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Abstract time of application use. Therefore, there is an increasing

We present a QoS management framework that enablegieed for customizable services that can be tailored for the
us to quantitatively measure QoS, and to analytically plan end users’ specific requirements.
and allocate resources. In this model, end users’ quality  In the meantime, new and improved systems such as the
preferences are considered when system resources are apene proposed by the Amaranth project at Carnegie Mellon
portioned across multiple applications such that the net util- University [1] are placing more and more complex demands
ity that accrues to the end-users is maximized. In [23][24], onthe quality of service that are reflected in multiple criteria
we primarily worked with continuous QoS dimensions, and over multiple quality dimensions. These QoS requirements
assumed that the utility gained by improvements along acan be objective in some aspects and subjective in others.
QoS dimension were always representable by concave funcMoreover, because of the manifold and subjective nature of
tions. In this paper, we relax both assumptions. One, we user quality demands, it is very hard to measure whether the
support discrete QoS operating points. Two, we make noprovided quality fulfills the stated demands without guid-
assumptions about the concavity of the utility functions. Us- ance and input from end clients.
ing these as the basis, we tackle the problem of maximizing ope issue i€Q0S Tradeoffsvhere a user of an applica-
system utility by allocating a single finite resource to satisfy ;g might want to emphasize certain aspects of quality, but
the QoS requirements of multiple applications along mul- ot necessarily others. Users might tolerate different levels
tiple QoS dimensions. We present two near-optimal algo- of service, or could be satisfied with different quality com-
rithms to solve this problem. The first yields an allocation pination choices, but the available system resources might
within a known bounded distance from the optimal solution, only be able to accommodate some choices but not others.
and the second yields an allocation whose distance from|, situations where a user is able to identify a number of
the optimal solution can be explicitly controlled by the Q0S yesijrable qualities and rate them, the system should be able
manager. We compare the run-times of these near-optimakg reconcile these different demands to maximize the user’s
algorithms and their solution quality relative to the opti- preference and to make the most effective use of the system.
mal allocation, which in turn is computed using dynamic g jt is important for a system to provide a large variety of
programming. These detailed evaluations provide practical ggryice qualities and taccommodate specific user djga
insight into which of these algorithms can be used online in requirements and delivery as good service as it can from the

real-time systems. users’ perspective.
) An issue related to QoS Tradeoff Resource Tradeoff
1. Introduction In this case, the tradeoff refers to reconciling or balancing

competing resource demands. Resource Tradeoff is often
Quality of Service (QoS) control igceiving widespread  ransparent to the user but can be of great help in accom-
attention in commercial markets as well as computer net-modating user requirements including QoS Tradeoff, espe-
work and real-time multimedia system research. Typi- cjally when the availability of several different resources is
cally, service characteristics in existing multimedia and net- ot balanced. It arises when an application is able to use
worked systems are fixed when systems are built, thereforey, excess of one resource, say CPU power, to lower its
they often do not give users any real influence over the Q0Sgemands on another, say network bandwidth, while main-
they can obtain. On the other hand, multimedia applicationstaining the same level of Qo0S. For example, video confer-
and their users can differ enormously in their requirements encing systems often use compression schemes that are ef-
for service quality and the resources available to them at thefective, but computationally intensive, to trade CPU time
“This research was supported in part by the DARPA under agreementsfOf Network bandwidth. If the bandwidth is congested on
E30602-97-2-0287 and N66001-97-C-8527. some intermediate links (which is often the case), this ben-




