pri-
ority inheritance, the priority is fixed.

The fact that a server’s “priority” may drop during request processing complicates
reserve management and reserve “priority” inheritance. When a reserve is depleted, the
scheduler must determine whether the thread charging against the reservation inherited the
reserve “priority” or not. If not, the thread’s order in the ready queue may change. If so, the
scheduler must determine from the threads pending request queue what the appropriate
reserve “priority” for the thread should be, given the change in the state of the reserve that
was depleted.

Reserve propagation from client to server is not mandatory. The next chapter discusses
different programming models where this is useful and where it is not. Briefly, reserve prop-
agation is useful when the system is organized such that an application allocates the
resource reserves it will need for all of its activities and passes those reserves around to the
servers it invokes to do work on its behalf. In this model, applications need not negotiate
quality of service parameters explicitly with these servers. The scenario where reserve prop-
agation is not that useful is where the system is organized such that applications negotiate
quality of service explicitly with all of its servers.

3.4 Example scheduling frameworks

Many different admission control and scheduling policies could be used to support the
reserve abstraction. For example, reserves based on rate monotonic scheduling [67] would
be able to guarantee the availability of a certain amount of time on a resource per period of
real time. For pure rate monotonic scheduling, the delay associated with receiving the com-

34

putation time in each period would be the length of the period itself. For deadline monotonic
scheduling [64], the delay bound could be shortened. The following sections discuss these
frameworks and others in more detail as they apply to the reserve abstraction.

3.4.1 Rate monotonic

The rate monotonic (RM) priority assignment of Liu and Layland [67] can guarantee
that a certain amount of computation time will be available for a reserve for each period of
real time with adelay bound equal to the length of the period. The discussion of rate mono-
tonic scheduling uses the word “task” to denote the series of instances of a computation;
with reserves, it is understood that this computation represents available resource capacity
and not necessarily a complete program. Under rate monotonic scheduling, higher priority is
assigned to the higher frequency programs. The rate monotonic scheduling analysis yields a
basis for a processor reservation admission policy.

3.4.1.1 Reservation parameters

Reservation parameters for the simplest form of rate monotonic based reserves include
computation time and reservation period: A start time is also useful for controlling the phase
of the periodic reservations. This allows the programmer to synchronize the availability of
the reserved computation time with a periodic program.

3.4.1.2 Admission control decision

Let n be the number of periodic tasks and denote the computation time and period of
programi by C, andT; , respectively. Liu and Layland proved that all of the tasks would
successfully meet their deadlines and compute at their associated rates if

5 Fen "

Whenn is large, n(21/n—1) = |In 200.69 . This bound is pessimistic: it is possible
for task sets which do not satisfy the inequality to successfully meet their deadlines, but this
cannot be determined from the Liu and Layland analysis.

An admission control policy follows naturally from this analysis. To keep track of the
current reservations, the system must remember the utilization of the tasks that have
reserved computation time, and the total reservation is the sum of these individual utiliza-
tions. A simple admission control policy is to admit a new reservation request if the sum of
its utilization and the total previous reservations is less than 0.69. Such a policy would leave
a lot of computation time that could not be reserved. One possibility is to use that time for
unreserved background computations. Another possibility is to use the exact analysis of
Lehoczkyet al. [63] to determine whether a specific collection of reservations can be sched-
uled successfully, although the exact analysis is more expensive than the simple, pessimistic
analysis above. In their work, Lehoczétyal. also gave an analysis showing that on aver-

35

age, task sets can be scheduled up to 88% utilization. So in most cases, this unreservable
computation timeis only 10-12% rather than 31%.

It should be noted that the rate monotonic scheduling algorithm was analyzed under sim-
plifying conditions. Liu and Layland [67] made the following assumptions to enable their
analysis:

» arrivals are periodic, and the computation during one period must finish by the end
of the period (its deadline) to allow the next computation to start,

» the computation time of each program during each period is constant,
* computations are preemptive with zero context switch time, and

e computations are independent; i.e. computations do not synchronize or communi-
cate with other computations.

In the context of the reserve abstraction, this means that rate monotonic scheduling can
be used to guarantee that resource capacity is available to the applications. However, appli-
cations that have precedence constraints with other applications may not be in a position to
use the available resources.

3.4.1.3 Scheduling

Reserved mode activities get precedence over unreserved. Among reserved mode activi-
ties, smaller period gets precedence over larger. Among unreserved activities, some time-
sharing algorithm may be in effect.

3.4.1.4 Enfor cement

Accumulate usage in each period. Update usage (determined using accurate measure-
ment techniques) at each context switch. Set a timer for the currently running activity to
expire at the end of its reserved usage. Set another timer for each reservation period.

3.4.2 Deadline monotonic

The deadline monotonic scheduling (DM) algorithm [7,64,66] is closely related to the
original rate monotonic (RM) algorithm [67]. DM has the same kind of periodic scheduling
frame as RM; the difference is that with DM, there is an additional parameter called the
deadline specifies the duration of time by which the computation released at the beginning
of the period must be completed. For the original version of RM, this deadline is assumed to
be the end of the period, when the next instantiation of the computation will be released. For
DM, this deadline is specified explicitly.

36

Reserved
time

-
] time
Delay bound

S

Reservation period

Figure 3-5: Deadline Monotonic Scheduling Framework

Figure 3-5 illustrates the periodic scheduling framework of DM along with the addi-
tional deadline parameters that does not appear in the original RM algorithm. The deadline
in this case is before the end of the period, but it could also be after the beginning of the next
period (in which case there would be multiple instantiations of the computation, started in
different periods, at onetime).

3.4.2.1 Reservation parameters

Thereservation parameters for DM are the same as RM with the addition of the deadline
parameter. As an example, areservation request may specify 30 ms on the resource be
reserved for every 100 ms with the delay constraint that the 30 ms must be available within
50 ms of the beginning of each 100 ms period. Asfor rate monotonic scheduling, astart time
parameter is useful for synchronizing reservations with periodic threads and with other res-
ervations.

3.4.2.2 Admission control decision and scheduling

Schedulability analysis tests for DM are given by Lehoczky [64] and by Audsley et al.
[7]. These tests are quite a bit more complicated than the simple schedulability bound test
for RM, involving systems of equations that have to be checked. Even so, the schedulability
tests provide suitable admission control decisions for a reservation mechanism based on
DM.

Scheduling is based on the deadline monotonic algorithm that assigns fixed priorities to
tasks based on the deadline value. Shorter deadlines are assigned higher fixed priorities than
longer deadlines. As with the rate monotonic algorithm, the reservation mechanism distin-
guishes between reserved mode activities and unreserved mode activities. At the beginning

37

of any given reservation period, an activity with areservation is in reserved mode until it
consumes all of the reserved timefor that period. It isthen changed to unreserved mode. The
scheduler services reserved mode activities first, in order of their deadline values. If there
are no reserved mode activities, unreserved activities are schedul ed.

3.4.2.3 Enfor cement

The enforcement mechanism accumulates usage in reserved mode until one of the fol-
lowing occurs: the resource usage reserved for that period is consumed or the deadline time
has passed. In either case, the activity is changed from reserved mode to unreserved mode
where it can compete with time-sharing activities for the resource.

3.5 Basic reservetypes

Operating systems manage many different kinds of resources that system and user pro-
grams may use to do their work. The most important examples are processors, physical
memory, buffers, and network bandwidth.

Pr ocessor Networ k
Capacity BW
Reserves Reserves
Reserve
Abstraction
Resour ce
Abstraction Pr ocessor Networ k
Capacity BW
Resour ce Resource
Hardware
Resour ces
Networ k
Pr ocessor Card

Figure 3-6: Resourcesand Basic Reserves

Many of these resources must be managed in the reservation system, so we define basic
reserves, which are used to reserve and control the usage of different types of system
resources. Each basic reserve type is associated with aresource type in the system. Figure 3-
6 illustrates the relationship between the operating system resources and the basic reserves.

38

3.5.1 Processor

Processor capacity reserves represent reserved time on a processor. Reserve requests
specify capacity in terms of time that will be reserved on the processor, rather than in terms
of instructions that will be executed or any similar measure of processor usage. The requests
may specify other information, depending on the admission control and scheduling policy in
effect. The discussion in the following sections assumes a deadline monotonic scheduling
framework where the reservation request specifies the amount of time to reserve on the pro-
cessor, a period at which the allocation will be replenished, and a delay bound. These sec-
tions will cover these topics in more detail and will additionally discuss issues in
enforcement, blocking time, and usage monitoring.

3.5.1.1 Units of work

Processor reserves deal with allocating real time on a processor rather allocating a
sequence of instructions. The reason for thisisthat reserving instructions would be too diffi-
cult. It would require knowing the exact sequence of instructions to be used with the reser-
vation, fixing the exact sequence for accuracy (to avoid cache effects, etc.), allocating atime
slot on the processor to execute those instructions, etc.

Several pitfalls complicate the use of this reservation model that is based on time spent
on the processor. For example, DMA can impact the amount of work that gets donein a cer-
tain amount of time spent on the processor. Cache effects can introduce variance in the
amount of work per time on the processor. Processor pipeline flushing at context switches
decreases the amount of work done during a fixed time on the processor. These are all sec-
ond order effects, but their impact should be accurately characterized.

Processor reserves leave it to the individual applications and other higher-level software
to make an appropriate mapping between the computational requirements of the applica-
tions to the appropriate reservation specification. For hard real-time applications, accurately
characterizing processor requirements is very important. For soft real-time applications, an
adaptive approach is the key to dealing with the fact that reservations are for time on the
processor rather than work done by the processor. These applications can look at their own
behavior and make adjustments as necessary.

3.5.1.2 Admission control and scheduling

For processor reserves in a rate monotonic scheduling framework, a reservation request
consists of three parameters. a computation time, a period, and a start time. The admission
control and scheduling policies described here are based on rate monotonic scheduling [67]
as described above.

3.5.1.3 Enfor cement

The enforcement mechanism for processor reserves must keep track of the processor
usage for each reserve so that a scheduling event can be raised at the point where the
reserves allocation has been depleted for a given reservation period. The usage measure-

39

ment task is complicated by the fact that a thread charging to a particular reserve may be
preempted, and so at each thread context switch, the usage numbers must be updated to
reflect the usage since the last context switch.

Accurately accumulating resour ce usage

To accurately accumulate resource usage in the face of preemptive use of the resource,
the system must, at each context switch, compute the usage since the last context switch.
This can be achieved by recording the start time of the computation (at the last context
switch) and then computing the difference between the time at the current context switch
and the time of the last context switch. Thisis the time the last thread was using the proces-
sor resource, and this time is added into the usage accumulator for that thread’s reserve.
Thus the accumulator keeps an accurate account of the resource usage charged to it.

Noticing reserve depletion

The enforcement mechanism must be able to notice when the reserve of the currently
executing thread becomes depleted. To do this, the system at each context switch computes
the longest contiguous time the thread is entitled to execute on its reserve, and it sets a timer
for that time. If a context switch occurs before the timer expires, the accumulators are
updated and the timer is set for the next thread to execute. If the timer expires while the
thread is executing, the system updates the accumulators, marks the reserve as “inactive”,
and calls on the scheduler to make some decision based on the new state of that reserve.

Replenishing a reserve’s allocation

Each reserve must have its allocation replenished at the beginning of each reservation
period so that the time on the resource is available if it is needed during that period. To do
this, the system uses a periodic timer for each reserve which is set to expire at the beginning
of that reserve’s reservation period. When the timer expires, the state of the reserve is
updated to reflect a full allocation of resource usage for the upcoming period.

3.5.2 Physical memory

A physical memory reserve represents a collection of physical memory pages. Physical
pages are discrete resources, so they support simple discrete reservations. The more interest-
ing question is how the owner of a page reserve uses this collection of physical pages. Basi-
cally, pages can be locked down or paged in and out, and they can be prefetched or demand
paged. A small application which could fit into its page reserve would benefit from
prefetching its image into the page reserve and locking down the pages. A larger application
might benefit from prefetching and locking down some (more frequently used) pages while
keeping other physical pages available for less frequently used logical pages to be paged in
and out. The advantage of using physical page reserves for these larger applications is in the
increased control reserve give the application over traditional time-sharing demand paging
replacement policies. With physical page reserves, the owner of a page reserve will at least
be isolated from competition for pages with other threads in the operating system.

40

3.5.2.1 Admission control and scheduling

The admission control policy for this discrete resource is as follows: if there are enough
free physical pages to satisfy areservation request, then the reserve is granted; otherwise the
reservation request is denied. The physical page reserve contains the number of pages that
are reserved, and these pages are completely free and ready to be used by the thread that
owns the reserve. The system may want to keep some number of physical pages as “unre-
servable” pages to allow time-sharing threads enough resources to make progress.

There is no scheduling of the use of pages by the reserve mechanism.
3.5.2.2 Enforcement

The enforcement of reservations for this discrete resource is relatively straightforward: a
thread that has a physical memory reserve can use pages in its own memory pool and can
also use pages from the time-sharing free page pool. Thus a thread using a physical memory
reserve is assured of having at least the reserved number of pages available and possibly
more. At no time will the pool of pages in the reserve fall below the reserved number.

3.5.3 Networ k bandwidth

Reserves for network bandwidth represent reservations for time on the network device.
The system must include a mechanism for identifying the reserve to be used for incoming
network packets. These reserves will typically be closely coordinated with processor capac-
ity reserves and with bandwidth reservation supported by the network. The operating system
will control the amount of outgoing traffic for each session (or virtual channel), and it will
ideally coordinate with a network reservation system to limit the amount of incoming traffic
for each session.

3.5.3.1 Units of work

The unit of work for a network bandwidth reserve is the transfer of a number of packets
of a particular size (which will probably be constant, the MTU). Servicing of single packets
is certainly non-preemptive, and it should also be possible to bundle multiple packets into
non-preemptive work units.

3.5.3.2 Admission control and scheduling

The reservation specification for net bandwidth reserves includes a reserved time per
period of real time, and possibly an indication of expected blocking time.

Timeline or rate monotonic scheduling frameworks among others would be appropriate
for net bandwidth reserves. Several important issues relate to the non-preemptive nature of
the work unit. Ideally, the expected blocking time would be used in the admission control
policy and scheduling algorithm.

41

3.5.3.3 Enfor cement

Accurate measurements of usage time can be computed between requests. Thisinforma-
tion can then be used in the enforcement mechanism and for input into scheduling policy
decisions.

3.6 Reserve management

3.6.1 Default reserves

Default reserves exist in the system to simplify the implementation of the reservation
mechanism by providing “reserves” for non-real-time programs to charge usage against.
These default reserves do not actually represent reserved resources, but they do accumulate
usage for all activities that have created their own reserves or had reserves created for them.

For example, new threads are assigned to run under the default processor capacity
reserve when they are created. Thus a thread will charge its time to this global reserve until
it acquires a reserve of its own.

3.6.2 Composite r eserves

Having many types of reserves allows flexibility in specifying resource requirements to
the system and in allocating resources, but the job of managing those resource reservations
at the user level becomes more involved. For example, a multimedia application, such as a
video player, might reserve resources for several constituent activities. It might reserve
some processor capacity for the module which reads audio and video data from the disk and
passes the data to an audio server and a display server. It might also reserve processor
capacity for a control module which provides fast response to interactive control commands
from the user. The player part might also reserve physical memory and message queue buff-
ers at the file system manager. Each of these reservations has an associated reserve, and we
would like to be able to collect a subset of these reserves under a single name to avoid hav-
ing to refer to them individually.

Grouping related reservations together helps alleviate this complexity. The model
allows reservations for different types of resources, and the situation arises where a program
has reserves for several different resources. Since it has to present the appropriate reserve
handle to be able to use a resource, a way of grouping all of the reserves under one handle
would make it easier for the program to identify its reservations to the system and to the
servers it invokes.

A composite reserve groups reserves for different resource types under a single handle.
A composite reserve has the following properties:

e jt will contain a number of basic reserves,

* it may contain only basic reserves (no composite reserves),

42

* it may contain at most one reserve for each basic resource type

Composite
reserve
Processor Memory Net Buffer NetBW
reserve reserve reserve reserve
30 ms per 105 pages 24 buffers 200kb per
100 ms 100 ms

Figure 3-7. A Composite Reserve

Figure 3-7 shows the relationship between a composite reserve and its constituent basic
reserves. In the video player example above, we might collect all of the reserves to be used
by the player part (processor, physical memory, and message queue buffers) into a compos-
ite reserve. Then the system could use this reserve to reference the collection of resources
reserved for the player. To charge computation time to the player, the system would take
this reserve and look for the processor reserve under it.

3.6.3 Reserveinheritance

When a process creates a child process, the reserve of the parent is passed to the child,
and the child runs against the resources reserved in the inherited reserve. This feature pro-
vides a way to allocate resources for non-real-time activities that create large process trees
(like “make”). Reserve inheritance is appropriate for the automatic propagation of reserves
for non-real-time programs, but real-time programs should generally configure their
resources reserves explicitly. Figure 3-8 shows the difference between a process P whose
children do not inherit its resource reserves and another process Q whose children and other
descendants do inherit its resource reserves.

Default processor processor
processor reeeive reserve

£

Figure 3-8: Reservelnheritance

3.7 Chapter summary

This chapter described the basic reserve abstraction including reservation specification,
admission control, scheduling, and enforcement. The idea of reserve propagation where a
client hands reserves to a server to which it sends arequest for service is shown to be a pow-
erful mechanism for making reservations on a per-activity basis (rather than a per-thread
basis). Severa different scheduling frameworks which could be used in an operating system
supporting the reserve abstraction were described, and the chapter discussed several differ-
ent types of basic reserves for various resources such as. processor time, physical memory,
and network bandwidth. A section on reserve management described default reserves, com-
posite reserves, and reserve inheritance which address some practical issues in using
reservesin areal system.

Chapter 4

Programming with Reserves

This chapter describes how to write programs that take advantage of resource reservesto
satisfy their timing constraints. It focuses on three main issues: How should reserves be used
in an application given that it uses various modules, external servers, and system servicesin
the course of its computation? And also: How should the reservation parameters, particu-
larly the reserved resource usage parameter, be initially chosen? How should they be
adjusted given that applications must support different platforms and may have computa-
tional requirements that depend on changing input data?

4.1 Overview

This chapter describes the major issues involved in programming with reserves includ-
ing the design decisions and tradeoffs that a programmer must make. The specific issues
addressed are:

* How to structure programs to take advantage of reserves.
* How to map reserves onto a program’s structure.
* How reservation parameters should be sized.

* How adaptive programs should adjust reservation levels.

One can think of a program as a graph of computational nodes, and each computational
node has a reserve associated with it. Determining exactly what reserves should be allo-
cated, what their reservation parameters should be, and how reserves should be associated

with these computations involves design decisions that impact the program structure.

For example, the programmer must decide whether applications that depend on each
other will explicitly negotiate timing requirements among themselves for the specific ser-
vices they provide to each other. The alternative is to allocate resource reserves for their
combined activity and then pass those reserves along as the abstract “activity” passes from

45

one to the other. In the first case, the partitioning of requirements and the explicit specifica-
tion of timing requirements for each computation in each application creates a great deal of
bookkeeping that has to be done. In the latter case, the requirements summarize the entire
activity without specifying each detail along the way. Aslong as each phase of the activity
adheres to a few rules such as not introducing unnecessary delays into the overall activity,
the same high-level timing requirements can be satisfied without excessive dissection of the
programs.

Another design decision addressed here relates to the flexibility of applications that use
reserves. Hard real-time applications would typically specify fixed reservation parameters.
Adaptive programs might be able to monitor their resource usage and adjust reservation
parameters to fit their behavior over time. They might even be able to select different algo-
rithms with different semantics and different performance characteristics to tune their com-
putation time.

Finally, this chapter addresses the issue of programming with multiple resources. This
requires applications to be broken into sub-computations at points where different resources
are required. Coordinating resource reservations on multiple resources to satisfy end-to-end
timing constraints requires careful design. Two approaches using reserves are described.

4.2 Using reservesin application design

This section focuses on the structure of applications and how reserves fit into that struc-
ture. Programs are considered to comprise one or more concurrent activities. Each activity
might have a thread associated with it, and each activity has a call graph describing the sub-
routines that are called by each subroutine. The call graph is extended to include calls to
external servers or system services made by each subroutine.

The following sections describe these extended call graphs and address the coordination
of reserves between reserved modules, reserved clients and servers, and reserved operating
System services.

4.2.1 Program structure

To understand the timing constraints and resource requirements, one must consider the
structure of application code. This section describes how an application might be divided
into separate activities. It describes how a periodically executed computation in an activity
might be broken down into sub-computations by splitting computations at procedure calls,
remote procedure calls (RPCs), and system traps. Theresult islike a call graph that includes
“calls” to servers and to the operating system.

For the purpose of this analysis, an activity is defined to be an abstract thread of control
that starts out in a process and moves in and out of user-level servers and the operating sys-
tem as calls are made to those servers and the system. This is similar to threads traversing
objects in Clouds [26]. Such an abstract thread model corresponds to a synchronous pro-
gramming style, which is in contrast to an asynchronous programming style where activities

46

are essentially “forked” by making asynchronous service requests to external servers or ker-
nel primitives. For example, consider an animation application that synthetically generates
animation frames in real time. The application consists of two activities: one to generate and
display animation frames and one to process user interface events such as requests to resize
the animation window.

Each of these activities may call modules in the same address space, make RPCs to serv-
ers, or make system calls. By this definition, when a (synchronous) RPC is made to a server,
the activity “moves” to the server for the duration of the server’s computation and then the
activity returns to the client when the call returns. If the server were to call another server
synchronously, the activity would move to the second server for the duration of the call. The
same is true of a system call. When a system call is made, the activity “moves” to the oper-
ating system and returns when the call returns.

An activity may be periodic. For example, consider the frame generation activity of the
animation application. Suppose this activity originates in a subroutine (called
process_frame) that is invoked periodically every 33 ms to process and display frames. Now
suppose process_frame calls generate_frame and display_frame, which eventually performs
an RPC to a window system server that accesses the frame buffer. Figure 4-1 shows an
example call graph rooted at the function process_frame.

¢ process_frame

R

generate_fram display_frame

DisplayBitmap

Client

Server y

ServerDisplayBitmap

Figure4-1: Call Graph for Frame Generation and Display

a7

This call graph includes an RPC from the client to the server. The DisplayBitmap sub-
routine makes the RPC in the client, and the ServerDisplayBitmap subroutine in the server
continuesthe activity. Thus, this graph captures all of the sub-computations of the animation
activity.

4.2.2 Reservationsfor periodic computations

Given that the process_frame subroutine shown in Figure 4-1 is invoked periodically,
the thread would “release” the computation periodically by using a while loop with a delay
primitive or by setting a period attribute in the case of RT-Mach’s periodic threads [125].
Thus, the activity has an initial release time and a period parameter. To associate a processor
reserve with this activity requires that a reserve be allocated with a start time and period that
corresponds to that of the process_frame activity. It is possible to bind a periodic thread that
attempts to execute its computation every 40 ms to a reserve that has a reservation period of
50 ms. This is not recommended, however, because the resources would not necessarily be
available when the activity was released.

Thread ’J_' ‘
|

Reserve

| - L,

time

[_] Thread computation
Il Reserved time available

(@)

Thread]
|

Reserve

i

|

time

[] Thread computation
Il Reserved time available

(b)

Figure4-2: Thread and Reserve Out-of-Phase

48

Figure 4-2(a) illustrates a case where the thread period is not aligned with the reserve
period, resulting in undesirable delays. In part (@) of the figure, the reserved computation
time is not available until near the end of the thread’s period. Thus the thread cannot start
running until the very end of its period, and it misses its deadline at the end of the period.
The problem is that the availability of the reserved time did not match the availability of the
thread. Figure 4-2(b) shows the case where the thread period and reservation period are syn-
chronized. This means that the thread will be ready when the reserved computation time is
available, and the reserve guarantees that the reserved computation time will be available by
the end of that period, so the thread is assured of being able to complete.

4.2.3 Localized reserve allocation

Consider the resources required in each node of the call graph in Figure 4-1. Assume
that generate_frame requires only the processor. For nodes under display_frame, assume the
frame buffer is mapped into the window system server’s address space and that the proces-

sor is the only resource required.
process_frame

D

generate_fram display_frame

DisplayBitmap

Client
Server y

ServerDisplayBitmap

Figure 4-3: Call Graph with Separate Client and Server Reserves

With these assumptions, one approach to allocating reserves for the sub-computations
would be to allocate a processor reserve for all of the nodes in the animation application and
another processor reserve for the nodes in the window system server. Thus, the server would
have a reserve allocated for each of the clients holding open connections to it. This approach

49

IS necessary in the case where the server resides on a remote machine, but it may be pre-
ferred even when both utilize the same processor. Figure 4-3 illustrates this approach.

The RPC from the client to the server implies a switch from the client’s reserve to the
server’s reserve. With this approach, the traditional “priority” inheritance mechanism would
not be useful because the fact that the server has a reserve allocated internally for the anima-
tion client defines the “priority” for the client’s request in the server and the client’s “prior-
ity” does not get propagated. Another mechanism to associate the animation applications
RPC request with the appropriate reserve inside the server would be very useful. Such a
mechanism might take the “priority” of the server-allocated reserve to be associated with the
animation client and apply it to the thread that will handle the client’s request. This is a kind
of “priority” inheritance where the server’s thread gets the priority of the reserve it allocated
for a client instead of getting the priority of the client itself.

Since the server must allocate the reserve for its computation on behalf of a client, it
must know what the reservation parameters should be for the reserve. This approach
requires the client and server to enter into a dialogue to allow the client to explicitly request
a server-specific QOS level, meaning a certain pattern of server operations to be called with
certain timing constraints. The server must then map the requested QOS requirements to
system resource requirements and decide whether it can acquire the reserves to support that
activity. All of this negotiation must be explicit, and that means a client/server interface for
negotiating server-specific QOS requirements must exist. Further, the server must have the
machinery to map those QOS requirements to system resource requirements.

- - .

ime
[_] client computation
[l server computation
(@
Client’s ‘
Reservel |] >
Server’'s
Reserve [
[] client computation time
Il server computation
(b)

Figure4-4: Switching Reservefrom Client to Server

50

Another issueis that the timing parameters of the two reserves must be carefully coordi-
nated for the call to be executed smoothly. Essentially, the client’s call to the server means
that the computation in the server becomes ready, and its reserve must provide the resources
for it to execute in a timely fashion after it is ready. The sequence of client computation fol-
lowed by server computation is illustrated in Figure 4-4(a).

The server’s computation time might be available immediately after the call is made, as
in the first period of execution history shown in Figure 4-4(b), in which case the deadline for
the combined activity is met. But as shown in the second period of the execution history in
Figure 4-4(b), the client’s computation time may be available very late in its period. The
server’'s computation time may be available earlier in its period but not available so close to
the end. It is guaranteed to be available sometime in the period, but not at any particular
time. Thus the activity could miss its deadline.

Introducing an intermediate deadline for the client's computation could solve this syn-
chronization problem. Figure 4-5(a) shows the usage pattern of the client and server with an
intermediate deadline for the client.

‘|—| I-‘ 1] -‘,

[_] client computation time time
(a) [l server computation time

Client - -
Reserve—|] -

Server
Reserve
— —
[] client computation time
(b) Il server computation time

time

Figure 4-5. Client Requirement with I ntermediate Deadline

Using reserves with deadline parameters, Figure 4-5(b) shows how the reserves can be
allocated such that the client reserve has its computation time available at the beginning of
the client’s period with an intermediate deadline halfway through the period. The server’'s
start time is at that intermediate deadline, and it has a deadline that corresponds to the end of
the client’s overall period. Thus, both activities are guaranteed to synchronize and complete
by the overall deadline as desired.

51

All of the explicit handling of QOS requirements and resource requirements and the
careful synchronization of interactions between reserves makes programming clients and
servers much more complex. While this may be necessary for designing complex hard real-
time systems, for soft real-time systems and less complex hard real-time systems, the
approach where resource requirements for clients and servers are folded into one reserve
may be better.

4.2.4 Activity-based reserve allocation
Another approach would be to allocate a single processor reserve for al of the nodesin
the entire call graph; Figure 4-6 illustrates this approach. Of course, if the server is running

on aremote host, this approach may not be feasible since it is not clear how a single proces-
sor reserve could be made to represent processor time on two different processors.

process_frame

generate_fram display_frame

D

DisplayBitmap

Client

Server y

ServerDisplayBitmap

Figure 4-6. Call Graph with One Reservefor All Nodes

Even if the animation application and the server are on the same host running on the
same processor, there is a problem that must be addressed in this approach: the server may
not be ready to service the RPC call at the time it is issued. In fact, there is a potential “pri-
ority” inversion problem associated with such an RPC (where “priority” refers to the order-
ing of reserved activities by the scheduler rather than an integer priority for a thread). If the

52

RPC arrives in the server’s queue at a time when the server is servicing another client, the
server’s thread will be bound to the reserve associated with the other client. If that other cli-
ent is processor-poor, the reserved time may run out during the service, and the server may
experience some scheduling delay. If the other client has a reserve that happens to get its
processor time very late in its period, there may be a significant delay until the server, run-
ning with that other client’s reserve, can finish the on-going operation.

To limit the delay the animation application experiences waiting for the server to handle
its RPC, a “priority” inheritance protocol [108] must be employed. If the animation client’s
reserve would be sequenced by the reserve scheduler before the other client’s reserve, the
server which is using that other client’s reserve would be sequenced as if it were using the
animation client’s reserve. However, for consistency of the usage measurement, it will still
charge its usage to the other client’s reserve. Then when that service is finished, the server
will bind to the reserve of the animation server and that completes the propagation of the
animation application’s reserve to the server.

For this reserve passing to work best, the RPC should be synchronous, meaning that the
client should wait for the result after making the call to the server. With a synchronous RPC,
either the client or the server will be charging against the client’s reserve whereas with an
asynchronous RPC where the client does not wait for the result from the server, both the cli-
ent and server may be charging against a single reserve at the same time. This is not cata-
strophic, but it may result in complicated interactions between the client and server.

This approach implies that the client application must request reservation parameters
that include the computation time that will be consumed by the nodes residing in the server.
This can be done by having the client discover the requirements empirically during runtime,
by having the server explicitly provide its resource requirements, or by determining the
requirements at design time (this issue is discussed in detail in the next section).

The important point here is that the client and server need not explicitly exchange infor-
mation about resource requirements if the client allocates the reserve and passes it to the
server. In particular, a great deal of complexity can be avoided if the client/server interface
does not need to be able to support a complex negotiation of requirements. For legacy sys-
tems, this means that existing interfaces need not be radically modified, the only change
being the mechanism for passing reserves from client to server.

4.2.5 Coordinating multiple resour ces

This section describes an issue that arises when an application uses multiple different
kinds of resources in different sub-computations. Consider an audio/video player applica-
tion that reads data stored on a disk and then outputs an audio stream and displays video
frames. The player could be structured as three activities: audio playback, video playback,
and user interface. The video playback activity would be periodic, reading and displaying a
frame every 30 ms.

53

¢ process frame

read_frame display_frame
read ¢ ¢ DisplayBitmap
Player Player
Kernel Y Y Server
kern_read ServerDisplay

disk read cmd ¢

Figure4-7. Call Graph for Video Playback

Figure 4-7 shows a possible call graph for the video playback activity. The graph is
rooted at a subroutine called process_frame, which calls three more subroutines:
read_frame, decode frame, and finally display_frame. In the read frame routine, calls are
made until eventually the program makes a system call and trapsinto the kernel where more
subroutines are called until finally a device command isissued to read data from the disk.
This call graph introduces another type of call, referred to as a device command, which is
used in addition to the original three types of calls (procedure call, RPC, and system call).
The decode_frame routine converts the video frame data to aform that is suitable for dis-
play. Thelast call isto display_frame which isthe root for a sequence of callsresulting in an
RPC to a window system server which makes additional subroutine calls and finally
accesses the frame buffer.

The resource requirements for this call graph include disk access as well as processor
time, so adisk reserve is allocated and bound to the disk read node. The other nodes require

only the processor, and one approach is to allocate a single processor reserve for all of those.
This reserve alocation and binding approach isillustrated in Figure 4-8

process_frame

read_frame display_frame
read ¢ ¢ DisplayBitmap
Player Player
Kernel Y Y Server
kern_read ServerDisplay

disk read cmd Y

Figure 4-8. Call Graph for Video Playback with Reserves

There is a subtle problem, however, that is related to the synchronization problem
between and client and server with localized reserve allocation. The resource usage pattern
for the process_frame activity isthe following:

* The processor is needed for all the nodes up to where the read command
is issued to the disk,

» the disk is required for that read command node,
» all the nodes after that require only the processor.

This resource usage pattern is illustrated in Figure 4-9(a); in every period, the computa-
tion first has a processor requirement, then a disk requirement, and then another processor

55

requirement. If a processor reserve and a disk reserve are allocated, the execution pattern
may look like the pattern shown in the first period of Figure 4-9(b).

e
[] time on processor time
Il time on disk
(@)
Proc
— — [1] >
Disk
.
[] time on processor time
Il timeon disk
(b)

Figure4-9: Synchronization Problem with Multiple Resour ces

However, the only guarantee associated with the processor reserve is that the processor
time reserved will be available by the end of the period. If that time happens to only be
available at the very end of the period, the execution pattern might look like the one in the
second 33 ms period of Figure 4-9(b). In that second period, the leading processor require-
ment is serviced too late, and by the time the disk activity isfinished, there is no more time
left in the period for the second half of the processor requirement, and the deadline is
missed. Worse still, if the reserved disk usage is only available at the beginning of the disk
reservation period, the activity will be delayed into the next reservation period and certainly
miss a deadline and possibly miss the following deadline as well.

One way to solve this problem is to introduce intermediate deadlines in different stages
of the computation to separate sub-computations that use different kinds of resources. For
example, Figure 4-10(a) illustrates the usage requirements and new intermediate deadlines
for the video playback activity.

56

‘|—||-||—|‘|—||-||—| .

[] timeon processor time

Il timeondisk
@
Proct == - ‘
[1 [1 >
Disk —— P ——
— — -

M= =l

[] timeonprocessor ~ time
(b) Il time on disk

Figure4-10: Multiple Resources Used with I ntermediate Deadlines

A reserve is alocated for each of the three phases of the computation: the leading pro-
cessor requirements, the disk requirement, and the final processor requirement. Since the
end-to-end timing requirement or deadline is divided up into intermediate deadlines for per-
forming the three phases of the overall computation, the reserves that are associated with the
phases must have deadline parameters. Figure 4-10(b) shows atimeline for each reservation
and how the usage istimed in the three reserves.

So with this approach, two processor reserves (labeled Procl and Proc2 in Figure 4-10)
and one disk reserve are allocated. The call graph with this reserve allocation and binding
appearsin Figure 4-11.

This example points out two major factors that influence how reserved computations
should be structured and how reserves should be bound to the sub-computations. One factor
is the temporal sequence of the resource requirements. Generally speaking, a node in the
graph that requires aresource different from its parent acts as a delimiter for grouping com-
putations that can use the same reserve. To minimize the number of reserves required, the
application programmer should minimize the number of times computations must switch
between required resources.

57

L process_frame
Procl
'/f {' decode fram

read_frame display_frame
read ¢ ¢ DisplayBitmap
Player Player
Kernel v Proc2 v Server
kern_read ServerDisplay

disk read cmd Y

Disk

Figure4-11: Video Playback with Better Reserve/Computation M apping

The second factor is the spatial organization of the nodes in the system. When a call
crosses to another address space or to the operating system, a decision has to be made about
whether to switch reserves at that point or not. The system designer has more control over
that choice, as described above.

4.3 Sizing Reservations

To use resource reserves, an application must specify appropriate reservation parame-
ters. For hard real-time applications, the reservation parameters would be determined a pri-
ori by the system designer. For dynamic real-time applications, external agents such as a
QOS Manager may suggest or require different reservation parameters during the course of
the application’s execution. In the dynamic framework, it is important for the application to
be aware of the resources required to do the work it needs to do and to be flexible in terms of

58

its timing requirements (how often or under what delay bounds it does the work). In general,
two important questions must be addressed:

* How can the resource usage requirements of an application be deter-
mined, especially given that the application may be used on different
machine types and system configurations?

* How should an application adjust its resource reservations using informa-
tion about previous performance?

This section deals with the determination of initial resource reservations and adjustment
of reservation levels for dynamic periodic activities.

4.3.1 Determining resourcesrequired

The first problem to be addressed is how to determine which resources will be needed
during the course of the computation and how to determine the initial reservation levels for
the various resources required by an activity.

The resources that are needed during the course of a computation will depend on what
external services are used by the computation. The list of resources for the computation will
be the union of all the resource lists for the transitive closure of external services used by the
computation. It is therefore very important for services to be named so that each service can
name those services that it uses. And in turn, each service must name those resources that it
uses. Then it is possible to find the resources used by the transitive closure of services the
application uses.

A potential problem is that different functions offered by a service may use different
resources. If a client uses only one function offered by the service, it should reserve only the
resources needed for that function rather than the complete list of resources needed by every
function the service offers. In this case, it may be useful to consider the resource lists
required for “sub-services” or subsets of operations of the service where the subsets are
defined to use similar sets of resources.

In any case, the method for ascertaining required resources should be flexible, efficient,
and easy to use. Ideally, the system would help to determine the list of resources during an
initialization phase of each application. Each time the system encountered an application
that required a particular resource but had no corresponding reserve, it would add a reserve
of the appropriate type with no reservation parameters to the reserve tree bound to the appli-
cation. After the initialization phase, the application would have references to the resource
that were required by its component computations, even those resources used by servers that
were called on its behalf.

Other approaches to determining resources required could be used as well including the
following.

* The list of resources could be obtained by sending a query to every server
to be used in the computation and having the server provide a list of
resources it requires and a list of services it uses. The transitive closure of

59

required resources collected during this query would be accurate as of the
server connection time. This method does not require that the system and
(possibly more static) documentation remain synchronized with respect
to specification of resources used. Upgrades for various system software
modules could be made without having to issue new resource list docu-
mentation. Also, servers would be free to determine which resources,
among many possibilities, would be best to serve that connection given
the state of the system and its load at the time the connection was
requested. Thus an additional degree of freedom is allowed the servers.

» The list could be found using a database where each server registers the
list of resources as well as other services it requires. This makes it possi-
ble to write applications that automatically determine the transitive clo-
sure of services used and resources required, even if some of those
services and resource types did not even exist at the time the application
was developed and compiled. One important requirement to make this
dynamic method work is that service names and resource types not be
hard-coded. Instead, a program should be able to handle and manipulate
new service names and resource names with no recompilation.

» The list of resources required by various user-provided services and sys-
tem services could be static, long-lived, and well documented. The pro-
grammer must manually look up all the services and find the transitive
closure of services used and then the union of the resource lists of all
those services. The major problem with this approach is that the slightest
changes to the software for the services may change the list of services
used and the resource list, thus making the lists in the manual obsolete
and making all the programs written to the specification of the manual
obsolete.

4.3.2 Determining initial reservation levels

Once the programmer knows what resources are needed by an activity, she must set up
the reserves for those resources and request reservations. Requesting reservations requires
that reservation parameters be provided. In the reserve model, a reservation request has
parameters for resource time to be reserved and for a reservation period. In many cases, the
reservation period will be the same as the period of the activity. This will sometimes be
derived directly from user-level quality of service requirements (such as frame rate), and
sometimes it will be derived indirectly from user-level requirements. For example, the rate
for handling audio packets might depend on the audio sampling frequency, the packet size,
and perhaps the system overhead per packet. The resource usage time is more difficult to
ascertain. It depends on the platform, the system software, and the data being processed
among other things.

One way to get a reasonable estimate as to what the resource usage requirements might
be for a given instantiation of an application involves measuring the actual computation that
forms the main focus of the application. With one run through a periodic activity, for exam-

60

ple, the application could get afairly good estimate of future computation times using the
reservation mechanism’s usage measurement features. Another variation on this approach is
to use a simple computation to gauge the speed of the machine and/or system architecture,
and then use a characterization of the real application’s computation expressed in terms of
the simple computation to estimate the appropriate reservation level. For example, if the
application first ran a SPECint benchmark and knew how much the reserved computation
needed in terms of SPECint benchmarks, it could derive the estimate directly.

The following methods could also be used to determine the initial reservation level:

* An application could store in a persistent preferences database some
information about reservation levels used in previous instantiations of the
application. This information would be a good guess as to what reserva-
tion levels should be procured, and it might be possible to maintain a
small database to map prior experience with different QOS parameters to
reservation parameters. This approach might get much more complicated
as more QOS parameters, reservation parameters, and target system
architectures are used.

* The initial reservation level could be set to zero or some other relatively
small value that is known to be smaller than the actual reservation level,
though unknown, that will be required. This approach requires the mech-
anisms for reservation level adaptation to quickly acquire the feedback
on usage that is necessary to set a reasonable reservation level where
desired quality of service parameters can be achieved. Initially, the
desired QOS parameters will not be achieved and they may never be
achieved. These are the major drawbacks of this no-knowledge approach.

» An alternative approach to the zero level initial reservation is to take the
maximum reservation level available on the resources at the time the res-
ervation is requested. This has the advantage of having the highest
chance of meeting the desired QOS parameters for the application, but
the disadvantage is that resource capacity may be unnecessarily tied up
and unavailable to other applications requesting reservations. This situa-
tion would persist until the adaptation mechanism had the chance to eval-
uate the situation and make the proper adjustments to the reservation
levels.

4.3.3 Measuring performance

An adaptive reserved application should keep track of the resource usage required to
perform its computation at each repetition to decide if it has more resource capacity reserved
than it needs or if it has too little resource capacity to do its work during each period. It
should also keep track of the real-time delay incurred during each repetition of the computa-
tion to determine whether the computation was completed within the period or not.

The application can easily measure the real-time delay of a computation by taking a
timestamp at the beginning and at the end of the computation. Measuring the resource

61

capacity usage for a computation, however, is more involved, requiring support from the
operating system. This support must be more accurate than the traditional logical clock for
processor time provided to processes in most operating systems. Logical clocks usually take

usage measurements by sampling at clock interrupts to find which process is running and
incrementing that process’s logical clock as if it had been executing for the entire period.
Statistical sampling of this kind, which is inherently inaccurate for short-term measure-
ments, will not provide an application with the clear picture of short-term behavior. Such
knowledge of short-term behavior is needed to be able to make suitable adjustments to the
reservation parameters.

For the kind of accuracy required for measurements of resource capacity usage, the sys-
tem must accumulate usage associated with reserves at each context switch. In this context,
reserves act aabstract thread logical clocks rather thaprocess logical clocks. And since
the reservation system manages capacity usage for resources other than just the processor,
the system must keep usage accumulators for all types of resources, and these must be
updated at each context switch on the appropriate resource.

Reserve usage measurements will indicate how an application’s actual behavior is
related to its reservation. Several possible patterns of behavior are described in the next sec-
tions.

4.3.3.1 Balanced applications

An application is balanced with respect to its reservation if the resource usage in each
period is fairly constant and the reservation level is at this constant value. (It may be impos-
sible for resource usage to be completely constant for some interesting resources such as
processors.)

units of resource

A

reservation
level — T FT T T T T

time

Figure 4-12: Resource Demand Constant and Reserved
Figure 4-12 illustrates a computation’s demand on a particular resource over time. Time

IS on the x-axis, and it is divided into intervals equal to the reservation period. The y-axis is
units of resource, e.g. time spent on the processor executing instructions, bytes transmitted,

62

etc. Within each reservation period, the number of units of resource consumed by the com-
putation is measured, and the height of the bar in that interval is the number of units con-
sumed.

In the figure, the number of units of resource required in each reservation period is
nearly constant, and the reservation level is slightly more than this constant demand. There-
fore, the demand is satisfied by the reservation, and the computation will have the resources
to be able to execute completely in each period.

4.3.3.2 Under -reserved applications

An application is under-reserved with regard to a particular resource if its resource usage
requirement is greater than its reservation. Two cases are distinguished:

1. worst-case (maximum) resource usage requirement for the computation is greater
than the reservation but the average resource usage requirement is less that the res-
ervation, and

2. the average resource usage requirement is greater than the reservation (implying
that the worst-case resource usage requirement is also greater than the reservation).

In the first case, the average resource usage requirement is less than the reservation, so
over the long term, the application will be able to keep up with its work requirement. The
problem is that since the worst-case resource usage requirement is larger than the reserva-
tion, the completion of the worst-case computation may be delayed and this may delay or
otherwise affect the computations in subsequent periods. If the worst-case computation
occurs very infrequently, its negative affects on the overall performance of the application
can be minimized or ignored. A human viewer may not even notice an occasional dropped
frame during video playback. If the worst-case computation occurs frequently, it may be
more difficult to ignore; many dropped video frames would certainly be noticed.

) worst-case computation
units of resource exceeds reservation level

A /
reservation

level - - - P —— — — = — — — - = = -

time

Figure 4-13: Resource Demand Occasionally Exceeds Reservation

63

Figure 4-13 illustrates this slightly underreserved case. The resource usage requirement
in most reservation periods is less than the reservation level for this particular resource. In
these periods, the computation will have the resources available to complete. However,
there is one period in the illustration (the 4th) in which the resource usage requirement is
larger than the reservation. Depending on the system’s policy for treating this case, the com-
putation may happen to be completed (using idle time), it may be aborted, or it may extend
into the next reservation period, interfering with the completion of the computation which
would normally execute in that period.

) worst-case computation
units of resource exceeds reservation level
A and is aborted

reservation
level —®>»r-——-——-—T—7 " —"—"—"—"———-———— — — — -

time

Figure 4-14: Exceedingly Demanding Computation Aborted

Figure 4-14 shows how the usage pattern would look if the computation in the 4th reser-
vation period were aborted. Note that the computations in the subsequent periods are not
affected by the aborted computation.

worst-case computation
exceeds reservation level
. and gets deferred
units of resource
next computation is replaced
A by the overrun

reservation
level ~— ® [- T~ 4 - ST T —=-

time

Figure 4-15: Computation Impinges on Following Computation

Figure 4-15 shows the case where the computation in the 4th reservation period extends
into the next reservation period and prevents the next computation from being initiated.
Computations following that are left undisturbed.

worst-case computation
exceeds reservation level
units of resource
subsequent computation delayed
A in effort to catch up

reservation
leve - - - - — = = F - — — — — — — — — — — -

time

Figure 4-16: Computation Impinges on Subsequent Computations

In Figure 4-16 the 4th computation overruns its reservation period and consumes part of
the next period. The computation associated with that period is initiated after the previous
computation is completed (as opposed to the previous case where this computation was not
initiated). But since the 5th computation is initiated later than usual, it also overruns its res-
ervation period and is deferred to the next period. This cascading effect continues until there
is enough (normally) unused but reserved units of resource to make up for the original over-
run.

In cases where the average resource usage requirement is more than the reservation, the
activity will never be able to accommodate all of the computations which overrun, and it
would be necessary to shed some of the load by aborting some computations or by not initi-
ating some computations. In either case, the attempted overruns would occur frequently and
have a potentially damaging effect on overall application behavior. In a video player, for
example, this would mean that many frames get dropped.

Figure 4-17 illustrates a possible pattern of demand that has the average demand greater
than the reservation level. The computations in several reservation periods require more
than the reservation for that period. Many of the computations will have to be aborted if
thereis no idle time available beyond the reserved level.

65

units of resource

A

reservation
|a/el _> e — - = — - - - =

time

Figure4-17: Average Demand Exceeds Reservation

4.3.3.3 Over-reserved applications

An application is over-reserved if the resource usage in each period is (much) smaller
than the reservation level.

units of resource

reservation
level —_— > - - — - - - - - — — — — — — — —— = = -

time

Figure 4-18: Resource Demand Smaller than Reservation

Figure 4-18 illustrates a case where the usage on a particular resource is much smaller
than the reservation in all of the reservation periods. Here the computation is never in any
danger of overrunning into the next period.

4.3.3.4 Multiple resour ces
When there are multiple resources involved in each computation, the measurements of

usage compared to reservation level for each reserve will be different. One resource may be
over-reserved while all of the others are under-reserved, or perhaps more commonly, one

66

resource may be under-reserved (representing a bottleneck) while all of the other resources
are over-reserved for the activity.

processor time

(over-reserved) —I_l —|_|
|

disk 110
(under-reserved)

network bandwidth [—————————————-
(over-reserved) —

remote processor time
(over-reserved) |_| |_|
|

Figure 4-19: Measurements of Multiple Resour ces

Figure 4-19 illustrates a case where there are multiple resources involved in a single
activity. They all have the same reservation period, but the demands placed on various
resources are different. In this case, the disk 1/0 is under-reserved while the local processor
usage, the network bandwidth, and the remote processor usage are al over-reserved.

Once an application has measurements of usage for the various resources it requires for
its computation, it can begin to make decisions about how to modify its own behavior or
modify its own resource reservation levels to achieve better performance or better effi-
ciency.

4.3.4 Adapting

Reservation parameters can be changed dynamically asthe user, the application itself, or
acentral quality of service manager determines that new reservation parameters would be
preferable. Applications adapt based on the influences of various external entities, but once
aresource reservation is made, the system ensures that the resources are available.

67

Adaptive applications can measure their own performance by mapping measured system
resource performance metrics to application-specific performance indicators. This applica-
tion-specific information can then be used along with application-specific performance
objectivesto:

1. modify the computation being done by the application (to change resource require-
ments),

2. modify the reservation level for resources being used by the application, or
3. donothing.

The performance measurement interval could be comparable to the period of the repeti-
tive computation, but it would be more efficient if the adaptation interval were an order of
magnitude larger than the activity period (e.g. the adaptation might occur every 500 ms for
an activity with a 50 ms period).

4.3.4.1 Modifying an application’s computation

One way that an application might react to the fact that its resource usage is different
from itsreservation isto change its behavior so that its usage more closely matchesits reser-
vation (leaving the reservation unchanged). The actual mechanisms for modifying behavior
in an application are fairly straightforward. An application which is meant to modify its own
behavior must have different behaviors available (i.e. different algorithms implemented
internally). It must be ableto tell which algorithm it should use depending on the format of a
incoming or outgoing data stream, on the resources such as network bandwidth or computa-
tional power that are available to it, or on the limitations of other software with which it
must interact. For example, an MPEG video decoder could use different decoding or dither-
ing algorithms depending on the resources available. If the decoder were taking the MPEG
data stream from a server in real time, it might be able to negotiate MPEG encoding param-
eters with the server and have the server place new parameters in the data stream. Thus,
adaptive applications are constrained by:

1. theagorithmsthey have coded,
2. the dataformatsthey are using,

3. the data formats and data rates that other components of the pipeline can handle,
and

4. theresourcesthat are availableto it.