efits the system as a whole. In the case of a mobile clientis a utility function along the latency quality dimension of
with limited CPU and memory capacity but sufficient link real-time tasks. Our model can be viewed as extending this
speed with a nearby intermediate powerful server, compu-notion to include quality dimensions other than timeliness.
tationally expensive speech ggmition, silence detection  Another utility model for QoS control is used in [3]. The
and cancellation, and video compression could be carriedauthors propose a mechanism for QoS (re-)negotiation as
out on the nearby server. For proxy servers which acta way to ensure graceful degradation. The authoggsst
as transcoders/transceivers besides caching data, the proxpat a user should be able to express, in his/her service re-
servers can distill data for low bandwidth clients (when both quests, the spectrum of QoS levels the user can accept from
server and client have fast CPU, memory and disk band-the provider, as well as the perceived utility &ceiving
width, but the network link speed in between is limited).  service at each of these levels. But the authors did not ad-
dress the resource tradeoff problem. Also, no specification
1.1. Related Work method and mechanism is provided to facilitate utility data
) ) ) i ) acquisition. Interesting research is being conducted in [4],
, Research on Qu'allt.y. of Service for multimedia applica- where the authors present a framework for the construction
tions has gained significant momentgm over the last few of network-aware applications. The basic idea is to allow
years. Much research has beep being conducted on th%n application to adapt to its network environment, e.g. by
end-system or end-to-end architectures for QoS SUF’porrtrading off the volume (and with it the quality) of the data
[11’,5' 16, 14], and much more work has bgen conductedto be transfered and the time needed for the transfer. Their
on link, network and transport layer ([28], for instance). mechanism coincides with one of our schemes for imple-

Most of this research has been focused on low-level SYS-menting the resource tradeoff £, ¢). The model defined
tem mechanisms. The authors consider parameters such g5 [17] can be considered a genéralization of [4]

period, buffer size, jitter, bandwidth and so on. No doubt
these are important issues and factors for QoS control, bu .
they are hardly tangible for the ultimate end-users who ex-b' Problem Taxonomy and Modeling
perience the resulting QoS. 2.1. Quality Dimensions

Research on adaptive QoS control (e.g. [20]) brings us a . . . . .
step closer to the Qc?S su(gport from a(usger’[s p]e)rspegtive by Consider a video-conferencing system which deals with
providing a mechanism in an application to accommodate real-time audio and video data streams being encrypted and

: : : . : transmitted across potentially unreliable networks. In this

potential dynamic changes in the operating envwonment.comext we conside? the folloywing example quality dimen-
But these mechanisms are still mainly system-oriented in~ i’ . . > .
that a user has limited influence over the quality of the ser- ;5|ons W'tht 'E[het;r cSrrespondlng dimensional space ordered
vice to be delivered or adapted. rom worstto best.

In coping with the shortage of QoS supportfromanend- o Cryptographic Security (encryption key-length)
user point of view, we proposed a basic framework [15, 17,
23] that enables the end users to give guidance on the qual- — 0(off), 56, 64, 128
ities they care about and the tradeoffs they are willing to e Data Delivery Reliability, which could be
make under potential resource constraints. Working from
the user’s perspective and maximizing the user perceived
quality or utility has also been addressed in [13, 3, 4]. In . 2"
[13], a user-centric approach is taken, where a user’s prefer- — packet loss occurrence : in probability
ences are considered for application runtime behavior con- e Video Related Quality
trol and resource allocation planning. Example preferences _ picture format: SQCIF, QCIF, CIF, 4CIF, 16CIF
include statements that a video-phone call should pause a P | h o ’ ' ' '
movie unless it's being recorded and that video should be — color depth(bits): 1, 3, 8, 16, 24, ...
degraded before audio when all desired resources are not black/white, grey scale to high color

— maximum packet loss : in percentage
— expected packet loss : in percentage

available. These are useful hints for high-level QoS control — video timeliness — frame rate(fps): 1,2, ..., 30
and resource planning, but are inadequate for quantitatively low rate animation to high motion picture video
measuring QoS, or analytically planning and allocating re- ¢ Audio Related Quality

sources.

The notion of using utility functions to represent varying — sampling rate(kH;): 8, 1,6' 24, 44 o
satisfaction with QoS changes is certainly not new. Jensen AM, FM, .CD.quallty to higher fidelity audio
et al. [12] and Locke [18] are perhaps among the first to — sample bit(bits): 8, 16, ...
study “value functions” to represent the benefit of differ- ~ 1e choices listed here come from [10] [27]. Other standards, such as
ent completion times of a task. Their value function model MPEG could have been used instead.