Typically, the application would contain a collection of algorithms that could be ordered
based on processor requirements, network bandwidth requirements, etc. Thus, once an adap-
tive application decided to increase or decrease a reservation on a particular resource, it
could determine which algorithms could satisfy that constraint. It isimportant to distinguish
between two kinds of behavioral adaptations:

1. local changesin agorithm and

2. global changes.

68

An example of alocal change would be a change in the number of bits actually being
decoded by the receiver of abit stream (assuming the bit stream was encoded using a hierar-
chical encoding scheme). A global change would involve not only the receiver but the
sender. It would require away for the receiver to request a change in the format or number
of bits being sent as well as requiring the receiver to recognize that the format of the bit
stream changed.

As an example of what the code structure for an adaptive application would be, consider
avideo player. The basic control structure of the player is aloop that reads some data (from
adisk, network or some other source), decodes the data, displays the data, and evaluates its
performance.

while (1)
read data for a frane
decode data
di splay frame
eval uate resource usage

It is the evaluation part of this loop which will look at the resources that are being
expended over time to play the video frames and decide whether the amount of work being
performed should be increased, decreased, or remain the same. If it decides the work should
be locally increased or decreased, it may change some state in the player to indicate how the
data should be decoded (by looking at more or fewer bits of the data). If the evaluation
phase decides that the work should be globally changed, it may initiate negotiations with the
source of the data stream to try to increase or decrease the bandwidth of the bitstream. This
negotiation may or may not change the state of the player itself, but the changes to the char-
acteristics of the bit stream and the point in the bitstream where the change takes place
should be clearly identified in the player and should be recognized in decoding the data.
Thus, if and when a change in the format of the bitstream occurs, the player will be able to
make the appropriate changes in decoding the stream.

So the software structure of the adaptive player, with a little more detail filled in,
becomes:

while (1)
read data
check for control data
swi tch based on bitstream fornmat
switch based on | ocal decoding state
decode data
di splay frame

eval uate performance

69

The application first reads the data and then checks either for control information
embedded in the data or for some kind of synchronization point which is known, through
information communicated via an external channel, to imply a change in data format. Then
the proper algorithm is chosen to decode the data based on the format of the bitstream and
on the local decoding state. Once the data is decoded, it is displayed (possibly using differ-
ent algorithms indicated by the player state), and finally the performance is evaluated. To
reduce overhead, the performance may not be evaluated during every iteration of the loop.

This example shows how a player might change its behavior and thus its performance
characteristics based on decisions about local algorithms and global changes in data
streams.

4.3.4.2 Adjusting reservation levels

Another way an application might react to noticing a difference between its usage and
reservation is to change the reservation (without modifying its computation). We will exam-
ine several cases, possible behavior modifications, and their effects on delay, efficiency, and
total reservation.

Under -reserved applications

As indicated in the section on measuring resource usage, an application is under-
reserved if its resource usage requirements are greater than its reservation level. There are a
couple of ways to change the reservation parameters to accommodate this situation:

1. increase only the units of reserved resource usage
2. increase both the units of reserved resource usage and the reservation period.

By increasing the reserved resource usage to match the computation’s requirements, the
application can ensure that the resources will be available to the computation, and the com-
putation can be invoked just as often as before. The delay experienced by each computation
will be decreased since there will be fewer overrun situations to cause delays, but the overall
reservation level is increased. This means there is less resource capacity available for other
applications, or when resource reservations are really tight, it may be impossible to increase
the reservation level at all.

If the application increases the units of reserved resource and the reservation period pro-
portionally, there will be enough reserved resource capacity in each reservation period to
service the computation. And since the reserved amount and the reservation period are
increased proportionally, the overall reservation level is not increased. This also implies that
the computation is requested less often to correspond with the longer reservation period
since requesting it just as often would not reduce the overall workload (without a load-shed-
ding mechanism coming into play).

70

Over -reserved applications

Over-reserved applications are those which have a reservation level that is greater than
the actual resource demand. This situation is inefficient since the application has more
resource capacity reserved than it expects to use, and that reserved capacity could be used to
ensure predictable performance for other applications that will actually use the resource.

The simplest action to take in this case isto reduce the units of resource reserved in each
period to avalue that is closer to the actual resource requirement. It is possible to increase
the reservation period without increasing the period of the computations to decrease the res-
ervation level, but that would have other undesirable effects on the timing of the program,
such asincreasing the delay for some computations.

4.4 Chapter summary

This chapter describes how programs should be structured to take advantage of reserves
for predictable real-time performance. For hard real-time applications, information about
the resources used by and timing requirements of each program must be known at design
time and must be used in planning reserve allocation. So a localized way of using reserves
might be appropriate. With local reserves, each program allocates its own reserves based on
its requirements and the requirements of other programs that depend on it. For dynamic soft
real-time systems, a global method for reserve allocation where an activity allocates the
resources for al of its constituents including external servers and operating system services
might be more appropriate. This makes it easier to monitor and control the usage of the
entire activity rather than just localized parts of it. These recommendations are not cast in
stone; the choice of whether to use localized or global reserve allocation ultimately rests
with the system designer.

The discussion also dealt with methods for determining resources required by an appli-
cation, reservation parameters appropriate for an application, and adaptive methods for
adjusting reservation parameters or behavior based on performance history. In hard real-
time systems, many of these questions must be answered at design time, and there is less
flexibility in adaptation strategies. Soft real-time systems, however, have a great deal of
flexibility and can take advantage of some of the techniques described in this chapter.

71

72

Chapter 5

| mplementation

This chapter describes an implementation of processor reserves done using the Real -
Time Mach operating system. It discusses applications that were modified to use processor
reserves, network protocol processing software modified to use reserves, a QOS manager
for negotiating resource allocation with applications, and tools for reserve monitoring.

5.1 Overview

This chapter describes the implementation of processor reserves in RT-Mach as well as
several other components of the system. It also covers some applications that were modified
or designed and implemented to use processor reserves. Figure 5-1 shows the various com-
ponents and gives an indication of their relationship.

Reserved User-Level
Reserved . Reserve :
X Video Monitor Networking
Server Players Library
QOS
Manager

RT-Mach with Reservation Mechanism

Figure5-1: System Components

73

First there is the implementation of processor reserves in the RT-Mach kernel which is
the basis for the rest of the implementation work. Reserves were implemented as a new ker-
nel abstraction with operations for create/terminate, requesting reservation parameters,
binding threads to reserves, and extracting usage information about reserves.

Several real applications were modified to use processor reserves including: a Quick-
Time video player developed at CMU called QTPlay, an MPEG decoder called mpeg_play
[93], and aversion of the X Server [34].

A version of the user-level socket library [70] was modified to use reservesaswell. This
socket implementation supports predictable performance for applications that send and
receive network packets.

A QOS manager was implemented to allow for more sophisticated negotiation of
reserve parameters than that provided by the kernel mechanism itself. The QOS manager
interacts with applications to try to balance resource usage and negotiate with applications
when conflicts arise in the resource reservation requests.

Tools were implemented to help manage reserves and to monitor resource allocations
and measure usage. The rmon application is areserve monitor that provides a graphical user
Interface for reserves. It displays the reservation levels and usage in recent history, and it
also allows the user to change the reservation parameters from the graphical interface.

5.2 Reservesin RT-Mach

The implementation of processor reserves in RT-Mach involved adding the new reserve
abstraction, implementing the operations on reserves, creating a new scheduler, and adding
code for accurate usage measurement. In addition to the new scheduler, the reserve imple-
mentation also required modifications in the RT-Mach priority inheritance mechanisms to
support reserve inheritance and reserve propagation.

The reserve abstraction in RT-Mach is managed much like the other abstractions like
hosts, processor sets, tasks, threads, etc. that originated in Mach 3.0 [11]. These types of
resources in Mach are referenced by ports, which are used as capabilities.

In RT-Mach, processor reserves are allocated from processor sets. In the uniprocessor
version, there is only one processor set, so all reserves originate from this processor set.

5.2.1 Attributes and basic oper ations

Abstractions like tasks and threads offer basic operations such as create, destroy, get
attributes, and set attributes. The basic operations on reserves are as follows:

reserve_create(out reserve) Creates a new processor reserve and returns it as an
out parameter.

reserve_terminate(reserve) Terminates the given reserve, making its reserved
capacity available for other requests.

74

reserve_set_attribute(reserve, attr_name, attr_value, attr_value size) Set the
value of an attribute of the reserve.

reserve_get_attribute(reserve, attr_name, out attr_value, out attr_value_size)
Get the value of an attribute of the reserve.

processor_set_reserves(processor_set, out reserve list) Returns the list of
reserves associated with the given processor set.

The get attribute and set attribute operations give the programmer access to some of the
attributes of reserves. The externally visible attributes that reserves have appear in the fol-
lowing list. The data types for the attributes are given in parentheses after the attribute
names; “int” is an integer, “timespec_t” specifies a time value, “mach_reserve_name_t" is a
fixed length string, and “boolean_t" is a boolean flag.

name (mach_reserve _name t) A symbolic name for the reserve.

ckpt_total (timespec_t) The cumulative total usage measured at the at last period
boundary.

ckpt_time (timespec_t) The absolute time of last period boundary (when the
ckpt_total value was recorded).

accum_total (timespec t) Cumulative total usage at the current time (usually
updated when accessed).

accum_time (timespec t) The time that the total usage was last updated.
used (timespec_t) Usage charged against the reserve so far in current period.

next_period (timespec_t) The absolute time of the next period boundary (end of
the current period).

period (timespec_t) The duration of the reservation period.
computation (timespec_t) The reserved computation time.

recent_checkpoint_position (int) The position in the recent_checkpoints array
for the next item to be written. The array is a circular buffer.

ncheckpoints (int) The number of how many checkpoint entries currently in the
array.

recent_checkpoint§ MAX_CHECKPOINT_COUNT] (timespec_t) The usage
values for the recent checkpoints.

recent_checkpoint_timegfMAX_CHECKPOINT_COUNT] (timespec_t) The
times at which corresponding checkpoint usage values were recorded.

A “checkpoint” occurs at each period boundary for each reserve. At that time, the accu-
mulated usage is recorded along with the absolute time of the period boundary. This infor-
mation can be used later by applications or monitoring tools that need information about
how much usage was charged against a reserve in a particular reservation period.

75

There are afew other reserve attributes that are only used internally. They form part of
the scheduling state for a reserve and are not available through the get attribute operation.
Theseinternal attributes are:

reserved (boolean_t) The bit that indicates whether the reserve is in “reserved
mode” or “unreserved mode”.

wait_replenish (boolean_t) An internal flag indicating that the reserve has a res-
ervation that has been depleted for the current period. The reserve is awaiting
replenishment.

start (timespec_t) The absolute time at which the first period for the reserve
started.

5.2.2 Reservation requests and admission control

When initially created, a reserve does not have an associated resource reservation. Get-
ting a resource reservation for the reserve requires an additional call. The following opera-
tion allows a programmer to specify reservation parameters and request a reservation. This
call is used when there is no reservation associated with the reserve, or if the programmer
wishes to request a reservation with parameters that are different from the reservation asso-
ciated with the reserve.

reserve request(reserve, reservation_parameters) Requests a resource reserva-
tion to be allocated to the reserve. The caller provides the reservation parameters.
Reservation parameters include desired reserved time per period, the period itself,
and start time for reservation to take effect.

This operation is used to request a reservation with certain parameters. If there was
previously no reservation associated with the reserve and the reservation request
succeeds, then the operation returns “success” and the reservation is granted for
that reserve. If the reservation request fails, the operation returns the error, and the
reserve is left without a reservation.

If the reserve already had a reservation at the time the request call was made, the
behavior is as follows. If the new reservation request is granted, the new reserva-
tion parameters will be associated with the reserve, and the old reservation will be
freed in this process. If the new reservation request fails, the old reservation
parameters remain in effect; that is, the old reservation will not be freed if the new
reservation request cannot be granted.

The request operation invokes the admission control policy to determine whether the
new reservation request can be accommodated given the collection of other reservations that
have already been accepted for the resource. The RT-Mach implementation uses an admis-
sion test based on rate monotonic analysis, but the decision is somewhat optimistic in that it
uses a utilization bound of 90% for testing for schedulability. This is based on the analysis
of average schedulable bound [63], which says that for a randomly generated task set the
schedulable bound is 88% on average.

76

5.2.3 Scheduling

The scheduler in RT-Mach was structured so as to make it easy to develop and incorpo-
rate scheduling policies. The scheduler uses a well-defined interface for scheduler opera-
tions, and a function pointer table in the scheduler contains the operations for the scheduling
policy in effect. The scheduling policy can be changed dynamically by putting the ready
threads in a policy-independent queue, changing the pointers in the function table to refer to
the operations for the new scheduling policy, and then transferring the ready threads into a
policy specific queue.

Several scheduling policies, including the “Reserves” scheduler, are supported in RT-
Mach [85]. The scheduling policies in RT-Mach are associated with “processor sets,” and in
the case of a uniprocessor, there is only one processor set in the system. The operations to
get and set attributes of a processor set are used to query or set a scheduling policy.

processor_set_get attribute(processor_set, attr_name, out attr_value) To get

the scheduling policy for a processor set, PSET_SCHED_POLICY_ATTR is spec-
ified for “attr_name”. The operation sets the “attr_value” to reflect the currently
active scheduling policy.

processor_set_set_attribute(processor _set, attr_name, attr_value) To set the
scheduling policy for a processor set, PSET_SCHED_POLICY_ATTR is speci-
fied for “attr_name”. A value such as SCHED_POLICY_RESERVES is given for
the “attr_value”.

Several scheduling policies are implemented in RT-Mach. The original Mach time-shar-
ing policy is available, as are several varieties of fixed priority and rate monotonic policies.
Earliest deadline scheduling is available, and round robin scheduling is supported for exper-
imental purposes. Reserve-based scheduling is also a policy option. The policies that are
available in the MK83j version of RT-Mach are:

1. Mach Time-sharing - Original time-sharing policy.

2. Fixed Priority/RR - The fixed priority/round robin policy services threads
in order of a fixed priority associated with each thread. Within a priority
class, threads are scheduled round robin with a quantum.

3. Fixed Priority/FIFO - The fixed priority/FIFO scheduler uses fixed prior-
ities as well, but within a priority class, threads are scheduled using a
FIFO discipline (with no quantum).

4. Rate Monotonic - Rate monotonic scheduling based on the periods given
to periodic threads.

5. Deadline Monotonic - Deadline monotonic scheduling based on the
deadlines given to periodic threads.

6. Earliest Deadline First - Schedules based on the deadline information of
threads.

~

Round Robin - Simple round robin scheduling (with a time quantum).

77

8. Reserves- Scheduling policy for the reservation system.

The “Reserves” scheduling policy uses one queue for “reserved mode” threads, which
are listed in order from smallest reservation period to largest. It uses an additional table of
gueues for implementing a multi-level feedback queue for time-sharing or “unreserved
mode” threads. The reserved mode threads are scheduled first, and when there are no more
reserved mode threads, the scheduler services the unreserved mode threads. In order to pre-
vent starvation of unreserved mode threads, the reservation parameters are limited. In the
implementation, a reservation cannot have a period larger than one second. This ensures that
no reserved computation time can be greater than 0.9 second, so in the worst case, reserved
activities can hold the processor continuously for no longer than 1.8 seconds before time-
sharing programs get a chance to use the processor.

5.2.4 Usage measurement and enfor cement

The scheduler for the reservation mechanism requires very accurate usage measurement
so that the system can keep track of how the resource usage of each activity relates to its res-
ervation (if any). In particular, reserved activities must be prevented from over-running their
reservations and interfering with other reserved and unreserved activities.

To accumulate very accurate usage measurements, the system has code in the context
switch from an old thread to a new thread that does the following:

1. takes atimestamp from a high-resolution free-running clock.

2. computes the duration of time the old thread was running and charges
that usage against the reserve associated with the old thread.

3. stores the timestamp for doing the same computation later for the new
thread.

Those actions mean that threads get charged for the amount of time they spent on the
processor rather than getting charged an estimate of the time they spent. This timestamp
method much more accurate than the method used for accumulating usage in many time-
sharing systems where the process running at the time of a clock tick is charged for the dura-
tion of the clock tick (whether it was running the whole time or not).

The reserve abstraction has several operations that provide the programmer with access
to usage information in the reserve. The usage-related operations are:

reserve_get_checkpoint(reserve, out checkpoint_total, out checkpoint_time,
out accum_total, out accum_time) Get reserve’s checkpoint information, taken
from the last reservation period boundary.

reserve_get_attribute(reserve, attr_name, out attr_value, out attr_value_size)

The reserve_get_attribute operation can be used with “attr_name” set to
RESERVE_RECENT_CHECKPOINTS to get an array of the recent checkpoint
values for the last several period boundaries.

78

In addition to the accurate usage measurement, the enforcement mechanism uses timers
to keep threads from over-running their reserved computation time and to replenish the
reserved time for a reserve appropriately. Two kinds of timers are used for doing these
things. the overrun timer and replenishment timers.

The overrun timer is set at each context switch, and it is set for the maximum time the
new thread could run before over-running its reserved computation time for its current reser-
vation period. If the thread is still running when the timer expires, the system will update the
reserve to show that the activity used all of its time for that period, and it will change the
activity to unreserved mode. Then the scheduler will get an opportunity to reevaluate ready
threads, and it may decide to switch to another thread.

If the current timeis close to the end of the reservation period for the new thread and the
reserved time islonger than the difference between the current time and the end of the reser-
vation period, the overrun timer is set to expire at the end of the reservation period. If the
timer goes off at that point, the reserve will be replenished and the activity will again be eli-
gibleto run.

The second kind of timer is the replenishment timer. Each reserve has a replenishment
timer that is initially set at the reserve’s start time. The timer is set to expire at the end of the
reservation period (or the beginning of the new reservation period). When a replenishment
timer expires, the system changes the state of the reserve to reflect that it has a new alloca-
tion of its reserved time for the next reservation period. The reserve is set to reserved mode,
and the replenishment timer is set to expire again at the end of the new reservation period.

5.2.5 Reserve propagation

One of the key features of the reserve abstraction is that reserves can be bound to threads
as appropriate for particular applications. This feature is useful in the situation where an
application initiates a reserved activity that may invoke services of server processes locally
or even on remote machines. When invoking a server, an application can make its reserves
available for the server to use in its computations. The server can then take advantage of
having the resources available, and the time it takes to perform the computation on behalf of
the client can be charged to the client’s reserves. In this way, reserves provide a method for
consistently measuring resource usage of entire activities, even if threads in different protec-
tion domains cooperate on behalf of the broader activity.

The following operations are related to the binding of reserves to threads:

thread_set_current_reserve(thread, reserve) Each thread has a current reserve

and a base reserve. The value of the current reserve may be the result of a reserve
propagation, but it is not necessarily permanent. It may eventually revert to the
base reserve. This primitive sets the current reserve of a thread.

thread_restore base reserve(thread) Makes the base reserve the current reserve
for the given thread.

thread_set reserve(thread, reserve) Set the reserve of a thread.

79

thread_get_reserve(thread, out reserve) Get a thread’s reserve.

In addition to the binding operations, the priority inheritance mechanism of RT-Mach
[59,86] aids in ensuring bounded delay for access to servers and mutexes. In the context of
reserve scheduling, “priority inheritance” means “reserve inheritance” in the following
sense. Interpreting “priority” in the broadest sense, one could think of a thread’s reserve
information and time-sharing priority information as combining to yield a total ordering for
values of these fields. The scheduler schedules threads based on this total ordering from
highest “priority” to lowest:

1. threads that have the “reserved” bit set are ordered with smaller reserva-
tion period having higher “priority” than larger reservation periods.

2. threads with the “reserved” bit cleared are ordered according to their
time-sharing priority, which is a field of each thread (not a field of the
reserve).

This concept of “priority” comes into play in the priority inheritance mechanism in RT-
Mach. As an example, consider a single-threaded server with several clients. When a client
makes a call to the server, the server takes on the “priority” of the client (done in the priority
inheritance mechanism) and binds its own thread to the client’s reserve to charge its time to
it (using the bind operation).

If during this service time a second client with a higher “priority” makes a request, the
IPC mechanism enqueues the new request for the server. It then calls on the priority inherit-
ance mechanism to change the “priority” of the server to that of the newly enqueued client
(thus limiting the duration of the “priority” inversion). The server continues to charge time
to its first client’s reserve, however, so that reserve will reflect the true resource usage
required for the computation. After the service is finished, the server stops charging against
the first client’s reserve, picks up the request from the second client, and starts charging
against the second client’s reserve. The server continues to execute under the “priority” of
the second client.

Priority inheritance for reserved activities presents an additional complication beyond
what fixed priority inheritance mechanisms must face. In particular, with reserves (and with
other dynamic priority disciplines), the “priority” the server takes may change during the
service. For example, if the server executes for longer than the reserved time of its client’s
reserve, the reserve will be degraded into unreserved mode, and the “priority” thus changes.
In the implementation, the priority inheritance mechanism is informed when this happens so
that it can set the priority of the server to the appropriate value given the list of clients wait-
ing for that server. For example, if a server uses all the reserved computation time for a par-
ticular client it would normally have its reserve downgraded and its “priority” decreased.
However, if another reserved client is waiting for the server, the server will inherit the “pri-
ority” of that client so as to avoid a priority inversion.

80

5.3 Applications

A number of applications were modified to use reserves to show that real applications
could actually achieve predictable behavior using the reservation system. A QuickTime
video player and an MPEG decoder were modified to use reserves, and a version of the X
Server [34] was modified to cooperate with reserved applications to provide predictable
window system services.

5.3.1 QuickTime video player

A QuickTime video player, called QTPlay, was implemented at CMU. The player can
display JPEG encoded video as well as raw, unencoded video. The player was modified to
use reserves to achieve predictabl e performance.

QTPay avoidsinteractions with system components that have not been modified to sup-
port predictable performance via reserves, such as the UX server. It loads a short clip of
video into memory during initialization to avoid interaction with the UX server during play-
back. For experiments, the player loops over the clip for the duration of the test. Figure 5-2
summarizes the structure of the reserved QTPlay application.

| oad short video clip

all ocate reserve with command-1ine paraneters
create periodic threads

bind thread to reserve

\Nhi | e not done

save start tinmestanp
di splay a frame
save end tinmestanp

durrp timestanps to a file

Figure5-2: QTPlay Outline

At initialization, QTPlay reserves time on the processor and binds the periodic thread
responsible for frame processing to the reserve. The start time of the periodic thread and the
start time of the reservation are synchronized so that when the thread becomes ready at the
beginning of each period, the allocation of processor time will be available aswell. The
other reservation parameters, in particular the reserved computation time and the reservation
period, are given as command-line arguments. They are typically determined by measure-
ments made prior to the execution of the player. This particular application does not dynam-
ically discover the appropriate reservation parameters nor does adjust the reservations after
execution begins.

The player uses aversion of the X Window System library, Xlib, that was modified to
cooperate with a reserve-enabled X Server. This library passes a reference to the thread’s

81

reserve when the player opens the connection to the X server. The X server then uses the
reserve for operations requested by the player (such as DisplayBitmap).

In each period, the thread displays a frame of the video and then saves the start time and
completion time for the frame in a buffer in memory. Just before the player exits, it dumps
the contents of this timestamp buffer to afile for subsequent analysis.

5.3.2 MPEG decoder

The Berkeley MPEG decoder [93] was modified to use processor reserves in RT-Mach.
This version of mpeg_play reserves processor capacity during itsinitialization and periodi-
cally evaluates its performance and makes adjustments to its processor reservation and tim-
Ing constraints as necessary.

The original Berkeley MPEG decoder works by repeatedly reading MPEG encoded
macroblocks from an input stream, transforming them, and displaying the frames. The
underlying mpeg library has some features for managing the timing of frames, but the sim-
ple player that is provided to demonstrate the use of the library displays frames as fast as
possible without attempting to regulate their timing.

A number of changes and extensions to the MPEG player were required to enable pre-
dictable performance and to take advantage of the timing features of RT-Mach aswell asthe
processor reservation mechanism. Figure 5-3 summarizes the code structure of the modified

version of mpeg_play.

| oad short video clip
all ocate reserve with command-1ine paraneters
create periodic thread
bind thread to reserve

\Nhi | e not done

save start tinestanp
di splay a frane
save end tinestanp
i f frame_nunber nmod 30 == 0 then
eval uat e usage
adj ust reservation paraneters and/or al gorithm

Figure 5-3: mpeg_play Outline

As with the QTPlay, mpeg_play prefetches a short clip of video into memory to avoid
interacting with the file system during runtime. The frames are decoded and displayed by a
periodic thread that has the period desired for video playback, typically 33 ms.

During the initialization of the modified MPEG player, it requests a processor reserva-
tion based on an estimate of the computation time and the length of the period. Since the
computation time may vary on different hardware platforms and different MPEG data

82

streams, it is very difficult to get an accurate estimate before running the application, and
this player tunes its reservation parameters as it executes.

For each frame, the player records the time the computation was started, the time it
ended, and the amount of processor time it used during its execution (taken from the usage
information in the processor reserve). It periodically computes statistics on these numbers
for the recent periods to find out how much computation time was required for each frame
and whether the delay for the computation is excessive. Thisinformation is used to decide
what adjustments need to be made (if any). In its evaluation, mpeg_play distinguishes three
cases:

1. reservation level okay, do nothing.

2. reservation level too low but some capacity is available to be reserved,
increase reserved computation time while keeping the same period.

3. reservation level too low and no additional capacity is available to be
reserved, increase the reserved computation time to the desired amount
and increase the reservation period proportionally.

The modified version of mpeg_play incorporates some basic adaptive techniques, but it
could be extended in a number of directions to improve its flexibility and performance. The
decoding and display phases of the player should be decoupled to allow the variation in
decoding time to be masked by buffering with the application. Incremental decoding tech-
niques would yield severa options for how much computation to do for each frame, and
changing the dithering algorithm dynamically would increase flexibility as well.

5.3.3 X Server

Each real-time X client acquires a processor reserve and charges its own execution time
against that reserve as well as providing the reserve to the X Server so that the Server can
charge service time done on behalf of that client to the appropriate reserve. We have modi-
fied aversion of the X Server to order service requests according to their timing constraints
and to charge service time to the client for which the service is performed. Basically, the
server should mimic as closely as possible the behavior that would be observed if each client
could do its own graphical display within the context of its own address space and schedul -
ing domain. Thus the modified X Server has the following properties:

1. The Server ensures that the activities of real-time clients are isolated
from unwanted interference from non-real-time X clients by ordering all
request from real-time clients down through non-rea-time clients and
servicing them in that order.

2. The Server itself is isolated from unwanted interference from non-real-
time applications (even applications which are not X clients) by virtue of
the processor reservation mechanism. The reservation system ensures
that, while the X Server is running under a client’'s reservation, the
resource capacity associated with that reservation is available to the X

83

Server.

3. Other real-time applications that are not X clients are isolated from
unwanted interference from the X Server and its clients if they use the
reservation system. This would not be true if the X Server were just
assigned a “high priority” or if it over-reserved resources.

The goal of this work is to achieve predictable performance for real-time applications
that make use of the graphical display services provided by the X Window System. “Pre-
dictable performance” means that real-time applications will be scheduled based on their
timing requirements, and their graphical display requests serviced by the window system
will be scheduled to meet the timing requirements. Thus, the abstract activity for each real-
time client, consisting of the computations within each client application and the associated
computations within the window system, should suffer only bounded delays due to other
real-time and non-real-time applications sharing the window system.

The processor capacity reserve mechanism provides this kind of timing isolation for
independent programs which do not communication or synchronize with each other. How-
ever, when applications share a single software resource such as the X Server, the same kind
of timing isolation provided by reserves must be extended into the Server’'s computations.
To provide this isolation and bounded delay, the following is required of the server:

1. Requests from different clients that queue up in the server should be ser-
viced in the order that the clients would be serviced if they were doing
the work themselves and being scheduled by the processor reservation
mechanism. In other words, the server should handle requests in order of
client “priority” (where client priority refers to an implied ordering
among clients defined by the reservation system).

2. Computation performed in the server on behalf of a client should enjoy
resources, such as processor capacity, that have been reserved for that cli-
ent. The server should execute at the priority of the client whose request
it is servicing. Likewise, the resource usage for such a computation
should be charged to the client’s reservation, so that a client is prevented
from getting more than its reserved time by sending some work to the
server and then doing other work locally.

3. Priority inversion should be minimized (and unbounded priority inver-
sion completely avoided) in servicing the clients’ requests. Thus if the X
Server is occupied with a request from a client when another request
comes in from a higher priority client, the server should inherit the prior-
ity of the newly arrived client.

These requirements have many implications for the coding of the server. The idea that
the server should mimic the behavior of individual threads performing the same computa-
tions places some restrictions on how the server can be designed. Also, each of the three
specific requirements listed above has some additional implications for the coding of the
server.

First we address the desire to have the server behave as the individuals would. Thisis
conceptually easy to achieve by thinking of spawning a new thread for each client’s request
as it arrives at the server, binding the thread with the reservation or priority of its client, and
then allowing the threads to be scheduled by the processor reservation system based on that
information. Unfortunately, spawning a potentially large number of new threads is expen-
sive, and while there exists a version of the X Server that is multi-threaded [110], the one on
which this work is based has only a single thread. With a single-threaded server, we try to
mimic the desired behavior by satisfying the three requirements listed above as follows:

1. Client requests are enqueued in the server in priority order.

2. At the beginning of the computation for each service request, the server
takes on the resource allocation persona of the client, enjoying the
resource reservations of the client and charging usage against the client’s
reserve.

3. The RT-IPC [59] mechanism handles priority inheritance to minimize the
effects of priority inversion.

These are the modifications made to the X Server to provide predictable performance.
However, there are some problems with the X Server that interfere with real-time applica-
tions and which are very difficult if not impossible to fix. Several of these problems are
addressed in the development of a window system intended for real-time performance
[105]. Briefly, the problems are:

1. The X Protocol supports a “grab server” operation which blocks out all
other operations for an unbounded period of time.

2. The X library batches requests for higher throughput. This can increase
the delay of single operations as multiple operations are combined into
one.

Despite these hindrances to 100% guaranteed real-time performance, the modified X
server can provide good real-time behavior for typical multimedia applications such as
video players.

5.4 Reserved network protocol processing
A predictable network service depends on how the protocol processing for network
packets is handled as well as how these activities are scheduled. This section examines sev-

eral different approaches to protocol processing software design and discusses the advan-
tages and disadvantages of these approaches.

5.4.1 Softwareinterrupt vs. preemptive threads

Traditionally, protocol processing software has been designed to take packets from the
network interface and immediately begin processing them at high priority. For example, 4.3

85

BSD protocol processing is done at a “software interrupt level” which executes at a higher
priority than any schedulable activities in the system (like processes) but at a lower priority
than hardware interrupts [62]. Unfortunately, network packets associated with a low priority
activity may flood the protocol processing software and execute while higher priority pro-

cesses are delayed. This is an example of priority inversion [48,75].

To prevent this kind of priority inversion, it is necessary to associate priorities with
packets so that they can be queued and serviced in priority order. It may also be helpful to be
able to preempt the processing of one low priority packet in favor of a higher priority
packet, especially if the computation time required for protocol processing is significantly
more than that required for a context switch. One approach, used in the ARTS real-time ker-
nel, has preemptible threads to shepherd packets through the protocol software [124]. This is
similar to the method used in thé&ernel [45], but unlike the&-kernel threads, ARTS proto-
col processing threads were preemptive. This approach provides fast response to high prior-
ity packets and prevents low priority network activities from interfering with high priority
work on the processor.

5.4.2 Mach 3.0 networking

Networking in the context of the Mach 3.0 UX server [36] is accomplished by calling
the 4.3 BSD networking primitives, which are handled by the UX server. The UX server
interacts directly with the network device drivers to send and receive packets.

4 N

Net
App

Network driver

_ RT Mach 3.0/

Figure 5-4: Networking with the UX Server

86

As shown in Figure 5-4, this makes the UX server a single point of contention for all
activities that are using the network. Unfortunately, the networking code inside the UX
server does not support priority. So this software does not satisfy the requirements for prior-
ity and preemptibility in predictable protocol processing software.

Another problem with networking under the UX server of Mach 3.0 is that the interpro-
cess communication (1PC) required between the application and the UX server and between
the UX server and the network device drivers adds overhead to network communication.
This decreases throughput and increases latency. To alleviate these problems, Maeda and
Bershad created alibrary implementation of TCP/IP and UDP/IP sockets [70]. Their library
handles the protocol processing for sending and receiving packets and interacts with the net-
work packet filter [139] and network device drivers directly. The library can be linked in
with applications that use the networking calls, so each application can do its own protocol
processing in its own scheduling domain (i.e. within its own threads). The library only inter-
acts with the UX server to create and destroy connections and for afew other control opera-
tions. The fast path for sending and receiving packets is confined to the library itself (and
the device drivers). Figure 5-5 illustrates their networking software structure.

!)
App
N
Net
e
N

Net
App
T

A,

Network driver

_ RT Mach 3.0/

Figure5-5: Networking with the Socket Library
Maeda and Bershad report that their socket library yields much better performance in

terms of throughput and delay than the UX server sockets implementation [70]. Coinciden-
tally, their implementation also satisfies the requirements for effective real-time scheduling

87

of protocol processing. By including the code in a user library, the computation is done by
the user thread at the user’s priority. It is also preemptible since it runs in user mode and
shares nothing with other threads in other applications.

5.4.3 Reserved protocol processing

Since the socket library enables the protocol processing computation to be scheduled
under the priority of the application and since it is also preemptible, the processor reserva-
tion system can be applied to programs which do socket-based communication [77]. Com-
pared with a UX server socket implementation, the library partitions the data structures and
control paths of all of the networking activities and places them in independent address
spaces where they do not to interfere with each other. In the UX server, these different activ-
ities are forced to share the same queues without the benefit of a priority ordering scheme.
Other activities such as file 1/0, asynchronous signals, etc. may interfere with the protocol
processing, thus delaying packets as a result of other operating system activity that is not
even related to networking.

In the socket library, these components do not interfere with each other, so the reserva-
tion mechanism is free to make decisions about which applications should receive computa-
tion time and when. The control exercised by the reservation scheduler is not impeded by
additional constraints brought on by the sharing of data structures and threads of control.
Applications that use the socket library with the reservation mechanism should therefore
achieve very predictable networking behavior.

5.5 QOS manager

A QOS manager was implemented to provide a central point for resource allocation
decisions. It exports an interface that allows the application programmer to create and termi-
nate reserves, to request a reservation at a specific desired level, and to set preferences for
the minimum reservation level. If the reserved load becomes high and the server has diffi-
culty granting minimum reservation levels for new requests, the server begins to downgrade
some of the previously granted reservations to their minimum levels in order to admit the
new reservation request at its minimum level.

In general, information about resource allocation requirements may come from a variety
of sources and may change over time. Resource allocation information can come from
applications themselves which may request resource and negotiate if the request cannot be
satisfied immediately. It can come from static user preferences about which applications
should be more resources under what circumstances. And it can come from various user
interface elements designed to bring resource management decisions to the console user.

5.5.1 Information sour ces

The QOS manager uses the information it gathers to make policy decisions about how to
allocate resources to various activities. The information may come from user preferences

88

files, applications themselves, and graphical resource management tools. Figure 5-6 sum-
marizes the information flow associated with the QOS manager.

/ rmon Reserved Apps

.

Unreserved App
QOS
Manager
Y

User preferences
ResourceReservatior
Mechanism

\ RT-Macy

Video Jm——
Audio im—
Mixer [C—3
CNN —4
Soaps [
make —/4
Other —/

[72)

Figure5-6: Resource Management Schematic

The static user preferences used by a QOS manager might come from a configuration

file located in the user’s home directory or in a system default directory. Such a file could

contain arbitrarily sophisticated rules for the QOS manager to use in making allocation pol-
icy decisions. For example, the file might contain rules to indicate how the user’s focus

should affect resource allocation. It might have rules to determine which applications are
more important (e.g. specifying that audio/video applications are more important that file

transfer). There might be rules about how temporal properties indicate which applications
are more important (e.g. giving recently created applications preference over older applica-
tions). And there might be rules about how past usage should affect future reservation.

The dynamic user preferences might come from the applications themselves, from a sep-
arate tool, or from some mechanism associated with a window manager. In any case, cues
given by the user, which can be picked up in the user interface, are very important to the pol-
icy decisions that must be made about where to allocate resource capacity. These cues can
be explicit, where the user makes certain gestures to change the resource capacity alloca-
tions of various activities. Or the cues can be implicit, as in the case of a window manager

89

which notices which window has the user’s focus (based on the position of the mouse
pointer) and passes this information along to the QOS manager.

Information about the recent resource usage of various activities might be used to deter-
mine what the future resource reservation levels should be for those activities. For example,
an audio player receiving transmissions over the network might become quiet due to long-
lasting Iull at the sender. When this happens, it may be appropriate to notice the lack of
resource usage in the associated reserve and temporarily scale down the reservation level in
order to free up more reservable capacity for other activities. A QOS manager with this fea-
ture would undoubtedly also provide a mechanism for such dormant applications to come
back to life at their original reservation level once they become active again.

5.5.2 Admission control

The admission control policy of the QOS manager must be coordinated with the admis-
sion control of the system. The reservation system has an admission control policy that
allows it to enforce reservations and keep itself internally consistent with respect to resource
allocation and enforcement. The QOS manager must have a version of the same admission
control policy so that it can evaluation reservation requests that it gets and look at more
sophisticated issues such as how different requests it gets can be combined or changed to fit
together better.

This design was chosen because it keeps the admission control test of the kernel simple
and fast while allowing arbitrarily sophisticated admission control decisions and negotia-
tions to be carried out in user-level QOS managers. It would be possible to combine the two
policies but there are drawbacks to that approach. If the sophisticated policy with negotia-
tion were implemented in the kernel, the system would become more complicated, slower,
and less flexible. If the kernel depended on user-level admission control for its own consis-
tency, it would be vulnerable to errors in the user-level QOS managers.

5.5.3 Extensions

The QOS manager reacts to new reservation requests that strain the available resource
capacity by trying to free up resource capacity from among previously reserved activities,
subject to the limitations that those activities allow as expressed by their minimum reserva-
tion levels. This policy could be extended to accommodate information about which activi-
ties should be downgraded first, whether new minimums could be negotiated with activities
to free up even more capacity, or whether the activities requesting reservations should be
denied to keep the previously reserved activities at their current reservation levels [79].
Another extension might upgrade reservations to the old desired values once reservable
resource capacity became plentiful.

0

5.6 Tools

Two tools were developed in the course of this dissertation work to do debugging and
execution monitoring for experiments and to provide a user interface for reserves. Oneisa
reserve monitor with a graphical user interface, and the other is a usage monitor that oper-
ates in batch mode to gather usage statistics for experiments.

5.6.1 Reserve monitor

A reserve monitor, called rmon, provides the user at the console with a graphical user
interface to monitor and control processor reserves. The two important aspects of this tool
areits presentation of usage information and its support for control of resource reservation.

5.6.1.1 Usage information

The primary view of rmon displays basic information about all of the processor reserves
in the system. Thisinformation consists of the name of the reserve, a graphical representa-
tion of the recent usage information, normalized to the reservation period, and the reserva-
tion period itself. Figure 5-7 shows a screen dump of this primary view.

default reserve 2000000

idle reserve 2000000

Reserve_RA b

Reserve_B G0

Reserve_C

Reserve_T

Figure5-7: rmon Main View

91

As the figure shows, each reserve takes one row in the display. Each row contains the
following elements:

» detail button - Pressing the detail button pops up another window which shows
more detailed information associated with the reserve.

* reserve name - Each reserve may have a name associated with it for ease of identi-
fication.

» graphical usage display - This graphic displays a bar with length corresponding to
the percent resource usage over the last several reservation periods. The usage is
normalized to the reservation period, and the graphic includes markings to indicate
the scale of the usage.

» reservation period - The reservation period indicates the averaging interval of the
usage measurement.

As reserves are created and terminated in the system, corresponding rows are created
and destroyed in the primary view. The two system reserves (called “default reserve” and
“idle reserve”) always exist. So they always appear in the view. The default reserve is where
all the usage is charged for applications that do not have their own private reserves. It has no
actual resource capacity reservation associated with it; it just accumulates the usage of the
unreserved programs. The idle reserve accumulates the usage of the idle thread; it also lacks
an actual resource reservation.

For each reserve that has a resource capacity reservation associated with it, rmon dis-
plays a vertical bar in the usage graphic to indicate the level of the reservation, in terms of
normalized capacity. In Figure 5-7, the reserves named “Reserve_A” and “Reserve_B” have
resource capacity reservations associated with them whereas “Reserve_C” and
“Reserve_D” do not. The vertical bars in the usage graphics of Reserve_A and Reserve_B
indicate that the have reservations of 20% and 33%, respectively. The reservation periods
are 50 ms and 60 ms, respectively.

Lk

RC: 0,100 RPy 0,100

RC: 0,010 RPy 0,050

DNismizs DNismizs

(b)

Figure 5-8: rmon Detail Views

92

Pressing the “detail” button at the beginning of a reserve’s row pops up another window
of detailed information about the reserve. This includes a graphical display of the recent his-
tory of resource usage as well as the parameters of the reserve. Figure 5-8 shows two exam-
ple detail windows. Part (a) of the figure shows the detail for an activity that has a
reservation, and part (b) shows an activity without a reservation.

As shown in the figure, the recent history occupies the top portion of the detail window.
It shows the normalized usage of the reserve over the last several reservation periods, and it
advances in real-time in a manner similar to that of xload [74]. For the reserved activity in
Figure 5-8(a), which is Reserve_A from the Main View, this usage is fairly constant over
time. For the unreserved activity in Figure 5-8(b), Reserve_C, this usage is variable from
period to period. Each window also displays the reserved computation time and the reserva-
tion period. The unreserved activity has zero reserved computation time but a non-zero res-
ervation period (the implementation represents an unreserved activity using a reserved
computation value equal to the reservation period, and this representation happens to be
exposed in this view). This indicates that usage measurements for this activity will be taken
based on the reservation period, but that there is no actual resource capacity reservation.

5.6.1.2 Allocation Control

The level of the reservation for a reserve, as indicated by the vertical bar in the normal-
ized usage graphic, can be changed by clicking the mouse in that usage graphic at the level
desired for the reservation. This action modifies the reserved computation time parameter of
the reserve without changing the reservation period.

The upper screen view in Figure 5-9 shows several reserves at various reservation lev-
els. Notice the position of the mouse pointer in the usage graphic of the reserve called
Reserve_B, which is reserved at 20% of processor capacity. Clicking the mouse button with
the pointer at this position changes the reservation level of Reserve_B to that shown in the
lower screen dump in the figure. The reservation level is now about 40%, and the actual
usage of the activity reflects the availability of that additional capacity.

5.6.2 Usage monitor

A usage monitor based on reserves was developed to aid in debugging and to support
usage measurements for experiments. This monitor allocates a reserve and requests a reser-
vation for its own execution. It periodically polls for the usage on specified reserves in the
system, saving the usage numbers in a large buffer. Then it formats the usage information
and writes it to a file for processing by a graphing tool.

93

S.7

94

default reserve

idle reserve

Reserve_RA

Reserve_B

200000

200000

50

60

default reserve

idle reserve

Reserve_RA

Reserve_B

Chapter summary

Figure 5-9: Modifying a Reservation

200000

200000

50

60

This chapter describes the implementation several software components in the reserva-
tion system including:

processor reserves in RT-Mach,

reserved video players and a version of the X Server that uses reserves,

a version of the Mach 3.0 socket library implementation modified to use

reserves,

a QOS manager,

a tool for providing a user interface to the reservation system.

The description of the implementation of reserves presents operations that are supported
for manipulating reserves as well as a description of how the scheduling and usage enforce-
ment is handled. The implementation of two video players that use reservation is described
along with that of aversion of the X Server that was modified to use reserves. The section
on the socket library implementation discusses issues in the organization of protocol pro-
cessing software to support real-time packet processing. A description of the QOS manager
indicates how it works and its relationship with applications and the reservation mechanism.
Finally, a graphical user interface tool is described; it displays information about reserves
and provides an interface for controlling reservation parameters.

95

96

Chapter 6

Experimental Evaluation

This chapter presents an experimental evaluation of the implementation of processor
reserves in RT-Mach. The reservation mechanism was designed to support predictable
behavior for real-time and multimedia applications, so the evaluation answers the questions:
Can reserved programs achieve predictable behavior, and what isthe price of predictability?

6.1 Overview

The experimental evaluation presented in this chapter answers two questions: Can
reserved programs achieve predictable behavior, and what is the cost for predictability?
These questions are addressed using synthetic benchmarks, real applications, and measure-
ments of individual mechanisms. The chapter is divided into two main sections, one to
address predictability and another to address scheduling costs.

The section on predictability shows that for awide variety of task sets, real-time tasks
exhibit predictable behavior and meet their timing constraints:

* Independent synthetic workload measurements show that for pure com-
putations that have no interactions with other tasks, the reservation mech-
anism successfully guarantees timing constraints.

» Client/server experiments show that the reserve propagation mechanism
helps guarantee the client’s timing constraints, even when there are mul-
tiple clients with and without reservations.

* Results of experiments with the QTPlay QuickTime video player and the
X Server show how this client/server pair is coordinated to meet the tim-
ing constraints of the video player, even when there are unreserved X cli-
ents competing for the attention of the X Server.

» Experiences with the mpeg_play decoder and the X Server demonstrate
how an application can start with an inaccurate estimate of required com-

97

putation time and then adjust its reservation parameters to balance its
usage requirements with the resource availability.

» Experience with a library-based network protocol software structure
shows that protocol processing for real-time applications can be guaran-
teed using processor reserves.

The other main section of this chapter explores the scheduling costs of the reservation
system. Two measurement techniques are used:

* A comparison of the system scheduling costs for periodic real-time pro-
grams that use reserves vs. periodic programs that do not use reserves
shows that the cost varies, as expected, depending on the period of the
program.

* Measurements of various internal operations such as reserve switch time,
overrun timer handling, replenishment timer handling, and usage check-
point operations provide a means of estimating scheduling cost for
reserved task sets.

The measurements for most of these experiments were taken using RT-Mach version
MK83j with UNIX server UX41. The mpeg_play and libsockets experiments used RT-
Mach version MK83i, which does not different significantly from MK83j in the features
used in the experiments. The hardware platform for the first three sets of experiments was a
90MHz Pentium with 16 MB RAM and an Alpha Logic STAT! timer card. The timer card
has a 48-bit free-running clock withus resolution, and a 16-bit interrupting timer with 1
ps resolution. For the remaining experiments, the hardware platform was the same except
the processor was a 486 DX2 instead of a Pentium. For easy reference, the chart below sum-
marizes which platforms were used for which experiments.

Experiment ﬂg%&h UX Version| Processor
Independent task sets MK83j Ux41 Pentium
Client/server task set MK83] ux41 Pentium
QTPlay/X Server MK83j ux41 Pentium
mpeg_play/X Server MK83i ux41 486
libsockets MK83i UX42 486
Aggregate scheduling costs MK83;j ux41l 486
Micro measurements MK83;j ux41l 486

Table 6-1: Summary of Testbed Platforms

98

In general, the switch from the 486 to the Pentium speeds up the compute-intensive
applications by about 30%. Since the micro measurements involve kernel instruction
streams that access external devices such as the clock/timer card, these measurements are
not expected to change significantly using a Pentium processor.

In summarizing the results of many of the experiments, percentiles are used to specify
dispersion. While running these experiments on a desktop computer connected to the nor-
mal departmental network, occasional anomalies occurred. 5-percentiles and 95-percentiles
are used to indicate the range of the strong majority of measurements while ignoring the
occasional anomaly. As defined in Jain’s book [50], the 5-percentile is obtained by sorting a
set of n observations and taking the [1 + n(.05)]th element in the sorted list (where [.] is used
to indicate rounding to the nearest integer). The 95-percentile is the [1 + n(.95)]th element in
the sorted list.

6.2 Predictability

What is meant by “predictability?” In the context of this work, a predictable application
is one whose timing behavior can be determined from the application code, the resource res-
ervations that it acquires, and its dependence on other programs. In particular, a predictable
application that is not under-reserved will meet all of its timing constraints.

06 T T T T

05 r _

0.4 | :

03 r 1

02 r 1

Processor Utilization

Time (sec)

Figure6-1: Compute-Bound Periodic Task with No Competition

99

As an example, consider a periodic application that computes for a fixed duration of
time in each period and spends all of its computation time in a tight loop. Such an applica-
tion should be able to allocate a reservation for its computation time, and it should exhibit
the same behavior when it is executing concurrently with other activities aswhen it is exe-
cuting inisolation. That is, it should be able to consume its reserved computation time in
each period before the “deadline” at the end of the period.

Figure 6-1 shows the processor usage over time of a periodic application with a local
computation and no competition for resources. The x-axis is time measured in seconds; it
shows several seconds of usage information for the application. The y-axis is the normalized
processor utilization of the application. Time on the x-axis is divided into intervals that cor-
respond to the period of the application, and the processor time used during each period is
measured and the utilization computed for the period. The utilization is plotted at that con-
stant level for each period. For the duration of the test shown, he periodic application has an
average utilization of 0.467. The distribution of measurements is very closely packed
around this average with a 5-percentile of 0.465 and a 95-percentile of 0.473.

0.6 T T T T

05 r 1

04 r .

03 1 _

02 r _

Processor Utilization

01 r _

Time (sec)

Figure 6-2: Compute-Bound Periodic Task with Competition

Figure 6-2 shows a similar graph of the processor usage of a periodic application that
has a local computation but has competition for the processor from other programs (not
shown). Even though there is competition, the reservation system ensures that the appropri-
ate amount of processor time will be available to the application in each period. The applica-
tion consumed an average of 0.462 of the processor in each period. As in the previous case,

100

most of the measurements were very close to the average; the 5-percentile is 0.460 and the
95-percentileis 0.470.

6.2.1 Independent synthetic wor kloads

Independent synthetic workloads are used to test whether the reservation system can
successfully provide access to reserved processor resources. The example above demon-
strates that the reservation system can ensure predictable behavior for a periodic application
running with competition from other activities, and one of the experiments described below
shows that multiple independent reserved applications can achieve predictable behavior,
even with competing unreserved activities. Two additional experiments show that the reser-
vation guarantee is independent of the number of competing activities, regardless of
whether the competitors are reserved or unreserved.

6.2.1.1 Methodology

These experiments were run using two software tools developed for performance evalu-
ation. A configuration manager parses the specification of atask set with timing parameters
and reservation parameters and then creates programs with the appropriate parameters. Sev-
eral different kinds of programs that exhibit different kinds of behavior can be specified in
the task set. Each of these programs takes a start time, a duration to compute, a thread
period, a computation time to reserve, and a reservation period. Two programs are used in
these experiments:

 arith - Creates a periodic thread that executes in a tight loop for some
duration of time in each period.

 nonitor - Records the usage charged to reserves in the experiment.
This program has a reservation of its own to enable it to run even when
there are many reserved programs in the experiment.

A usage monitor is usually included in the task set to take usage measurements for all of
the programs created by the configuration manager. The monitor buffers the measurements
during the course of the experiment and then formats the data and writes them to disk after
the experiment is completed. The data are then graphed.

Experiment 1 is designed to show that reserved activities are able to execute their peri-
odic computations within their time constraints, even with competing unreserved activities.
Even if the reservation parameters have different computation times and different periods
the timing constraints of the reserved activities will be satisfied.

Table 6-2 shows the programs used in Experiment 1 along with the number of instances
of each program, the timing parameters, and the reservation parameters. In this experiment
there were &ri t h programs that were reserved with different timing and reservation
parameters. One had a reservation of 5 ms of every 20 ms, the second had a reservation of
14 ms every 40 ms, and the third a reservation of 8 ms every 50 ms. The reservation is set
slightly higher (1 or 2 ms) than the computation time that would be consumed by the pro-
gram in isolation. This accommodates variation in the computation time due to cache effects

101

and context switches. In addition to those three, there were 5 ar i t h programs running in
infinite loops with no reservations; these provide compute-bound competition for the
reserved activities. And finally, the experiment included a noni t or program to collect
usage numbers throughout the duration of the test. This monitor had 2 ms reserved of every
20 ms.

Program | # Program Program Reserve_d Reser\ration
Computation Period Computation Period
arith 1 4ms 20ms 5ms 20ms
arith 1 12 ms 40 ms 14 ms 40 ms
arith 1 6 ms 50 ms 8 ms 50 ms
arith 5 | infinite loop N/A 0O ms 40 ms
nonitor |1 N/A 20 ms 2ms 20 ms

Table 6-2: Experiment 1 Parameters

The other two experiments measure the sensitivity of reserved applications to competi-
tion. Both experiments consist of eight series of tests. Each test hasareserved ari t h pro-
gram whose measurements are the focus of the test. The series differ in that the reserved
ar i t h program increasesin reserved utilization in each series. Each seriesitself consists of
a sequence of tests with an increasing number of competitors. In each series of Experiment
2, the one reserved ar i t h program competes with an increasing number of unreserved
arit h programs. For each test, the 5-percentile and 95-percentile for the resource usage
measured in each reservation period is reported. The parameters for an example task set in
Series 1 of this experiment appear in Table 6-3.

Program | # Program Program Reserveo Reﬁer\ration
Computation Period Computation Period
arith 1 3ms 40 ms 4 ms 40 ms
arith 2 | infinite loop N/A 0O ms 40 ms
monitor |1 N/A 20 ms 2ms 20ms

Table 6-3: Example Parametersfor Experiment 2
The task set that appearsin Table 6-3 hasone reserved ar i t h program that computes 3

msin every 40 ms and has a reservation of 4 msfor every 40 ms. It also has two unreserved
ari t h programs and anoni t or program. Other tests in the Series 1 have unreserved

102

competitors ranging in number from 0 to 9 competitors. This task set is designed to show
that regardless of what the reserved utilization is and regardless of how many competitors
there are (ranging from 0 to 9 compute-bound, unreserved competitors), a reserved activity
will always be able to get its reserved allocation.

Experiment 3 is like Experiment 2 except that the competitors are reserved instead of
unreserved. For convenience, the competitors all have identical reservations, so the number
of competitors for a reserved activity is limited to the number of competitors that can be
accepted by the admission control policy.

The tests of Experiment 3 are organized into 8 series with 10 tests, just asin Experiment
2. Again, the series differ in that the reserved ar i t h program that is observed variesin its
reserved utilization, and within each series, the number of competitors ranges from O to the
highest number that can pass admission control along with the observed program. Variation
in the usage of the measured reserved program is again characterized by the 5-percentile and
95-percentile. The parameters for an example test in this experiment appear below.

Program Program Program Reserveq Reser\{ati on
Computation Period Computation Period
arith 3ms 40 ms 4ms 40 ms
arith 2ms 30ms 3ms 30 ms
monitor N/A 20 ms 2ms 20 ms

Table 6-4: Example Parametersfor Experiment 3

Thetask setin Table 6-4 hasonear i t h program with computation duration 3 msand a
period of 40 ms. The reservation given to this program is 4 ms every 40 ms. The table lists
two other reserved ar i t h programs with 2 ms computation time and 30 ms period, and
these both have reservations of 3 ms every 30 ms. Thisisatest from Series 1 of Experiment
3, and other tests in this series have the different numbers of competing reserved programs.
The number of competitors for Series 1 ranges from zero to seven, but the number of com-
petitors for Series 8 is zero since no competitors could be admitted once the primary
reserved program and the reserved monitor pass admission control. The purpose of this task
set is to demonstrate that regardless of what the reserved utilization of the primary reserved
program and regardless of the number of competitors, the primary reserved activity will get
its reserved allocation virtualy all of the time.

6.2.1.2 Results

The results from Experiment 1 demonstrate that multiple reserved programs meet there
timing constraints, despite the competition between the reserved activities and competition
from unreserved activities. Figure 6-3 shows a graph of the behavior of the three reserved
programs in Experiment 1, leaving out the usage measurements of the competing unre-

103

served activities. These usage measurements are in the same format as the example case
described earlier: the x-axis is time in seconds for the test, and the y-axis is processor utili-
zation. The usage for each reservation period for each reserved program is computed and
plotted on the graph, yielding three functions of utilization over the duration of the test.

0.4 T T T T
arith (12ms/40ms) |

0.35

03 |]
0.25 | arith (4mg20ms) |

wwwwww
,,

02 r]

0.15

Processor Utilization

01 r _

0.05

Time (sec)

Figure 6-3: Experiment 1 Results

Each of the three reserved programs sustains afairly constant utilization level through-
out the entire test, in spite of the competition from reserved and unreserved activities. The
reserved program with a computation time of 4 msevery 20 msgetsafairly constant utiliza-
tion with an average of 0.219 (context switching overheads and cache effects push the mea-
sured usage higher than what it would be in a quiescent system). The 5-percentile is 0.216
and the 95-percentile is 0.227, indicating that very few measurements fall far from the aver-
age. The reserved program computing 12 ms every 40 ms gets an average utilization of
0.312. It gets a 5-percentile of 0.310 and a 95-percentile of 0.320, so there isclearly very lit-
tle variation in the utilization across periods. The program computing 6 ms every 50 ms gets
an average utilization of 0.132 across the periods shown above. The 5-percentile is 0.126
and the 95-percentile is 0.141. Thus Experiment 1 shows that the reservation system can
guarantee the timing constraints for multiple reserved programs even when there is competi-
tion from unreserved activities.

The results from Experiment 2, illustrated in Figure 6-4, show that the timing behavior
of areserved program is not affected by the number of unreserved competitors, regardless of
the utilization of the reserved program. The graph in Figure 6-4 has the number of competi-
tors on the x-axis and processor utilization on the y-axis. The data from the eight series are

104

plotted as functions on the graph. For example, the function for Series 1 starts with the aver-
age utilization for the test that has zero competitors. The function then continues to the aver-
age utilization for the test in that series that has 1 competitor and so on up to the average
utilization for the test with nine competitors. At each point where the average utilization is
plotted, thereis also arange that gives the 5-percentile and 95-percentile to indicate the vari-
ation in the behavior of the reserved program on that test. The rest of the functions are simi-
lar. This graph shows that for each series, the average processor utilization is nearly
constant, regardless of the number of competitors. Furthermore, the variation given for each
measurement is quite small, indicating that for the vast maority of reservation periods, the
reserved program is able to meet its timing constraints.

O.8 T T T T T of

Series 8
S I I I . A
= 0.7 t Series 7]
g 06 | Series 6]
= S S T T 1o oo I
;.i e T o LI T T x -
04 t Series 4
&
put T - B T T R P I-- T T .
.% o2t - - SenesZ
= Series 1
- 01t 1
0 1 1 1 1 1 1
0 2 4 6 8 10

competitors

Figure 6-4: Experiment 2 Results

The results for Experiment 3 are presented in Figure 6-5. These results show that the
behavior of areserved program does not depend on the number of competing reserved activ-
ities, regardless of the utilization of the reserved program of interest. The graph for Experi-
ment 3 is much like the graph for Experiment 2. The x-axis is the number of competing
programs, and the y-axis is processor utilization. There are data from the same kinds of
series, and the plot of average utilization as afunction of number of competitorsis the same.
Each plotted point has a 5-percentile and 95-percentile range to indicate the variation. Since
each of the competitors must pass the admission control policy, the number of competitors
becomes more limited as the utilization of the measured reserved activity gets larger. So the
maximum number of competitors for Series 1 is seven and for Series 8, no competitors can

105

pass admission control after the measured reserved activity and the monitor do. These
results show that the average processor utilization for each seriesis nearly constant, i.e. it
does not depend on number of competitors. The variation in processor utilization is very
small, indicating that the reservations are available to allow the reserved activity to satisfy
its timing constraints. This is true regardless of the processor utilization of the measured
reserved program.

1 T T T T T T
5
= 08 | .
Io)
N x Series 8
5 Series 7
0.6 r . 1
?f T Eeeennnd i Series 6
. T T I Series 5
% 04 | Series4]
S 4%z 1 . Series3
& 02 ~ s .= Series2 -
LL
Series 1
0 ! ! ! ! ! !
0 2 4 6 8 10

competitors

Figure 6-5: Experiment 3 Results

6.2.1.3 Analysis

These three experiments show that for cases where periodic threads all ocate reserves for
their computations, the reservation system is able to ensure that the reserved time is avail-
able as promised. The reserved time is available even when there are multiple reserved
activities and unreserved competitors as in Experiment 1. Experiment 2 showed that a
reserved activity is assured of being able to use its reserved time regardless of the number of
unreserved competitors and regardless of whether the reservation is for asmall computation
time or alarge computation time. Experiment 3 demonstrated that a reserved activity will
get its reserved time regardless of the number of reserved competitorsit has, and thisis also
true whether the reserved activity has a small amount of time reserved or a large amount of
time.

Two issues are highlighted by these experiments. One is that the computation time for
the reserved programs was always less than the reserved computation time by 1 to 2 milli-
seconds. The computations that the programs will execute are based on arithmetic computa-

106

tions that were timed on a quiescent system with only the timing program running. The
synthetic workload was tuned in this environment. When these workloads are executed with
other activities, there are additional overheads that are not included in the task set specifica-
tions. These overheads include:

» context switch times and cache effects, which are likely to increase as the
task set size increases,

» periodic thread overhead associated with periodically releasing and reset-
ting the computation,

* and interference from interrupts.

The reserved computation time is set to be 1 to 2 milliseconds larger than the pure com-
putation amount to accommodate these overheads.

The second issue is that in some rare cases, a series of interrupts or a large critical region
in the kernel may preempt a program and cause it to miss its reserved time and subsequently
miss its deadline for the period. To mask these rare instances in Experiments 2 and 3, the 5-
percentile and 95-percentile are given. This shows that for the vast majority of reservation
periods for these threads, the usage observed is that which is expected based on the reserva-
tion.

6.2.2 Client/server synthetic workloads

Most interesting applications are not independent, so it is important to consider experi-
ments that characterize the effect of interactions such as client/server relationships in
reserved applications. The experiments described below show that reserved activities can
achieve predictable behavior, even when the activities involve coordination between clients
and servers.

6.2.2.1 Methodology

The following experiments use the same kind of software environment as described in
Section 6.2.1. There is a configuration manager that reads a specification of a task set and
then creates the programs for the task set. In addition & thieh andnoni t or programs
described above, these experiments use the following programs:

* tsclient - Creates a periodic thread that invokes a server to compute
for some duration of time specified in the invocation. The invocation is
performed using the regular Mach IPC mechanism.

» tsserver - Services requests sent in from instantiations of the
tsclient program.

 rclient - Creates a periodic thread that invokes a server to compute
for some duration of time, but unlike thecl i ent , ther cl i ent uses
RT-IPC instead of regular Mach IPC, and the i ent sends a reserve
to the server so that it can charge the computation time to the client’s
reserve.

107

* rserver - Services requests sent from instantiations of ttlei ent
program. Uses RT-IPC and charges the computation requested by a client
to the client’s reserve, which is passed as an argument with the invoca-
tion.

Experiment 4 is designed to show the processor usage of a client/server pair that has no
competition from other programs; this is the base case, showing the desired behavior for the
client and server. It uses a task set with an instance o&itlei ent program using Mach
IPC to periodically invoke an instancetagser ver to perform a computation. A monitor
records the usage for later analysis. In this case, the client sends the computation time
amount (to be consumed in a tight loop) to the server. And the server computes for that
amount of time and returns a result. The parameters for the programs in this task set are
given in Table 6-5. The client is periodic and has a reservation associated with it. As long as
the computation time requested by the client is smaller than the period, the server with no
competition should be able to finish the computation by the end of the period, yielding a
fairly constant utilization over time.

Program Program Prog‘ram Reservgd Reseryation
Computation, Period Computation Period
tsclient |1 10 ms 40 ms 10 ms 40 ms
tsserver | 1 infinite loop N/A 0ms 40 ms
noni t or 1 N/A 20 ms 1ms 20 ms

Table 6-5: Experiment 4 Parameters

In Experiment 5, the task set includes competition from unreserved programs as well as
thet scli ent,tsserver, andnoni t or. This experiment is meant to show how com-
petition for the processor from unreserved activity can interfere with the coordinated activ-

ity of a client and server using a typical IPC mechanism.

Program Prograrr_] Prog_ram Reserve_d Reser_/ation
Computation| Period Computation Period
rclient |1 8 ms 40 ms 10 ms 40 ms
rserver |1 N/A N/A 0ms 40 ms
arith 5 | infinite loop N/A 0 ms 40 ms
nmonitor |1 N/A 20 ms 2ms 20 ms

108

Table 6-6: Experiment 6 Parameters

Experiment 6 is designed to determine whether a client/server pair, using an |PC mecha-
nism integrated with the reservation system in terms of queueing and scheduling, can sus-
tain a predictable, coordinated activity even with competition for the processor. Table 6-6
shows the task set specification for Experiment 6. The rclient has a processor reservation,
andthercli ent andr server communicate usng RT-1PC. The competition for the pro-
cessor comes from fivear i t h programs which are unreserved.

Program | # Program Program Reserve_d Reser\{ation

Computation Period Computation Period
rclientl |1 8 ms 40 ms 10 ms 40 ms
rclient2 |1 8ms 50 ms 10 ms 50 ms
rclient3 |1 8ms 60 ms 10 ms 60 ms
rserver 1 N/A N/A 0Oms 40 ms
arith 5 | infinite loop N/A 0Oms 40 ms
noni t or 1 N/A 20 ms 2ms 20 ms

Table 6-7: Experiment 7 Parameters

Experiment 7 isintended to show whether several reserved clients can execute in aman-
ner that satisfies their timing constraints when using the same server and competing with
unreserved, compute-bound programs. The task set, shown in Table 6-7 shows three
reserved instances of ther cl i ent program with different reservation parameters. Thereis
also an instance of ther ser ver program. The competition comes from five instances of
thear i t h program which are unreserved, and thereisareserved noni t or program.

Program | # Program Program R&erveq Reser\{ati on
Computation Period Computation Period
rclient |1 8 ms 40 ms Oms 40 ms
rclient |1 8 ms 50 ms 10 ms 50 ms
rclient |1 8 ms 60 ms 10 ms 60 ms
rserver |1 N/A N/A Oms 20 ms
arith 5 | infinite loop N/A Oms 40 ms
nmoni tor |1 N/A 20ms 2ms 20ms

Table 6-8: Experiment 8 Parameters

109

Finally, Experiment 8 is designed to determine whether reserved clients can meet their
timing constraints if there is an unreserved client that is using the same server. As shownin
Table 6-8, the task set for Experiment 8 contains oner cl i ent program with no reserva-
tionandtwor cl i ent programswith reservations. Thereisanr ser ver and five compet-
ing ar i t h programs which are unreserved. A noni t or isalso included in the task set.

6.2.2.2 Results

The results from Experiment 4, shown in Figure 6-6, illustrate the processor usage pat-
tern of the periodic client and its server. The x-axisistime over the duration of the test mea-
sured in seconds, and the y-axis is processor utilization. The usage measurements for both
the client and the server are taken from the corresponding reserves. The client has areserve
that it charges for its own computation, and the server has areserve that it charges against
when performing an operation for aclient. For each of these reserves, thenoni t or records
the computation time used in each reservation period. Those computation times are then
normalized with respect to the length of the corresponding reservation periods and plotted as
constant for the duration of each reservation period.

0.4 T T T T

0.35 1

03 t sserver

0.25 :,7,‘_
0.2 r _

0.15 1

Processor Utilization

0.05 tsclient

Time (sec)

Figure 6-6: Experiment 4 Results

Figure 6-6 shows that the processor utilization charged to the server’s reserve is fairly

constant over the duration of the test. The average is 0.256 with a 5-percentile of 0.255 and
a 95-percentile of 0.264 for the measurements graphed in the figure. The normalized
charges to the client reserve average only 0.0210; the 5-percentile is 0.0207 and the 95-per-
centile is 0.0213. In this setup, the server is doing most of the work while the client does no

110

work other than sending off requests and receiving replies. Since thereis no competition and
the client makes the same request in every period, the utilization is fairly constant over the
duration of the test.

Figure 6-7 shows the results of Experiment 5 where the same client/server pair has com-
petition for the processor from unreserved activities. As before, the x-axisis time measured
in seconds, and the y-axis is processor utilization. In this case, the client and server do not
have constant utilization numbers over each reservation period. For the measurements
shown in the graph, the server has an average utilization of 0.191, which is significantly
lower than the desired level. The 5-percentile for the server is 0, and the 95-percentile is
0.262. The client has an average utilization of 0.0117 across the periods shown in the graph;
its 5-percentile is 0 and its 95-percentile is 0.0158. With the client and the server recording O
utilization in asignificant number of periodsin arow, it is clear that the client/server combi-
nation is not achieving the desired behavior.

04

0.35

03 L tsserver |

0.25 1 ‘ “ ,,,,,, ,_

0.15

Processor Utilization

01 r

0.05 t scli enti_

O i H |§ 1 i i § |§ i i 1 i
5 6 7 8 9 10
Time (sec)

Figure 6-7: Experiment 5 Results

The competition from unreserved programs interferes with the execution of the server,
and completely locks out the server for up to 100 to 200 ms at atime. During these periods,
there is no usage recorded by either the server or the client, since the client cannot make
progress without the server making progress. The usage for both the client and the server
falls to zero for several reservation periods. This kind of behavior is clearly undesirable
since many instances of the computation cannot take place, and the deadline is missed each
time.

111

The results of Experiment 6 (Figure 6-8) show that when a client and server use an IPC
mechanism that isintegrated with the reservation scheduling policy, in this case a version of
RT-1PC extended to work with the reservation scheduling policy, the combined client/server
activity is quite predictable. The RT-IPC mechanism propagates the client’s reserve to the
server and supports a server that charges the computation time of each client to the client’s
reserve. So most of the computation in this experiment is being charged to the client (as it
should be) instead of to the server (as in the previous case). The utilization charged to the
client’s reserve averages 0.223 with a 5-percentile of 0.222 and a 95-percentile of 0.228.
The server utilization for the graphed intervals is 0.0114 on average; the 5-percentile is
0.0112 and the 95-percentile is 0.0117. These numbers indicate very predictable perfor-
mance for these programs over time.

0.4 T T T T

0.35

03+t i
0.25 rclient

02 r _

0.15

Processor Utilization

0.05 r rserver

Time (sec)

Figure 6-8: Experiment 6 Results

Figure 6-9 shows the results from Experiment 7. These results show that even when sev-
eral reserved clients are using the same server, they can all meet their periodic timing con-
straints (subject to the admission control policy). This is true in spite of the presence of
competition from unreserveat i t h programs.

Experiment 7 shows the usage charged to the reserves of the three reserved clients. The
client with the 8ms/40ms synthetic computation has an average utilization of 0.223 with a 5-
percentile of 0.221 and a 95-percentile of 0.232. The client with the 8ms/50ms computation
has an average utilization of 0.178, a 5-percentile of 0.176 and a 95-percentile of 0.184. And
the client with the 8ms/60ms computation gets an average utilization of 0.150; the 5-percen-
tile is 0.147 and the 95-percentile is 0.157. These numbers indicate fairly tight distributions

112

around the averages for these applications, even though they are competing for the server
and even though there are additional unreserved programs competing for the processor as
well. The servers computation time seems erratic, and there are two reasons: it has a small
reservation period (which just determines the usage measurement period), and its clients all
have different periods and request different computations at different rates.

0.4 T T T T

0.35 -
- 03 | .
S rclient
T L]
N 0.2 4~ (8Bms/40ms)
5 02t 1 _rclient
i S S ,n_: L,,,",,L,Ji‘k,,,f’l;,_,____,,:,,,,R_HnJ11,:ij,:”u‘vt_,,,”,,J”L,‘(8mg50ms)
015 T T R I S U i SUUI L SRS I "\r Cl | ent
& 8ms/60ms

01} ()

0.05 |1 server

0 ! ! ! !
5 6 7 8 9 10

Time (sec)

Figure 6-9: Experiment 7 Results

Finally, the results of Experiment 8 appear in Figure 6-10. These results show that in the
case where reserved clients compete with an unreserved client for a single server, the
reserved clients are still able to satisfy their timing constraints.

The reserved client with the 8ms/50ms computation has an average utilization of 0.181.
It has a 5-percentile of 0.176 and a 95-percentile of 0.187. The reserved client with the 8ms/
60ms computation has an average utilization of 0.151 with a 5-percentile of 0.148 and a 95-
percentile of 0.158. Thus, these reserved programs are able to get the processor time they
have reserved. As the graph shows, the unreserved client manages to complete its computa-
tion during some of its periods, but not in others. So the usage function goes back and forth
between getting about 0.22 utilization in the periods where the computation is completed
and getting O utilization in the periods where it does not get to complete the computation.
The average utilization for this unreserved client is 0.131; the 5-percentile is 0.0059 and the
95-percentile is0.222. This of course confirms that the dispersion of the utilization measure-
ments for this unreserved client islarge.

113

0.4 T T T T

0.35 i
- 03 r 1
9O
g 0.25 r 1 rclient
= 4 (8mg/40ms)
2 02 | 7 _ 1 _
L el g R e e n,‘“’1JT,,L,UI”LJ’LL,\,J*.J'Lﬂfl,;f~<_r client
+ | (8ms/50ms)
0.15 Bl el b L]
(@] S .
& rclient

01+ 1 (8ms/60ms)

0.05

. Te-rserver
0O Y |)] |
S 6 7 8 9 10
Time (sec)
Figure 6-10: Experiment 8 Results
6.2.2.3 Analysis

The experiments with unreserved and reserved client/server pairs demonstrate the
importance of doing reserve propagation properly between client and server when the server
is designed to use the client’s reserve. Experiment 4 shows the baseline behavior for the cli-
ent/server pair with a periodic client driving the timing of the activity.

Experiment 5 demonstrates the problem that can occur when the reserve propagation is
not handled properly. In this experiment, the client allocates a reserve and passes it to the
server, which then uses it to charge the client’s service time. However, this client/server pair
does not use the “priority” inheritance mechanism to ensure that the server takes on the “pri-
ority” of the client as soon as the RPC is enqueued in the servers input queue. With compe-
tition from unreserved activities, this lack of “priority” inheritance results in many missed
deadlines for the client/server activity.

The results of Experiment 6 show that the proper periodic behavior of the client/server
pair can be restored by using the “priority” inheritance mechanism. Priority inheritance
makes sure that the competing unreserved activities do not interfere with the server as it
attempts to read the request from its input queue and switch to the client’s reserve.

The last two experiments demonstrate that the reserve propagation mechanism, which
includes “priority” inheritance and the server binding to the client’s reserve, works properly
even when there are multiple reserved clients or there are unreserved clients in addition to

114

reserved clients. Experiment 7 demonstrates that with three reserved clients (all with differ-
ent computation times and timing constraints), the server can service them all in time to
make their deadlines. This is true even though there is competition from unreserved activi-
ties, which can exploit any lapses in an incorrectly implemented reserve propagation mech-
anism and cause delays in the client/server activities.

Experiment 8 shows that when two reserved clients and one unreserved client share a
server in an environment with competition from other unreserved activities, the reserved cli-
ents will always meet their deadlines. In this case the reserved clients meet their deadlines
even though other unreserved competitors sometimes delay the unreserved client. This
experiment further tests the integrity of the reserve propagation mechanism by making sure
that the “priority” of the unreserved client is not propagated to the server at the wrong time,
causing the server to appear unreserved and resulting in interference from the unreserved
competitors.

6.2.3 QTPlay/X Server

Experiments using task sets with synthetic workloads provide evidence that the reserva-
tion system can support the predictable execution of real-time programs. However, experi-
ments with real applications that use the reservation system to meet timing constraints
provide stronger evidence of the usefulness of the reservation system in real-world situa-
tions. The experiments described in this section use a video player that has been modified to
use processor reserves and a version of the X Server that has been modified to support
reserves.

6.2.3.1 Methodology

These experiments use the QuickTime video player, c@ll&ll ay, and the reserved X
Server, both of which were described in the previous chapter. Since these programs are
described in detail elsewhere, the description here is brief.

TheQTPI ay application prefetches a short video clip into main memory and repeatedly
displays that clip to avoid interaction with the file system and disk (which are not reserved
in this system) during the experiments. It allocates a reserve during initialization based on
command-line arguments and then starts playing the video. For each frame, the player
records in a buffer the start time and end time for the frame processing, and at the end of the
experiment these data are written to a file on the disk for later analysis.

WhenQTPI ay connects to the X Server, it passes a reference to its reserve for the X
Server to use when performing frame display operations. The X Server was modified to
order requests based on reservation information and to charge the computation time for each
operation to the appropriate client’s reserve.

115

-

Instrumented
Video Player

Competing
Video Players

Reservation Mechanism

RT-Mach 3.0 /

Figure 6-11: Software Configuration

Figure 6-11 shows the basic software structure that is used for all of the experimentsin
this section. There is an instrumented QTPI ay application which may or may not have a
reservation and which records timestamps for each frame at the beginning of the frame dis-
play computation and then again at the completion of frame display. Other instances of
QTPI ay may compete with this instrumented player. These are unreserved and continu-

ously display frames as fast as possible (providing the maximum competition).

QTPI ay can display frames at a particular period or in a continuous loop, and in all of
the experiments below, the frame resolution is 160x120 pixels with 8 bits/pixel. The timing
is specified by command-line arguments.

Experiment 9 isdesigned to illustrate the usage pattern for QT Pl ay with no competition
for the processor. The parametersfor QTPl ay are given in Table 6-9. The period is 33 ms,

which corresponds to a frame rate of 30 frames/second.

Program | # Mode

Period

Reserved Reservation
Computation Period

QTrPlay | 1| Periodic

33ms

Oms Oms

Table 6-9: Experiment 9 Parameters

116

Experiment 10 is intended to show what can happen when QTPI ay is executed under a
time-sharing scheduler with a competing instance of the QTPI ay program. The parameters
for this experiment appear in Table 6-10. The QTPI ay instance listed in the first row of the
table is instrumented to provide timing information and the other just competes for the
resources for displaying frames by continuously displaying frames as fast as possible.

. Reserved Reservation
Program Mode Period Computation Period
QrPI ay Periodic 33ms Oms Oms
QrPl ay Continuous N/A 0Oms 0Oms

Table 6-10: Experiment 10 Parameters

Experiment 11 is designed to show how well an instance of QTPI ay with areservation
can coordinate with the reserved X Server to achieve a constant playback rate for frames.
Table 6-11 gives the parameters for the experiment. The instrumented QTPI ay application
has a reservation and competition from one other unreserved QTPI ay instance.

. Reserved Reservation
Program Mode Period Computation Period
QrPl ay Periodic 33ms 14 ms 33ms
QrPl ay Continuous N/A 0Oms Oms

Table 6-11: Experiment 11 Parameters

Experiment 12 is similar to Experiment 10 in that it explores the behavior of an unre-
served QTPI ay with competition from 3 unreserved QT Pl ay instances rather than just one.
For completeness, the parameters appear in Table 6-12.

. Reserved | Reservation
Program Mode Period Computation Period
QrPl ay Periodic 33ms 0Oms Oms
QrPl ay Continuous N/A 0Oms Oms

Table 6-12: Experiment 12 Parameters

Experiment 13 is similar to Experiment 11; it looks at the behavior of a reserved
QTPI ay instance with three competing QTPI ay instances. The parameters are given in
Table 6-13. These last two experiments look at the behavior of unreserved and reserved
QTpl ay applications under adverse conditions (intense competition from multiple unre-
served X clients).

: Reserved | Reservation
Program | # Mode Period Computation Period
QrPlay | 1| Periodic 33ms 14 ms 33ms
QrPl ay | 3| Continuous N/A Oms Oms
Table 6-13: Experiment 13 Parameters
6.2.3.2 Results

The results for Experiment 9 illustrate the timing behavior of a QTPI ay application
with no competition. Figure 6-12 shows these results. For each frame, the player records the
starting time and ending time. The x-axis is the frame number, counting frames starting at
the 200th frame through to the 400th. For each frame value, the difference between the start
time and end time is computed, and the y-axisis this frame delay measured in milliseconds.

200 ; . .
150 + .
)
£
&
T 100 + i
5
50 .
O 1 1 1
200 250 300 350 400
frame number
Figure6-12: Experiment 9 Results

118

In the figure, the frame delay averages 12.1 ms with a 5-percentile of 11.8 and a 95-per-
centile of 12.6. This indicates that the software took an average of about 12 msto perform
all the computations necessary to display a frame when there was no competition for
resources.

200 . . .
150 r 1
o)
S
?
KO 100 | _
Q
g
50 1
O 1 1 1
200 250 300 350 400

frame number

Figure 6-13: Experiment 10 Results

The results from Experiment 10 show a dlightly different picture in Figure 6-13. Again,
the x-axis is frame number, and the y-axis is frame delay measured in ms using the same
method. With time-sharing scheduling and one competing QTPI ay, the instrumented
QTPI ay sees quite a bit of interference in its frame delay time. The frame delay is much
more variable. The average delay is 25.8 ms with a 5-percentile of 11.2 and a 95-percentile
of 45.0.

In the results from Experiment 11, the instrumented QT Pl ay has areservation, and its
frame delay is much less variable even with competition from one unreserved QTPI ay
instance. Figure 6-14 shows the timing behavior. As before, the x-axis is frame number; the
y-axisis frame delay in milliseconds.

The frame delay still has a bit of variation, but it is much less variable than the case
wherethe QTPI ay application isunreserved. The average delay is 19.4 ms with a 5-percen-
tile of 14.7 and a 95-percentile of 24.3. So QTPI ay isamost always able to display each
frame within its 33 ms period.

119

120

frame delay (ms)

frame delay (ms)

200 - - .

150

100

50

O 1 1 1

200 250 300 350
frame number

Figure 6-14: Experiment 11 Results

200 - - .

400

150

100

50

O 1 1 1

200 250 300 350
frame number

Figure 6-15: Experiment 12 Results

400

The results from Experiment 12 show how much the frame delay variation can be for an
unreserved QTPI ay instance that has three unreserved QTPI ay applications competing to
display frames. Figure 6-15 shows these results. As the figure shows, the variation in frame
delay is quite large. The 5-percentile for the frame delay is 11.5 ms, and the 95-percentileis
107 mswith an average frame delay of 40.3 ms. A delay of 150 ms (which does not show up
in the 95-percentile number but occurs a number of times during the test) or even 100 msin
a sequence of video frames s clearly noticeable to the human eye. Frame rates of 15 frame/
second or more are required to sustain the illusion of smooth motion. This implies that with
delays above 66 ms or so, the illusion of smooth motion may be destroyed.

In contrast, the results of Experiment 13, shown in Figure 6-16, demonstrate how well
the reservation system can control the variability in frame delay for the reserved QT Pl ay
application, even with much competition from unreserved instances of the QTPI ay pro-
gram. The frame delay in the figure is somewhat variable, but the variation is much less than
in the case of the unreserved QTPI ay with three competitors. The 5-percentile is 13.4 ms
and the 95-percentile is 34.2 ms with an average of 20.7 ms. Thisiswell below the target of
the 60 ms period necessary for smooth-looking motion.

200 : . .
150 + .
0
£
&
T 100 + i
5
50 .
O 1 1 1
200 250 300 350 400
frame number
Figure 6-16: Experiment 13 Results
6.2.3.3 Analysis

The QTPI ay/X Server experiments show that even with real applications like a Quick-
Time video player and the X server, the reservation system can provide predictable perfor-

121

mance for real-time programs that must meet timing constraints to achieve satisfactory
performance.

Experiment 9 shows the baseline behavior that is desired for the video player. This
experiment has no competing activity, so there is no contention for resources and the behav-
ior is very regular. Experiment 10 has a competing video player in addition to the instru-
mented video player, and with time-sharing scheduling, this competitor causes some
scheduling delay in the instrumented player. In Experiment 12, there are three competitors,
and the interference to the instrumented player is very bad. The player frequently has frame
delays of 60 to 100 ms and even as high as 150 ms. These kinds of delays are clearly notice-
able to ahuman observer of the video stream.

In Experiment 11, the instrumented video player is reserved with one competitor, and
although there is alittle fluctuation in the frame delay, it islimited to 24.3 for the 95-percen-
tile. In Experiment 13, the reserved video player has competition from three unreserved
video players. The frame delays show a little more variability, but are still l[imited to a 95-
percentile of 34.2 ms compared to the 100 and even 150 ms delays experienced with time-
sharing scheduling.

The question of why the reserved QTPI ay/X Server combination suffered any delay
arises. The reason is that the X Server was not implemented from scratch to use reserves.
The extensions to allow it to use reserves did not completely restructure the request input
gueue, in particular. So the server reads requests from its input queue, orders them inter-
nally, and then performs the operations. If server’s client interface code were completely re-
written to support reserves, the behavior would be comparable to that of the client/server
synthetic benchmarks where the servers were designed from scratch.

6.2.4 mpeg_play/X Server

In addition to the QuickTime video player, a version ofrtpeg_pl ay decoder was
modified to use reserves and coordinate with the reserved X Server. This decoder uses some
simple usage measurement and adaptation techniques to tune the reservation parameters and
timing parameters based on changing system conditions.

6.2.4.1 Methodology

Thenpeg_pl ay modifications were described in detail in the previous chapter, so the
description here is brief. The player prefetches a video clip into memory to avoid interfer-
ence in the file system. It requests a processor reservation and passes the reference to its
reserve to the X Server. While it is executing, the decoder keeps track of its resource usage
and timing characteristics, and it makes adjustments to the reservation parameters and/or
period of the program based on usage.

Experiment 14 is designed to determine whethentiey_pl ay decoder can success-
fully modify its reservation parameters and/or behavior based on existing conditions. The
decoder starts executing with a reservation that is too small for its computation time. Com-
petition is then introduced in the form of reserved and unreserved activities.

122

6.2.4.2 Results

The behavior of the npeg_pl ay application under the conditions of Experiment 14 is
illustrated in Figure 6-17. The decoder is able to tune its reservation parameters based on
run-time information and stabilize its own behavior.

Competition starts here

mpeg_play increases
reserved computation time

1 T T T T T T T
mpeg_play
- reserved competition —— mpeg_play
.% 08 r 1 increases
reservation
:% v period
2 0.6 1
@ Ll v
S 04 N '
& T UTOEY 0 A SN I
5 |
c |
S 02 1
§ |
LL
0

0 5 10 15 20 25 30 35 40
Time (sec)

Figure6-17: Experiment 14 Results

Figure 6-17 shows the processor utilization of thempeg_pl ay decoder over aperiod of
40 seconds. The x-axisistimein seconds, and the y-axisis processor utilization. During the
first 7 seconds, npeg_pl ay averages about 40% of the processor, even though its reserva-
tionisonly 30 msevery 100 ms. Since there is no competition, it consumes 40%. At about 7
seconds into the experiment, a reserved program (shown in the graph) and several unre-
served programs (not shown) are introduced. The usage of npeg_pl ay immediately drops
to itsreserved level of 30% of the processor. Thisis not enough to sustain its previous frame
rate, so some frames are dropped.

The reserved activity, which had a usage spike at the time it started, settles down to a
constant 37%. The spike occurs since the time-sharing algorithm initially allows the new
program to get more cycles than its reservation. After consuming a large percentage of the

123

processor, however, the reserved activity no longer gets additional cycles from the time-
sharing algorithm, and the usage flattens.

After several seconds, npeg_pl ay realizesits frame rate has fallen and attempts to
increase its reservation. At about 17 seconds into the experiment, the decoder increases its
reservation to 41 msreserved every 100 ms, and its frame rate increases accordingly. Again
at about 37 seconds into the experiment, the decoder changes its reserved computation time
to 47 ms and its reservation period to 111 msto fine-tune the reservation even further.

6.2.4.3 Analysis

This experiment demonstrates that an application can adjust its reservation parameters
and adapt its behavior based on the usage information from the reservation mechanism. In
this case, the initial reservation of the npeg_pl ay application did not have to be accurate
since the application automatically adjusted the reservation levels based on usage measure-
ments.

6.2.5 Protocol processing wor kloads

The experiments in this section explore the real-time behavior of the socket library
(called | i bsocket s) protocol processing. The behavior obtained by an application using
the socket library is compared to the behavior using the UX Server’s socket service under
both time-sharing scheduling and reserves.

6.2.5.1 Methodology

Thel i bsocket s experiments use the same software environment as the experiments
with independent tasks and client/server workloads. There is a configuration manager that
reads the task set specification and creates the specified programs. In addition to the work-
load programs introduced so far, these experiments use the following programs:

 stdio - Creates a periodic thread that calls a sequence of file opera-
tions.

* udps - Creates a periodic thread that sends some number of packets
(specified in the program computation field) in each period. This pro-
gram uses the UX Server to send packets.

* udpl s - Creates a periodic thread that sends some number of packets in
each period. This program uses libsockets to send the packets rather than
interacting with the UX Server.

* udpr - Creates a periodic thread that receives some number of packets in
each period using the UX Server to receive the packets.

e udpl r - Creates a periodic thread that receives some number of packets
in each period using libsockets.

124

Experiment 15 is designed to show how a packet-sending activity can be disturbed by
competition from a combination of compute-intensive and 1/O-intensive activities, espe-
cially when all of those activities use system services which interact with each other as they
do in the UX Server. The task set for this experiment is given in Table 6-14. It shows two
udp senders (udps) with dlightly different workloads. The competition for this experiment
(asfor the next three experiments) consists of five compute-intensive ar i t h programs and
five I/O-intensive st di 0 programs. In this experiment, the packets sent by the udps pro-
grams are received on a remote machine by yet another program that records a timestamp
when the each packet arrives. This program buffers the timestamps and dumps them out at
the end. The timestamp data can be used to judge whether the packet senders were able to
send their packets out as desired or not.

Program | # Prograrrl Prog_ram R&erve_d Reser\rati on
Computation Period Computation Period
udps (A) 1 4 pkt 40 ms Oms 40 ms
udps (B) 1 2 pkt 40 ms Oms 40 ms
arith 5 various various Oms 40 ms
stdio 5 various various 0Oms 40 ms
nmoni tor |1 N/A 20ms 1ms 20ms

Table 6-14: Experiment 15 Parameters

Experiment 16 is designed to determine whether the packet-sending applications can
send their packetson timewhenusing | i bsocket s for their network protocol processing.
The parameters are given in Table 6-15. This experiment differs from Experiment 15 in that
the UDP packet senders use libsockets instead of the UX Server and they have reservations
instead of being scheduled by the time-sharing scheduler. The competition is the same: five
compute-intensive programs and five I/O-intensive programs.

Program | # Program Program Reserve_d Reﬁer\ration
Computation Period Computation Period
udpl s (A) | 1 4 pkt 40 ms 10 ms 40 ms
udpls (B) | 1 2 pkt 40 ms 6 ms 40 ms
arith 5 various various Oms 40 ms
stdio 5 various various Oms 40 ms
monitor |1 N/A 20ms 1ms 20ms

Table 6-15: Experiment 16 Parameters

125

The purpose Experiment 17 is to determine whether a UDP packet-receiving program
that attemptsto receive a number of packets periodically can meet that objective. The udpr
program attempts to receive some number of packets in each period. This program receives
packets through the UX Server and runs without a reservation. The competing activities are
identical to the previous two experiments. Table 6-16 presents the parameters for this exper-
iment.

Program | # Program Program Reserve_d Reﬁer\{ation
Computation Period Computation Period
udpr (A) |1 4 pkt 40 ms 0Oms 40 ms
udpr (B) |1 3 pkt 40 ms Oms 40 ms
arith 5 various various Oms 40 ms
stdio 5 various various Oms 40 ms
nonitor |1 N/A 20ms 1ms 20ms

Table 6-16: Experiment 17 Parameters

Experiment 18 is designed to determine whether areserved packet receiver that useslib-
sockets can predictably execute periodically to receive a number of packets. The udpl r
program is a periodic packet receiver that uses| i bsocket s instead of the UX server.
This experiment includes the same competition from compute-intensive and 1/O intensive
tasks as the other experimentsin this section. The parameters are given in Table 6-17.

Program | # Prograrr_1 Prog_ram Reserve_d Reserv_ati on
Computation Period Computation Period
udplr (A) | 1 4 pkt 40 ms 0Oms 40 ms
udplr (B) | 1 3 pkt 40 ms Oms 40 ms
arith 5 various various Oms 40 ms
stdio 5 various various Oms 40 ms
nmonitor |1 N/A 20 ms 1ms 20 ms

126

Table 6-17: Experiment 18 Parameters

Processor Utilization

SendersA & B

0.8

0.6

04

0.2

1 2 3 4 5 6 7 ¢
Time (sec)
(@)

1 2 3 4 5 6 7 g

Time (sec)

(b)

Figure 6-18: Experiment 15 Results

127

6.2.5.2 Results

The results of Experiment 15 are shown in Figure 6-18. Part (a) of the figure shows the
processor utilization over time for the two packet senders, which use the UX Server imple-
mentation of sockets and run without reservations. The x-axisistime in seconds, and the y-
axis is processor utilization. The two programs, denoted “Sender A” and “Sender B”, show
a very erratic usage pattern. Frequently, the usage drops to zero for over 1 second. The aver-
age utilization for Sender A is 0.023 with a 5-percentile of 0 and a 95-percentile of 0.0741.
The average utilization for Sender B is 0.0193 with a 5-percentile of 0 and a 95-percentile of
0.0796. The dispersion is clearly substantial for these applications, and that dispersion in
utilization achieved translates directly into missed deadlines.

Figure 6-18(b) shows the record of timestamps that were received by a remote receiver
for both senders. The x-axis in the graph is time in seconds, and there are two horizontal
lines, one for Sender A and the other for Sender B. A mark on the line corresponding to
Sender A at a particular time indicates that a packet arrived at that time and likewise for
Sender B. This graph shows that the packets were received on the remote host sporadically.
The pattern of packet receptions corresponds closely with the pattern of usage seen in part
(a) of the figure. The largest gaps between received packets were 1.28 seconds and 1.22 sec-
onds for Sender A and 1.93 seconds and 1.40 seconds for Sender B. These senders are
attempting to send packets every 40 ms, so clearly they are not able to schedule the message
sending activity as desired.

The results of Experiment 16 appear in Figure 6-19. In this case, the senders have reser-
vations and use thel bsocket s library to avoid depending on the UX Server for net-
working. The graph shown in part (a) of the figure shows time in seconds on the x-axis and
processor utilization on the y-axis. The processor utilization for both of the senders is very
regular, indicating that in each reservation period, the programs were able to send the pack-
ets they were supposed to send. There are no long intervals of zero usage as in the previous
case. The average utilization of Sender A is 0.103 with a 5-percentile of 0.101 and a 95-per-
centile of 0.110 indicating a very tight distribution around the average. Likewise for Sender
B, the average utilization is 0.0591 and the 5-percentile is 0.0582 with a 95-percentile of
0.0624. This is also a tight distribution.

The graph in Figure 6-19(b) supports the conclusion that the senders in this experiment
are able to send their packets very regularly in each period. As before, the x-axis is time in
seconds and two horizontal lines indicate the timestamps for packets received from the two
senders. A point on the line corresponding to Sender A represents a packet that was received
at the associated time. In this experiment, packets are received very regularly from each
sender. There are no significant gaps in the reception pattern. The maximum gaps for pack-
ets received from Sender A are 0.0519 seconds and 0.0423 seconds, and the maximum gaps
for packets received from Sender B are 0.0438 seconds and 0.0435 seconds. So the conclu-
sion is that the combination of libsockets with reserved resources yields predictable behav-
ior for packet senders.

128

Processor Utilization

SendersA & B

08 r _

0.6 1

04 r .

| 1
,,,

Time (sec)

(@

Time (sec)

(b)

Figure 6-19: Experiment 16 Results

129

Figure 6-20 shows the results of Experiment 17. In this case, a remote sender periodi-
cally sends packets to the two receivers described in the task set. In this experiment, the two
receivers are unreserved and use the UX Server’s implementation of sockets. The graph has
time in seconds on the x-axis and processor utilization on the y-axis. The behavior is very
erratic. The remote host sends packets periodically, but the receiver is not always able to run
long enough to receive the packets. Receiver A has an average utilization of 0.0134 with a
5-percentile of 0 and a 95-percentile of 0.0617. This is not the kind of timely behavior
desired in the packet receiver. Receiver B has an average utilization of 0.0220 with a 5-per-
centile of 0 and a 95-percentile of 0.0726. Again, the dispersion is significant. The usage for
both receivers frequently drops to zero, indicating that the packets are being dropped for sig-
nificant periods of time.

04 r .

Processor Utilization

02 r 1

Time (sec)

Figure 6-20: Experiment 17 Results

The results of Experiment 18 are shown in Figure 6-21. Again, a remote sender periodi-
cally sends packets to two receivers which have reservations and which usé sloe k -
et s implementation of sockets. The graph has time in seconds on the x-axis and processor
utilization on the y-axis. The usage functions of the two receivers are plotted over the dura-
tion of the experiment. The average utilization for Receiver A in this case is 0.149 with a 5-
percentile of 0.139 and a 95-percentile of 0.173. This indicates a fairly tight distribution.
Receiver B has an average utilization of 0.130 with a 5-percentile of 0.115 and a 95-percen-
tile of 0.140. Again the utilization achieved is quite consistent across periods for the dura-
tion of the test. It is clear that the receivers do not drop to very low utilizations for
significant intervals of time. Their relatively constant usage indicates that they are able to
process the incoming packets in a predictable manner.

130

Recelver B

08 r il
c
o

§ 06 | 1
5

04} -
4
(&)
(@)

e 02 |]

0
0 1 2 3 4 5 6 7 ¢
Time (sec)
Figure 6-21: Experiment 18 Results
6.2.5.3 Analysis

The results from thel i bsocket s experiments showed that when packet senders and
receivers ran in time-sharing mode using the socket implementation provided by the UX
Server, their behavior was erratic when other programs were competing for the processor
and access to other services provided by the UX Server. Reserved packet senders and
receiversthat used | i bsocket s for handling network packets had much better behavior.
They were able to execute periodically and perform each sending or receiving computation
by the end of the corresponding period. Other experiments (not presented here) showed that
the behavior of reserved programs that used UX sockets was just as bad as that of unre-
served programs with UX sockets. Also, unreserved programs that used | i bsocket s
exhibited unpredictable behavior when executing with competition as well. These experi-
ments indicate that using a reservation mechanism or al i bsocket s mechanism alone
does not ensure predictability in programs; both mechanisms are needed.

6.3 Scheduling cost

This section addresses the scheduling costs of predictable programs that can meet their
timing constraints under the reservation system. It looks at measured aggregate costs for the
system as well as measurements of scheduling operations that contribute to the costs. Such
measurements enable cost projections to be made for specific task sets.

131

6.3.1 Measured aggr egate scheduling cost

The reservation system ensures that reserved resources will be available to enable real-
time programs to meet their timing constraints, but this predictability has costs associated
with it. In particular, the accurate measurements and the timers necessary for enforcement
take some time. In measuring the aggregate scheduling cost, the intention is to determine
how much time is consumed by scheduling costs in the case of areserved periodic thread
compared to that of an unreserved thread.

6.3.1.1 Methodology

Experiment 19 is designed to measure the scheduling cost for a periodic thread as the
period varies. The task set includes the periodic thread and an “idle” thread that runs in the
background to consume all processor time not consumed by the periodic thread and the sys-
tem’s housekeeping activities. The system scheduling cost is taken to be the total time of the
test minus the time consumed by the periodic thread and the idle thread. This scheduling
cost includes context switch times, associated cache effects, as well as the cost of timers and
clock operations for the reservation mechanism.

One series of tests measures the scheduling cost for a reserved periodic thread whose
reservation period ranges from 20 ms to 200 ms. Most of the cost for the reservation system
is a fixed cost in each period, so a longer period implies a relatively smaller cost. The other
series of tests measures scheduling cost for an unreserved periodic thread with a period that
varies from 20 ms to 200 ms.

6.3.1.2 Results

The results of the scheduling cost measurements are presented in Figure 6-22. The graph
consists of two functions: the scheduling cost associated with a reserved periodic thread as a
function of period and the scheduling cost associated with an unreserved periodic thread as a
function of period. The x-axis is the period in milliseconds, and the y-axis is the percentage
of the processor that is lost to scheduling costs.

The scheduling cost for the reserved thread starts out about 3% for a reservation period
of 20 ms and drops off as the reservation period is increased. For a 100 ms reservation
period, the scheduling cost is about 0.5% and for a 200 ms reservation period, it is about
0.2% For the unreserved thread, the scheduling cost is smaller, starting at about 2.2% for a
20 ms period. The cost drops off to about 0.5% for a 100 ms period and then to about 0.1%
for a 200 ms period.

132

10

unreserved ——-
[%)) 8 |
7))
Q
(]
2
s °
3
S5
S i
S o 4
Sy
O\o 2 2 -
0) A ——— .
. 50 100 150 20C

reservation period (ms)

Figure 6-22: Scheduling Cost

6.3.1.3 Analysis

The scheduling cost measurements indicate that the cost of threads with very small res-
ervation periods (smaller than about 30 ms) grows somewhat as the reservation period
decreases. For reservation periods in the range of 40 to 100 ms, which would be an appropri-
ate range for many audio and video applications for example, the scheduling cost is accept-
able.

The scheduling cost is relatively high for the reservation system because the clock/timer
card used in the experiments is very sensitive to the timing of loads and stores in its control
and data registers. The card is used quite often in the reservation system to read a free-run-
ning clock, set an interrupting timer, or cancel a timer. Since each of these operations
requirements multiple reads and stores to device registers and since the device driver for the
card contains many delay loops required to synchronize properly with the card, much timeis
wasted. With clock and timer support from a better card, the scheduling cost should be sig-
nificantly lower.

6.3.2 Individual operations

This section presents measurements of the individual internal operations used by the res-
ervation mechanism. These measurements can be used to project scheduling costs for task
Sets.

6.3.2.1 Reserve Switch

During a context switch, the system must switch the reserve to which it is charging com-
putation time as it switches the thread that is running on the processor. This involves updat-

133

ing usage accumulatorsin the old reserve and possibly setting the overrun timer for the next
reserve. The four measured cases for the reserve switch are:

* Neither the old or new activity was reserved - Just update the usage accu-
mulators.

* The old activity was reserved - Cancel the overrun timer for the old activ-
ity and update usage.

* The new activity is reserved - Set up and arm the overrun timer for the
new activity and update usage

* Both activities are reserved - Cancel the old overrun timer, set up the new
overrun timer, and update usage.

The following table gives the measurements for these cases.

Action Duration
Neither old nor new activity reserved A8
Old activity reserved 10Qs
New activity reserved 100s
Both activities reserved 180

Table 6-18: Reserve Switch

6.3.2.2 Overrun and Replenishment Timers

The measured cost for handling an overrun timer includes identifying the timer, setting
some state in the reserve, and initiating a context switch. It does not include the cost of the
context switch itself.

The cost for handling a replenishment timer includes identifying the timer, setting some
state in the reserve, resetting the timer for the next reservation period boundary, and possi-
bly resetting the overrun timer. Four different cases for replenishment timer handling were
measured:

* A reserve with a reservation whose computation allocation had been
depleted during the period (the overrun timer had expired for this activ-
ity), and it was waiting for a new allocation.

* A reserve with a reservation whose computation allocation had not been
depleted.

* Areserve with no reservation whose replenishment timer expired while it
was running.

* A reserve with no reservation which was not running at the time the
replenishment timer expired.

134

The following table shows the measurements for the overrun timer and each of the
replenishment timer cases.

Action Duration
Handle overrun timer 130 ps
Reserved and waiting for new allocation 170 ps
Reserved but not waiting 140 ps
Unreserved and running when timer expired 140 ps
Unreserved and not running when timer expired 140 ps

Table 6-19: Replenishment Timer

6.3.2.3 Usage checkpoints

This section gives measurements of the system primitives that extract usage information
from the kernel. The reserve usage data from the reservation system implemented in RT-
Mach come in two forms: the current accumulated usage of areserve, and the accumulated
usage as of the last reservation period boundary. The record of the accumulated usage of a
reserve taken at a reservation period boundary is called a checkpoint. The reservation sys-
tem offers two system primitives for retrieving usage data: the first gives the datafor a sin-
gle checkpoint along with the current accumulated usage, and the second give the last 20
checkpoints from the last 20 reservation period boundaries. The following table gives the
measured costs for both of these system primitives.

Action Duration
Retrieve single checkpoint 130 ps
Retrieve 20 recent checkpoints 220 us

Table 6-20: Checkpoint Cost

6.3.2.4 Analysis

The measurements described in this section can be used to estimate the cost associated
with running specific task sets on the reservation system. The replenishment timer costs
occur in every period of every reserved activity, and these numbers can help project the
impact of having many tasks with small reservation period. The overrun timer costs detail
the penalty associated with a program whose computation does not closely match its reser-
vation. The checkpoint costs can be used in estimating the overhead for a monitor and in
choosing timing properties of a monitor to balance accuracy of information with overhead
cost.

135

6.4 Chapter summary

This chapter addressed the questions of whether the reservation system supports predict-
able application behavior and how much the predictability costsin terms of scheduling over-
head. To show that the reservation system supports predictable behavior for applications,
several experiments were done using task sets consisting of independent compute-bound
synthetic workloads as well as client/server task setswith synthetic workloads. In an experi-
ment with three reserved programs and five unreserved competitors, the reserved programs
achieved measured processor utilizations that had 5-percentiles and 95-percentiles within 3-
7% of their average utilizations, indicating that they were able to get their processor reserva-
tions with very little variance in their computation times. In the client/server experiments,
even a case where an unreserved client was competing with two reserved clients for the
same server (along with other independent unreserved programs competing for the proces-
sor), the reserved clients were able to achieve their timing constraints. The 5-percentiles and
95-percentiles for the two reserved clients in this case where within 5% of their average uti-
lizations. These experiments showed that the reservation system guarantees very tight distri-
butions of processor utilization even with different types of computation and with different
combinations of client/server interactions.

Additional experiments used areserved QuickTime video player and a modified version
of the X Server to show that reserved applications can coordinate with shared serversto sat-
isfy timing constraints on computations such as displaying video frames. In these experi-
ments, the reserved players (even with interference from competing non-real-time X clients)
had processor utilization measurements with 5-percentiles and 95-percentiles within 65% of
their average utilizations. The utilization distributions were not as tight as the synthetic cli-
ent/servers because the internal structure of the X Server is not ideally suited to reserve
propagation and charging to clients’ reserves. However, the performance of the reserved
players was still much improved over that of unreserved players which had measurements
with 5-percentiles and 95-percentiles that were as much as 166% of their average utiliza-
tions.

Experiments with libsockets showed that with an appropriate protocol processing struc-
ture, packet senders and receivers could achieve predictable behavior. The reserved senders
in the experiments had processor utilization measurements with 5-percentiles and 95-per-
centiles that were within 7% of the average utilizations, and the reserved receivers had 5-
and 95-percentiles that were within 16% of the average utilizations. This is compared with
unreserved senders and receivers that had 5- and 95-percentiles of up to 360% of their aver-
age utilizations.

The scheduling costs of the reservation system were measured by running a periodic
thread and measuring the idle time left over to find the scheduling cost. The results from
several experiments with reserved and unreserved periodic threads with different periods
show that the scheduling cost of reserved threads is typically about twice that of unreserved
threads.

136

Chapter 7

Related Work

The work presented in this dissertation draws on research in several different areas. The
reserve model depends on theoretical results from real-time scheduling, and the design and
implementation were influenced by the work in real-time system design as well as the
requirements for multimedia applications. This chapter presents an overview of related
work: most of the related work focuses on systems issues although a section on applications
discusses work on tools and application adaptation techniques.

7.1 System Implementation

The increasing integration of computer and telecommunications technol ogies has
focused attention on the real-time issues that arise in processing digital audio and video.
Handling multimedia data streams requires an understanding of the timing requirements,
encoding techniques, and data formats of the new mediatypes|[13,69,94,135,136] aswell as
programming interfaces [60,101] and new application design techniques [35].

7.1.1 Multimedia support

A great deal of recent work has focused on how software systems (including operating
systems) can be designed to support multimedia applications. Many researchers and practi-
tioners consider resource reservation desirable if not absolutely necessary for rea-time mul-
timedia operating systems [3,46,53,60,87,102,127]. Herrtwich [42] gives an argument for
resource reservation and careful scheduling in these systems. Others prefer a best effort
approach to OS design for multimedia applications [19,21,90]. Recent survey papers
[116,132] and books[12,115] discuss work in this area.

One of the simplest ways to do resource all ocation for multimedia applications is to ded-
icate an entire machine to a single multimedia application. Multimedia applications for sin-
gle-user personal computers typically assume that only a single multimedia activity will
exist at any one time. Or if several multimedia activities exist, the assumption is that they

137

will be associated with a single application that can do cooperative scheduling of these
activities. Adobe Premiere [95] is an example of such an application. If this assumption is
violated, neither the applications nor the system will be in a position to assert anything about
the behavior of multimedia applications. There is no admission control or any kind of over-
load protection in such systems.

Other systems such as OS/2 [60] put limits on the number of high-level activities, such
as video streams being processed by the system, as a primitive form of admission control.
This technique does not address the problem of resource allocation or admission control for
arbitrary computations and media processing applications.

Jeffay et al. implemented an operating system designed for guaranteed real-time sched-
uling [53]. A video capture and playback application demonstrates that the analytical tech-
niques can be successfully applied to real applications. In subsequent work, Jeffay has
focused attention on transport mechanisms to detect and deal with variability in network
behavior [54]. The reservation system described in this dissertation uses real-time schedul-
ing analysis as does Jeffay. It focuses on enforcement whereas Jeffay’s recent work focuses
more on flexibility. The reservation system would benefit greatly from the increased flexi-
bility of having adaptive mechanisms such as Jeffay’s at higher levels.

Andersonet al. [3] argue for introducing more sophisticated timing and scheduling fea-
tures into operating systems, and their DASH system design supports a reservation model
based on linear bounded arrival processes (LBAP) [22,23]. They implemented their system
design and were able to report some preliminary experiences with the system. They use ear-
liest deadline scheduling for real-time traffic because it is optimal in the sense that if any
algorithm can schedule a particular collection of tasks, the earliest deadline algorithm can
do it. Admission control for this system is based on a time-line where new jobs are admitted
only if they fit onto the time-line when the job request arrives [129]. The reservation system
described in this dissertation uses an admission control algorithm based on a periodic sched-
uling framework with scheduling analysis rather than a timeline approach. One way for
reserves to accommodate one-shot events would be to use a timeline based admission con-
trol policy and scheduling algorithm. The reservation system focuses more on enforcement
of specified computation times.

Hyden [46] considered the problem of supporting QOS in operating systems in his the-
sis. He implemented a system that offers a virtual processor interface to applications. A
video decoder application demonstrates how such an interface can be used by an applica-
tion. In contrast, the reserve system provides flexibility in reservation binding for a more
integrated view of resource usage reservation, measurement, and enforcement.

Coulsonet al. [21] present a system design based on Chorus [103]. This system uses ear-
liest deadline scheduling, but they do not provide any admission control and usage enforce-
ment. QOS commitments can be revoked, and overload is permitted; commitments are
degraded as a response to overload. The work focuses primarily on fast context switching
and reducing protection domain crossings. The reserve system provides guaranteed resource
reservation using an enforcement mechanism with QOS policy modules layered over the
reservation abstraction.

138

Jones [56] describes some ideas on system design for multimedia applications which
depend on value functions as a means of scheduling processes based on timing constraints,
semantic importance, user preferences, and other information about application-level
requirements. The reserve system divides the QOS provision problem into a reservation
mechanism and QOS policy layers. Jones’ work focuses more on the QOS policy and could
benefit from mechanisms for guaranteed resource reservation.

Many multimedia cards and co-processor boards and boxes are actually embedded sys-
tems with their own processors and operating systems. These systems must manage
resources for multiple real-time activities that must be multiplexed.

Hopper [44] described Pandora’s Box which is a transputer system designed to be a mul-
timedia peripheral for a traditional workstation. The Pandora system employs several trans-
puters, each of which handles a particular function in the system such as compression,
decompression, network traffic, and audio. A similar approach is being pursued in the con-
text of the Desk Area Network [40] and related operating system efforts [9,81]. The reserve
system addresses the sharing of devices and software resources by appropriate admission
control policies, scheduling algorithms, and enforcement mechanisms. Multiplexing of
resources results in more efficient resource utilization.

The Mwave system [47] consists of a digital signal processor (DSP) card intended for
use with a PC. The Mwave card handles various audio processing and telephony tasks,
depending on the host processor for control functions. A programmer can develop applica-
tions that are divided between the host system and the Mwave processor. There is a pro-
gramming environment that supports application development, and the operating system
running on the Mwave processor provides some real-time support for scheduling and
enforcement. In particular, the Mwave/OS performs enforcement functions, resetting the
card when any of the real-time activities misses a deadline. The reserve abstraction provides
more functionality for flexible binding of reserves, and the reserve system also has a more
flexible policy for handling timing failures. In particular, real-time activities are not affected
by the timing failure of an independent real-time or non-real-time activity.

7.1.2 QOS ar chitectures

The reserve abstraction is designed to support higher-level architectures for managing
quality of service specification and negotiation. Several QOS architectures have been pro-
posed assuming that the mechanisms for operating system resource management, such as
the reserve system, would be developed.

Nicolaou [89] described a QOS architecture suitable for programming distributed multi-
media applications. His work describes an architecture that one might use to design and
implement multimedia applications. While some systems issues like resource management
and scheduling are identified as being important, the cited work does not address those
problems. A prototype implementation based on the architecture demonstrates the feasibil-
ity of this approach, but since the prototype is implemented on UNIX, its performance suf-
fers from a lack of real-time scheduling techniques in the operating system. The reserve

139

model is designed to provide the kind of operating system support necessary for Nicolaou’s
QOS architecture.

Wolf et al. [137] defined a QOS architecture for a communication transport system, and
they have an initial implementation of their system, called the Heidelberg Transport System.
The reserve system focuses more on admission control, dealing with interaction between
processes (such as client/server interactions) and usage enforcement.

The QOS Broker [84] provides an architecture for handling QOS negotiation among
resource “buyers” and “sellers.” Protocols are provided for carrying out the negotiation, and
a version of the QOS Broker was implemented and used in the context of a telerobotics
application. The Broker contains hooks for reserving resources in operating systems and
networks when reservation mechanisms are available. The reserve system described in this
dissertation provides the mechanism necessary for negotiating guaranteed service.

7.1.3 Networking

The idea of bandwidth reservation for network quality of service models has been
explored by a number of researchers. The thesis work complements the work on networking
by providing resource reservation in the end hosts as well as in the network. Thus the oper-
ating system resource reservation work enables predictable end-to-end performance for real-
time programs.

Ferrari and Verma [31] describe a model for guaranteeing bandwidth in a wide-area net-
work. Their analytical model provided a basis for subsequent work on network bandwidth
reservation. In contrast, Claekal. [18] describe another service model based on the idea of
predictive service. In related work, L. Zhagtcal. [140] gave a basic description of RSVP,

a protocol for reserving resources across nodes in an internetwork. This thesis provides
operating system support to implement these types of schemes. Reserves support guaranteed
service for hard real-time applications as well as supporting predictive service for soft real-
time applications that dynamically change their requirements on various system resources.

H. Zhang [141] describes a bandwidth reservation model and an implementation in an
internetwork protocol. He was able to allocate and control network bandwidth in gateways,
but did not address the allocation and control of resources like the processor in the more
general operating system environment. The reserve system would make it possible to
address resource reservation issues in general end systems, extending H. Zhang's work on
resource reservation within the network and its routers.

Andersonet al. [4] describe a Session Reservation Protocol (SRP) which reserves
resources along the route of a connection to ensure a particular bandwidth and delay for the
connection. This protocol provides resource reservation at routers for predictable network
performance. The reserve system would make it possible to reserve resources at end hosts as
well as in the network routers.

140

7.2 Scheduling theory

Real-time scheduling theory has been an active area of research for years. Many impor-
tant theoretical results date back to the 1950’s and 1960’s [20,49], and work on system
design dates back to the same time period [71,73,82]. More recently, real-time systems
research has focused on scheduling algorithms and techniques for building complex, distrib-
uted real-time systems [1,130,131].

The reserve system was designed using several results from real-time scheduling theory
in its admission control policy, scheduling algorithm, and synchronization and communica-
tion primitives. The reserve model is based on the original rate monotonic scheduling analy-
sis [67] as well as recent extensions [63]. The simple two-parameter reservation model is
suitable for a wide range of applications, but applications that require different reservation
semantics might need a model that takes advantage of other scheduling algorithms and anal-
yses. For example, an application might require generalized rate monotonic analysis
[39,64,107,109], aperiodic servers with different replenishment policies [111,112,120], ear-
liest deadline first scheduling [27,49,67], sporadic task scheduling [51], or deadline mono-
tonic scheduling [7].

The reservation system also depends of priority inheritance protocols for fixed priority
scheduling [96,108], and similar inheritance protocols for earliest deadline first [8,16]
would be required for a reservation model based on that policy.

The two-parameter periodic scheduling framework of the original rate monotonic sched-
uling analysis divides the capacity of the processor among multiple tasks. Other scheduling
techniques such as processor sharing and fair share scheduling aim to provide a similar kind
of proportional sharing of the processor. The primary difference is that the two-parameter
periodic scheduling framework specifies a granularity of sharing by specifying a period.
Processor sharing and fair share scheduling seek to support sharing at a very fine granular-

ity.

A processor sharing technique [50] intended to be accurate enough to accommodate the
timing constraints of arbitrary multimedia applications would require a very small quantum.
This would imply a high scheduling overhead. Such a system would also require some
method for controlling the effects of synchronization and communication between pro-
cesses.

Fair share schedulers [41,58,138] provide for resource allocation like processor sharing,
although at a coarser granularity. Such schedulers ensure that users who pay more for com-
pute time get better service than others who pay less do. They record usage measurements to
try to match usage with target allocation levels over the long term.

More recently, work on fair share scheduling and proportional share scheduling has
addressed the integration of network scheduling and end-system scheduling [118,133,134].
Instead of focusing on ensuring that a certain amount of computation time will be available
by a deadline, this work focuses on ensuring that a certain proportion of the processor is
available to a compute-bound task in any interval.

141

7.3 Applications

Two classes of applications turn out to be very important to the resource reservation
work. Adaptive applications are important because dynamic real-time applications must be
very sensitive to the relationship between their (changing) resource requirements and their
levels of resource reservations. In addition, design tools, performance monitors, and
dynamic resource allocation tools are necessary for the design and on-line monitoring and
tuning of resource reservations for dynamic real-time applications.

7.3.1 Adaptive applications

Recently there has been afocus on how systems and applications can adapt their compu-
tations to the resources they find available to them. For example, video compression algo-
rithms are designed to allow for tradeoffs in resource requirements in various ways.
Software techniques are also being developed, primarily in the area of mobile computing,
for application awareness of resource requirements and adaptation based on system
resources available.

The MPEG compression algorithms support several ways to trade off between band-
width, computational resources, and image quality [17,61]. The MPEG-1 g-factor trades
image quality for less bandwidth and computational resources, and the MPEG-2 hierarchi-
cal encoding scheme supports incremental improvements in image quality for additional
bandwidth and computation time [10,17]. Other methods such as subband encoding [121],
Hyden’s method [46], and other hierarchical encoding schemes [2,17] support this tradeoff
as well.

Recent work in mobile computing explores how applications can be sensitive to the
resources that are available to them in terms of network bandwidth, processor power, and
screen resolution among others [32,91,106]. These applications discover the resources that
are available to them and then use this information to guide their own computations. For
example, a video player residing on a high-end workstation might request from a video
server a full color (24 bits per pixel), full motion (30 frames per second), relatively high res-
olution (640x480 pixels) video stream. The same video player on a low-end personal com-
puter might request only 256 bits of color, 15 frames per second, and a resolution of
160x120 pixels. Supporting a scenario like this requires that all of the involved system com-
ponents are aware of the resources they have available, the resources they need to do their
work, and the level at which all of the other components in the end-to-end activity can per-
form.

7.3.2Tools

The reserve system provides a mechanism for tools that monitor and control resource
usage. This section discusses current tools for monitoring functions and for controlling
resource usage.

142

Different tools intended for monitoring various aspects of system performance work at
different levels. Some are intended for program design while others are intended for system-
level debugging and on-line resource monitoring.

Performance analysis tools such as gprof [29,37] and PCA [28] use PC sampling tech-
niques to characterize program runtime behavior and object code to determine the static
structure. This method gives agreat deal of insight into the behavior of individual programs,
but there is no notion of tuning task sets as a whole. Also, the method of exercising control
of the programs being analyzed is through the programs themselves, either changing their
structure or modifying their parameters. The tool does not exercise this control directly.

System monitoring tools typically separate the functions of capturing performance data,
analyzing the data, and having an effect on the system that was measured. The Advanced
Real-Time Monitor (ARM) [123], which was originally designed for the ARTS Kernel
[124] and more recently updated for RT-Mach [125], takes this approach. ARM uses a ker-
nel mechanism to capture scheduling events and then sends those events over the network to
an ARM application running on a different machine. ARM then displays a scheduling his-
tory based on the events, and this history can be viewed, analyzed, and saved for future use.

Tools like xload [74] provide a very simple view of the cumulative processor load on a
workstation. The xload application does this on-line, but it leaves out some interesting infor-
mation like a breakdown of which processes are consuming what percent of the load. It also
lacks a control element to help the user have an effect on the load through the tool.

Tools like the Memory Sizer on the Macintosh [6] offer control over a system resource,
but the resource information is very simple, and one cannot set the memory size of a pro-
gram whileit is running. The reserve system allows for much more sophisticated control of
system resource allocation. With the help of a QOS manager, atool such as rmon can graph-
ically display resource usage information and interact with the console user to control
resource allocation.

143

144

Chapter 8

Conclusion

This dissertation has presented a comprehensive model describing resource reserves, the
operations they support, the scheduling algorithm and enforcement mechanism required,
and how reservations for various resource types can be encapsulated in a single framework.
An implementation and experimental evaluation demonstrate that real applications with
non-trivial client/server interactions can achieve predictable real-time performance using
resource reserves. The reserves ensure this predictability even when there are multiple real-
time and non-real-time applications competing for the same resources.

Thiswork shows that system mechanisms that address entire activities are important for
real-time resource management. Furthermore, it shows that enforcement is essential, other-
wise a reservation abstraction has no meaning. Programming techniques such as software
pipeline architectures with synchronized periods and deadlines are useful for achieving pre-
dictable behavior. The following sections detail the contributions of thiswork and directions
that this work opens for future research.

8.1 Contributions

The contributions of this work include the abstraction for operating system resource res-
ervation, its implementation, real applications which use it, and an experimental evaluation
of those applications. The following sections discuss these in more detail.

8.1.1 Resour ce reservation abstraction

The resource reserve abstraction provides a model for how real-time scheduling algo-
rithms and analyses can be incorporated in an operating system design in an integrated man-
ner. Thisisin contrast to the specification of scheduling algorithms and analyses in the
context of a simplified task model where many practical systems issues and programming
Issues are ignored. Two key features of the abstraction are flexible binding of reserves to
threads and enforcement of reservation parameters.

145

Since reserves are first class objects in the system rather than being tightly and perma-
nently bound to threads (or processes), the management of resources is much easier. For
example, reservation parameters can be allocated for a reserve by athread and then a refer-
ence to the reserve can be passed to system service providers invoked by the thread. By
allowing the binding of reserves to threads to be flexible, reserves can be passed around in
this way, and the resource usage for the abstract activity is tracked and guaranteed through-
out all of the server calls.

The enforcement mechanism eases program development and debugging for program-
mers of hard and soft real-time applications. Programmers of hard real-time applications can
exploit the usage accumul ation mechanism to measure the requirements of their code during
development. During runtime, the enforcement mechanism and usage measurements can be
used to isolate timing bugs. Programmers of soft real-time applications can use the enforce-
ment mechanism to ensure isolation between applications and to provide information on
resource usage requirements for adaptive applications. This relieves the programmer of
doing the exhaustive measurements and analysis usually required to achieve real-time pre-
dictability.

8.1.2 Implementation

The implementation of processor reserves in Real-Time Mach and the implementation
of several real applications that use reserves demonstrate the feasibility of the approach
described in this document. The implementation shows how to design an enforcement
mechanism and integrate it with the scheduling policy. It shows how a reserve propagation
mechanism can be built to ensure consistent resource reservation and account for abstract
activities that span multiple threads (or processes). It also demonstrates how QOS managers
can be incorporated into the system to negotiate reservation parameters between reserved
applications and the operating system, and how resource usage monitor and control can be
used to promote awareness of resource requirements and dynamic adjustment of resource
allocation.

8.1.3 Experimental evaluation

The experimental evaluation demonstrates that the applications using the reservation
system can achieve predictable behavior with acceptable overhead costs. Experiments with
synthetic benchmark applications were able to achieve very consistent real-time perfor-
mance even in the face of competition from other real-time and non-real-time applications.
In the experiments, periodic reserved applications ran over arelatively long duration of
time, and measurements of the processor utilization during each period were recorded. The
5-percentile and 95-percentile numbers for these measurements were typically within 5-7%
of the average utilization across all the periods, indicating avery tight distribution of proces-
sor utilization measurements across periods and a quite consistent pattern of real-time
behavior. In other experiments with real applications such as a video player and X Server,
processor utilization measurements yielded 5- and 95-percentiles which differed from the
average utilization by up to 65%. This is not nearly as tight as the synthetic client/server
benchmark applications due to the input/output organization of the X Server which is not

146

ideally suited to reserve propagation techniques. In any case, the behavior of reserved X cli-
ents was much better than that of unreserved X clients, which had 5- and 95-percentiles that
were as much as 166% of their average utilizations. Experiments with network transmit/
receive applications showed processor utilization measurements with 5- and 95-percentiles
of 7-16% of the average utilizations. When unreserved, these applications had measure-
ments with 5- and 95-percentiles of up to 360% of their average utilizations. In each case,
the reserved application showed much more consistent real-time behavior than its unre-
served counterpart.

8.2 Futuredirections

The work described in this document opens up many avenues for future research. By
providing a general framework and testbed platform for operating system resource reserva-
tion, thiswork provides a concrete context for many research topics such as QOS provision
and negotiation, resource allocation algorithms, and adaptive application programming
techniques.

This work on resource reservation also provides a design point for comparison with
other system design approaches [65] and for other scheduling paradigms [119]. The idea of
enforced resource reservation can also be used as a building block for exploring higher-level
concerns such as the role of user in resource management [57].

147

148

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

A. K. Agrawala, K. D. Gordon, and P. Hwang, editors. Mission Critical Operating
Systems. 10S Press, Amsterdam, 1992.

D. Anastassiou. Digital Television. Proceedings of the IEEE, 82(4):510-519, April
1994.

D. P. Anderson, S. Tzou, R. Wahbe, R. Govindan, and M. Andrews. Support for
Continuous Media in the DASH System.Pnoceedings of the 10th International
Conference on Distributed Computing Systems, pages 54-61, May 1990.

D. P. Anderson, R. G. Herrtwich, and C. Schaefer. SRP: A Resource Reservation
Protocol for Guaranteed-Performance Communication in the Internet. Technical
Report TR-90-006, International Computer Science Institute, February 1990.

D. P. Anderson and R. Kuivila. A System for Computer Music Performakiel
Transactions on Computer Systems, 8(1), February 1990.

Apple Computer, IndMacintosh User’s Guidel991.

N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-Time
Scheduling: The Deadline-Monotonic Approach. In Eighth IEEE Workshop on
Real-Time Operating Systems and Softwpages 133-137, May 1991.

T. P. Baker. Stack-based Scheduling of Real Time ProceRs=3ournal of Real-
Time Systems, 3(1):67-99, March 1991.

P. Barham, M. Hayter, D. McAuley, and |. Pratt. Devices on the Desk Area Net-
work. IEEE Journal on Selected Areas in Communications, 13(4):722-732, May
1995.

S. Baron and W. Robin Wilson. MPEG OvervieSMPTE Journal, 6(103):391—
394, June 1994.

J. Boykin, D. Kirschen, A. Langerman, and S. LoVeRagramming under Mach.
Addison-Wesley, 1993.

J. F. K. Buford, editorMultimedia Systems. ACM Press and Addison-Wesley, 1994.

149

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

150

J. Burger. The Desktop Multimedia Bible. Addison-Wesley, 1993.

A. Campbell, G. Coulson, and D. Hutchison. A Quality of Service Architecture.
Computer Communication Review, 24(2):6-27, April 1994.

K. Chen. A Study on the Timeliness Property in Real-Time Syst@meslournal of
Real-Time Systems, 3(3):247-273, September 1991.

M.-I. Chen and K.-J. Lin. A Priority Ceiling Protocol for Multiple-Instance
Resources. IProceedings of the Twelfth |EEE Real-Time Systems Symposium,
pages 140-149, December 1991.

T. Chiang and D. Anastassiou. Hierarchical Coding of Digital TelevisieBE
Communications Magazine, 5(32):38—-45, May 1994.

D. D. Clark, S. Shenker, and L. Zhang. Supporting Real-Time Applications in an
Integrated Services Packet Network: Architecture and Mechanisirobteedings

of the SIGCOMM ’92 Symposium on Communications Architectures and Protocols
pages 14-26, October 1992.

C. L. Compton and D. L. Tennenhouse. Collaborative Load Shedding for Media-
Based Applications. IRroceedings of the IEEE International Conference on Multi-
media Computing and Systems (ICMCS), pages 496-501, May 1994.

R. W. Conway, W. L. Maxwell, and L. W. MilleiTheory of Scheduling. Addison-
Wesley, 1967.

G. Coulson, G. S. Blair, and P. Robin. Micro-kernel Support for Continuous Media
in Distributed SystemsComputer Networks and ISDN Systems, 26(10):1323-1341,
July 1994.

R. L. Cruz. A Calculus for Network Delay, Part I: Network Elements in Isolation.
|EEE Transactions on Information Theory, 37(1):114-131, January 1991.

R. L. Cruz. A Calculus for Network Delay, Part Il: Network AnalyHEEE Trans-
actions on Information Theory, 37(1):132-141, January 1991.

H. Custerlnside Windows NT. Microsoft Press, 1993.

R. B. Dannenberg. A Real Time Scheduler/Dispatchelr ticeedings of the Inter-
national Computer Music Conference, pages 239-242, 1988.

P. Dasgupta et al. The Design and Implementation of the Clouds Distributed Operat-
ing SystemComputing Systems, 3(1):11-45, Winter 1990.

M. L. Dertouzos. Control Robotics: The Procedural Control of Physical Processes.
In Proceedings of the IFIP Congress, pages 807-813, August 1974.

Digital Equipment Corporation/AX Performance and Coverage Analyzer User’s
Reference Manual

J. Fenlason and R. Stallman. gprof: The GNU Profiler Free Software Foundation,
Inc., 1988.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

D. Ferrari. Client Requirements for Real-Time Communication Services. |EEE
Communications Magazine, 28(11):65-72, November 1990.

D. Ferrari and D. C. Verma. A Scheme for Real-Time Channel Establishment in
Wide-Area NetworksIEEE Journal on Selected Areas in Communication,
8(3):368-379, April 1990.

A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting to Network and Client
Variability via On-Demand Dynamic Distillation. IRroceedings of the Seventh
ACM Conference on Architectural Support for Programming Languages and Oper -
ating Systems (ASPLOS VII), October 1996.

G. Gallassi, G. Rigolio, and L. Verri. Resource Management and Dimensioning in
ATM Networks.|EEE Network Magazine, 4(3), May 1990.

J. Gettys, P. L. Karlton, and S. McGregor. The X Window System, Versidsoft.
ware — Practice and Experienc20(S2):S2/35-S2/67, October 1990.

S. J. Gibbs and D. C. Tsichritziglultimedia Programming: Objects, Environments
and Frameworks. ACM Press and Addison-Wesley, 1995.

D. Golub, R. W. Dean, A. Forin, and R. F. Rashid. Unix as an Application Program.
In Proceedings of Summer 1990 USENIX Conference, June 1990.

S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a Call Graph Execution
Profiler. InProceedings of the SIGPLAN '82 Symposium on Compiler Construction
pages 120-126, June 1982.

Rhan Ha and J. W. S. Liu. Validating Timing Constraints in Multiprocessor and Dis-
tributed Real-Time Systems. Rroceedings of the 14th |EEE International Confer-
ence on Distributed Computing Systems, June 1994.

M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Timing Analysis for Fixed-Priority
Scheduling of Hard Real-Time SysteriSEE Transactions on Software Engineer-
ing, 20(1):13-28, January 1994.

M. Hayter and D. McAuley. The Desk Area NetwoACM Operating Systems
Review, 25(4):14-21, October 1991.

G. J. Henry. The Fair Share Scheduker& T Bell Laboratories Technical Journal,
63(8):1845-1858, October 1984.

R. G. Herrtwich. The Role of Performance, Scheduling, and Resource Reservation
in Multimedia Systems. In A. Karshmer and J. Nehmer, edif@pstating Systems

of the 90s and Beyond, number 563 in Lecture Notes in Computer Science, pages
279-284. Springer-Verlag, 1991.

P. Hood and V. Grover. Designing Real Time Systems in Ada. Technical Report
1123-1, SofTech, Inc., January 1986.

A. Hopper. Pandora - an experimental system for multimedia applicaAQhs.
Operating Systems Review, 24(2):19-34, April 1990.

151

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

152

N. C. Hutchinson and L. L. Peterson. The x-Kernel: An Architecture for Implement-
ing Network Protocols. |EEE Transactions on Software Engineering, 17(1):64—76,
January 1991.

E. A. Hyden.Operating System Support for Quality of Service. PhD thesis, Univer-
sity of Cambridge, February 1994.

International Business Machiné&dwave/OS User’'s Guigd993.

Y. Ishikawa, H. Tokuda, and C. W. Mercer. Priority Inversion in Network Protocol
Module. Proceedings of 1989 National Conference of the Japan Society for Soft-
ware Science and Technolo@ctober 1989.

J. R. Jackson. Scheduling a Production Line to Minimize Maximum Tardiness.
Technical Report Research Report 43, Management Science Research Project,
UCLA, 1955.

R. Jain. The Art of Computer Systems Performance Analysis: Techniques for Exper-
imental Design, Measurement, Simulation, and Modeliotgh Wiley & Sons, 1991.

K. Jeffay. Analysis of a Synchronization and Scheduling Discipline for Real- Time
Tasks with Preemption Constraints. In Proceedings of the IEEE Real-Time Systems
SymposiunDecember 1989.

K. Jeffay, D. F. Stanat, and C. U. Martel. On Non-Preemptive Scheduling of Peri-
odic and Sporadic Tasks. In Proceedings of the IEEE Real-Time Systems Sympo-
sium December 1991.

K. Jeffay, D. L. Stone, and F. D. Smith. Kernel Support for Live Digital Audio and
Video. Computer Communications (UK)5(6):388—395, July-August 1992.

K. Jeffay, D. L. Stone, and F. D. Smith. Transport and Display Mechanisms for
Multimedia Conferencing Across Packet-Switched Netwo@snputer Networks
and ISDN Systems, 26(10):1281-1304, July 1994.

E. D. Jensen, C. D. Locke, and H. Tokuda. A Time-Driven Scheduling Model for
Real-Time Operating Systems. Pnoceedings of the 6th |EEE Real-Time Systems
Symposium, December 1985.

M. B. Jones. Adaptive Real-Time Resource Management Supporting Composition
of Independently Authored Time-Critical Services Piroceedings of the Fourth
Workshop on Workstation Operating Systems WWOS1V), pages 135-139, October
1993.

M. B. Jones et al. Support for User-Centric Modular Real-Time Resource Manage-
ment in the Rialto Operating System.Rnoceedings of the Sixth International
Workshop on Network and Operating System Support for Digital Audio and Video,
November 1995.

J. Kay and P. Lauder. A Fair Share Sched@aCM, 31(1):44-55, January 1988.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]
[74]

T. Kitayama, T. Nakajima, and H. Tokuda. RT-IPC: An IPC extension for Real-
Time Mach. In Proceedings of the USENIX Symposium on Microkernels and Other
Kernel Architectures, pages 91-104, September 1993.

W. Lawton, B. Noe, and M. LopeReveloping Multimedia Applications Under OY
2. John Wiley & Sons, 1995.

D. Le Gall. MPEG: A Video Compression Standard for Multimedia Applications.
CACM, 34(4):46-58, April 1991.

S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarternide.Design and
Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley, 1989.

J. P. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case BehavioPrticeedings of the 10th
| EEE Real-Time Systems Symposium, pages 166-171, December 1989.

J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines. InProceedings of the 11th IEEE Real-Time Systems Symposium, pages
201-209, December 1990.

I. Leslie et al. The Design and Implementation of an Operating System to Support
Distributed Multimedia Applicationd EEE Journal on Selected Areasin Communi-
cations, September 1996.

J. Leung and J. Whitehead. On the Complexity of Fixed-Priority Scheduling of Peri-
odic, Real-Time Task®erformance Evaluation, 2:237-250, 1982.

C.L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a
Hard Real Time EnvironmentACM, 20(1):46-61, 1973.

C. D. Locke. Software Architecture for Hard Real-Time Applications: Cyclic Exec-
utives vs. Fixed Priority Executiveshe Journal of Real-Time Systems, 4(1):37-53,
March 1992.

A. Luther. Digital Video in the PC Environment. Intertext Publications and
McGraw-Hill, 2nd edition, 1991.

C. Maeda and B. N. Bershad. Protocol Service Decomposition for High-Perfor-
mance Networking. IfProceedings of the Fourteenth ACM Symposium on Oper at-
ing Systems Principles, pages 244-255, December 1993.

G. K. Manacher. Production and Stabilization of Real-Time Task Schedi{&d,
14(3):439-465, July 1967.

C. Martel. Preemptive Scheduling with Release Times, Deadlines, and Due Times.
JACM, 29(3), 1982.

J. Martin.Programming Real-Time Computer Systems. Prentice-Hall, 1965.

Massachusetts Institute of Technology. xload man page, 1988. X11 Window Sys-
tem, Release 4, Massachusetts Institute of Technology.

153

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

154

C. W. Mercer and H. Tokuda. An Evaluation of Priority Consistency in Protocol
Architectures. In Proceedings of the IEEE 16th Conference on Local Computer Net-
works, pages 386—398, October 1991.

C. W. Mercer, S. Savage, and H. Tokuda. Processor Capacity Reserves for Multime-
dia Operating Systems. Technical Report CMU-CS-93-157, School of Computer
Science, Carnegie Mellon University, May 1993.

C. W. Mercer, J. Zelenka, and R. Rajkumar. On Predictable Operating System Pro-
tocol Processing. Technical Report CMU-CS-94-165, School of Computer Science,
Carnegie Mellon University, May 1994.

C. W. Mercer, S. Savage, and H. Tokuda. Processor Capacity Reserves: Operating
System Support for Multimedia Applications. Pnoceedings of the IEEE Interna-

tional Conference on Multimedia Computing and Systems (ICMCS), pages 90-99,

May 1994.

C. W. Mercer and R. Rajkumar. An Interactive Interface and RT-Mach Support for
Monitoring and Controlling Resource ManagementPinceedings of the |EEE
Real-Time Technology and Applications Symposium, May 1995.

D. Merusi.Software I mplementation Techniques: VMS UNIX, OS2, and MSDOS.
Digital Press, 1992.

S. J. Mullender, I. M. Leslie, and D. McAuley. Operating-System Support for Dis-
tributed Multimedia. InProceedings of the Summer 1994 USENIX Conference,
pages 209-219, San Francisco, CA, June 1994.

R. R. Muntz and E. G. Coffman, Jr. Preemptive Scheduling of Real-Time Tasks on
Multiprocessor SystemdACM, 17(2):324-338, 1970.

K. Nahrstedt and R. Steinmetz. Resource Management in Networked Multimedia
Systems|IEEE Computer, 28(5):52—63, May 1995.

K. Nahrstedt and J. M Smith. The QOS BrokiifEE Multimedia, 2(1):53-67,
Spring 1995.

T. Nakajima and H. Tokuda. Implementation of Scheduling Policies in Real-Time
Mach. InProceedings of the Second International Workshop on Object Orientation
in Operating Systems, pages 165-169, September 1992.

T. Nakajima, T. Kitayama, H. Arakawa, and H. Tokuda. Integrated Management of
Priority Inversion in Real-Time Mach. IProceedings of the |IEEE Real-Time Sys-
tems Symposium, pages 120-130, December 1993.

T. Nakajima and H. Tezuka. A Continuous Media Application supporting Dynamic
QOS Control on Real-Time Mach. Rroceedings of the Second ACM International
Conference on Multimedia, pages 289-297, October 1994.

C. Nicolaou. An Architecture for Real-Time Multimedia Communication Systems.
|EEE Journal on Selected Areas in Communications, 8(3), April 1990.

[89]

[90]

[91]

[92]

[93]

[94]
[95]
[96]

[97]

[98]

[99]

[100]

[101]
[102]

[103]

[104]

C. A. Nicolaou. A Distributed Architecture for Multimedia Communication Systems.
PhD thesis, University of Cambridge, 1991. Available as University of Cambridge
Computer Laboratory Technical Report No. 220.

J. Niehand M. S. Lam. SMART: A Processor Scheduler for Multimedia Applica-
tions. In Proceedings of the Fifteenth ACM Symposium on Operating Systems Prin-
ciples, page 233, December 1995.

B. D. Noble, M. Price, and M. Satyanarayanan. A Programming Interface for Appli-
cation-Aware Adaptation in Mobile Computing. Computing Systems, 8(4), 1995.

S. Oikawa and H. Tokuda. Efficient Timing Management for User-Level Real-Time
Threads. In Proceedings of the |EEE Real-Time Technology and Applications Sym-
posium, pages 27-32, May 1995.

K. Patel, B. C. Smith, and L. A. Rowe. Performance of a Software MPEG Video
Decoder. InProceedings of the First ACM International Conference on Multimedia,
pages 75-82, August 1993.

K. C. PohimannPrinciples of Digital Audio. McGraw-Hill, 3rd edition, 1995.
Adobe Premiere for Macintosh, 1993.

R. Rajkumar.Task Synchronization in Real-Time Systems. PhD thesis, Carnegie
Mellon University, August 1989.

R. Rajkumar.Synchronization in Real-Time Systems: A Priority Inheritance
Approach. Kluwer Academic Publishers, 1991.

E. P. Rathgeb. Modeling and Performance Comparison of Policing Mechanisms for
ATM Networks.|EEE Journal on Selected Areas in Communications, 9(3):325—
334, April 1991.

J. F. Ready. VRTX: A Real-Time Operating System for Embedded Microprocessor
Applications.|EEE Micro, 6(4):8—-17, August 1986.

R. R. Riesz and E. T. Klemmer. Subjective Evaluation of Delay and Echo Suppres-
sors in Telephone Communicatiofitie Bell System Technical Journal, 42, 1963.

S. RimmerMultimedia Programming for Windows. Windcrest/McGraw-Hill, 1994.

T. RoscoeThe Sructure of a Multi-Service Operating System. PhD thesis, Univer-
sity of Cambridge, April 1995.

M. Rozier et al. Overview of the CHORUS Distributed Operating Systeir.dn
ceedings of the USENIX Workshop on Micro-kernels and Other Kernel Architec-
tures, pages 39-69, April 1992.

T. G. Saponas and R. B. Demuth. The Distributed iRMX Operating System: A Real-
Time Distributed System. In A. K. Agrawala, K. D. Gordon, and P. Hwang, editors,
Mission Critical Operating Systems, chapter 16, pages 208-231. 10S Press, Amster-
dam, 1992.

155

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

156

J. E. Sasinowski and J. K. Strosnider. ARTIFACT: A Platform for Evaluating Real-
Time Window System Designs. In Proceedings of 16th |EEE Real-Time Systems
Symposium, pages 342-352, December 1995.

M. Satyanarayanan, B. Noble, P. Kumar, and M. Price. Application-aware Adapta-
tion for Mobile ComputingOperating Systems Review, 29(1), January 1995.

L. Sha and J. B. Goodenough. Real-Time Scheduling Theory and &tta Com-
puter, 23(4):53-62, April 1990.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An
Approach to Real-Time SynchronizatiolieEE Transactions on Computers,
39(9):1175-1185, September 1990.

L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized Rate-Monotonic Scheduling
Theory: A Framework for Developing Real-Time Systefoceedings of the
IEEE, 82(1):68-82, January 1994.

J. A. Smith. The Multi-Threaded X Servéhe X Resource, 1:73—-89, 1992.

B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic Task Scheduling for Hard Real-
Time SystemsThe Journal of Real-Time Systems, 1(1):27—-60, June 1989.

B. SpruntAperiodic Task Scheduling for Real-Time Systems. PhD thesis, Carnegie
Mellon University, 1990.

J. A. Stankovic and K. Ramamritham. The Design of the Spring Kerrnedobeed-
ings of the IEEE Real-Time Systems Symposium, December 1987.

J. A. Stankovic. Misconceptions About Real-Time Computing: A Serious Problem
for Next-Generation Systemi&€EE Computer, 21(10), October 1988.

R. Steinmetz and K. Nahrsteddultimedia: Computing, Communications, and
Applications. Prentice-Hall, 1995.

R. Steinmetz. Analyzing the Multimedia Operating SystHaEE Multimedia,
2(1):63-84, Spring 1995.

R. Steinmetz. Human Perception of Jitter and Media Synchronizdgtei Journal
on Selected Areasin Communications, 14(1), January 1996.

I. Stoica, H. Abdel-Wahab, and K. Jeffay. A Proportional Share Resource Allocation
for Real-Time, Time-Shared Systems. Technical Report Technical Report 96-18,
Old Dominion University, May 1996.

l. Stoica, H. Abdel-Wahab, and K. Jeffay. On the Duality between Resource Reser-
vation and Proportional Share Resource Allocation. Technical Report Technical
Report 96-19, Old Dominion University, May 1996.

J. K. Strosnider, J. P. Lehoczky, and L. Sha. The Deferrable Server Algorithm for
Enhanced Aperiodic Responsiveness in Hard Real-Time Environm&is.
Transactions on Computers, 44(1):73-91, January 1995.

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]
[130]
[131]

[132]

[133]

[134]

D. S. Taubman. Directionality and Scalability in Image and Video Compression.
PhD thesis, University of Californiaat Berkeley, 1994.

K. W. Tindell, A. Burns, and A. J. Wellings. Mode Changes in Priority Pre-emp-
tively Scheduled Systems. In Proceedings of |EEE Real-Time Systems Symposium,
pages 100-109, December 1992.

H. Tokuda, M. Kotera, and C. W. Mercer. A Real-Time Monitor for a Distributed
Real-Time Operating System. Rnoceedings of ACM SGOPSand SIGPLAN wor k-
shop on parallel and distributed debugging, May 1988.

H. Tokuda and C. W. Mercer. ARTS: A Distributed Real-Time Ke®éM Oper-
ating Systems Review, 23(3):29-53, July 1989.

H. Tokuda, T. Nakajima, and P. Rao. Real-Time Mach: Toward a Predictable Real-
Time System. IrProceedings of USENIX Mach Workshop, pages 73—-82, October
1990.

H. Tokuda, Y. Tobe, S. T.-C. Chou, and J. M. F. Moura. Continuous Media Com-
munication with Dynamic QOS Control Using ARTS with an FDDI Network. In
Proceedings of the SIGCOMM ’92 Symposium on Communications Architectures
and Protocolspages 88-98. ACM, October 1992.

H. Tokuda and T. Kitayama. Dynamic QOS Control based on Real-Time Threads.
In Proceedings of the Fourth International Workshop on Network and Operating
System Support for Digital Audio and Video, pages 113-122, November 1993.

D. Towsley. Providing Quality of Service in Packet Switched NetworkBeifor-
mance Evaluation of Computer and Communication Systems. Joint Tutorial Papers
of Performance 93 and Sigmetrics ;Q3ages 560-586, 1993.

S. Tzou, 1993. Personal Communication.

A. M. van Tilborg and G. M. Koob, editorBoundations of Real-Time Computing:
Formal Specifications and Methods. Kluwer Academic Publishers, 1991.

A. M. van Tilborg and G. M. Koob, editorBoundations of Real-Time Computing:
Scheduling and Resource Management. Kluwer Academic Publishers, 1991.

A. Vogel, B. Kerherve, G. von Bochmann, and J. Gecsei. Distributetirvedia
and QOS: A SurveyEEE Multimedia, 2(2):10-19, Summer 1995.

C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: FlexiblgpBrtional-
Share Resource ManagementPhoceedings of the First USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 1-11, November
1994,

C. A. Waldspurger and W. E. Weihl. Stride Scheduling: Deterministic Proportional-
Share Resource Management. Technical Report Technical Memorandum MIT/LCS/
TM-528, Massachusetts Institute of Technology Laboratory for Computer Science,
June 1995.

157

[135]
[136]
[137]

[138]

[139]

[140]

[141]

158

J. Watkinson. The Art of Digital Audio. Focal Press, 1988.
J. Watkinson. The Art of Digital Video. Boston: Focal Press, 2nd edition, 1994.

L. C. Wolf and R. G. Herrtwich. The System Architecture of the Heidelberg Trans-
port System. ACM Operating Systems Review, 28(2):51-64, April 1994.

C. M. Woodside. Controllability of Computer Performance Tradeoffs Obtained
Using Controlled-Share Queue Schedul&EEE Transaction on Software Engi-
neering, SE-12(10):1041-1048, October 1986.

M. Yuhara, B. N. Bershad, C Maeda, and J. E. B. Moss. Efficient Packet Demulti-

plexing for Multiple Endpoints and Large MessagesPinceedings of the 1994
Winter USENIX Conference, January 1994.

L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A New
Resource ReSerVation ProtocktEE Network, pages 8-18, September 1993.

H. Zhang.Service Disciplines for Packet-Switching Integrated-Services Networks.
PhD thesis, University of California at Berkeley, 1993.