— audio timeliness, or end-to-end delay(ms) Each R; is a set of non-negative values representing the

..., 100, 75,50, 25, ... possible allocation choices of thth shared resource. The
set of possible resource vectors, denote®ass given by
The specification above contains ellipses.” to in- R = Ry x --- x R,,. Each shared resource is finite, so we
dicate that more choices could have been listed. Ignoringalso have-™ = (r{® ... 78

extra choices for a moment, the total number of different ~ Similarly, eachQ;; is a finite set of quality choices for
choices (quality points) in this example (a single option in theith task’sjth QoS dimension, and we define the set of
data delivery reliability, encryption on or off, and 30 frame possible quality vectors b; = Qi1 x - -+ X Qjq;-

rates could be chosen) will be Associated with eacll; is antask profile which con-
sists of amapplication profileand auser profile.An Appli-
2x1x5x5x30x4x2x4=48000 cation profile comes from an application designer, while a

_ _ . o user profile provides user-specific quality requirement asso-
With this many quality points it would be completely out of  ciated with each session. For simplicity, we will not distin-

the question to have the user specify the quality on a point-guish the two sources and use task profile from now on.
by-point basis. Therefore a pragmatic scheme is needed to A task profile forZ; consists of:

address the issue. .
e Quality Space —);
Quality Index — a bijective function
fij Qi — {1,2,...,|Qil}
We assume that multiple applications similar to the one that preserves the ordering, i.e. gif is “better than”
described in the previous subsection can co-exist in a sys- g2, thenfii(q1) > fij(qa).
tem. Bearing in mind that discrete choices are available

along each QoS dimension, we classify our problem based o o _
on resources and QoS dimensions as follows: ¢ Application Utilities— a rate of service measure

ui @i — R
It could be defined as a weighted sumgf

2.2. Problem Taxonomy

o Dimension-wise Quality Utility —u;; : Q;; — R

e Single Resource Single QoS Dimension: SRSD

¢ Single Resource Multiple QoS Dimension: SRMD di
¢ Multiple Resource Single QoS Dimension: MRSD uilai) = Zw“““(%)
j=1
e Multiple Resource Multiple QoS Dimension: MRMD We require that:; is non-decreasing and non-negative.

Since SRMD is a superset of SRSD, and MRMD a super- ® Resource Profilea relation betweer andQ;
set of MRSD, SRMD and MRMD can be treated directly. In

this paper, we focus only on SRMD. The reason for address- g
ing SRMD is that we could develop efficient schemes that which describes a list of potential resource allocation
might not be easily achievable for MRMD. The schemes we schemes to achieve each Gtyegpoint q.

have for SRMD readily lead us to a QoS-driven single re-
source allocation when only a single resource is of concern

either it is the only resource under consideration, or it is A : . 7
( y ro, then we will haveq; «£ ¢o. This partial ordering is

relatively more scarce and other resources are abundant required to ensure that utility is non-decreasing with respect
For instance, these schemes can be used for QoS-driven q y 9 P

disk, memory, network bandwidth as well as for processor toresources. In'otherwords, more resources should notlead
scheduling to reduced quality (and thus utility), which is reasonable and

natural.

It is important to note that we can only define a relation
but not a function betweety; and R. For a given value
of ¢, multiple resource allocation schemes could be used to
achieve the same level of quality; likewise, for a given re-
source allocation, one could use the resource(s) to improve
different QoS dimensions, which could yield different qual-
ity results. Furthermore, a user could specify its

Note that bothR and @; have partial orderings which
=; must respect. That is, ify =; ¢1, 72 i g2, andry >

2.3. Problem Formulation

Consider a system with multiple independent applica-
tions and multiple resources. Each application, with its own
guality-of-service requirements, contends with others for fi-
nite system resources. Let the following be given

7,15, ..., T, — tasks (or applications) QoS Constraint
Ri, Ry, ..., Ry, — shared system resources which is the minimum QoS requirement specification
Qi1, Qiz, ..., Qiq, — Q0S dimensions for task; qmin _ (q”}i” qrgin q”])f‘).



When the minimum requirements cannot be satisfied, the3.1. Application Utility and QoS Tradeoff

user of taskl; might choose nqt to.n.Jm' at aI'I. Alter- Application utility functions are conceptually easy to
natively we could let the user implicitly specify thg"" imagine but difficult to construct. As pointed out in Sec-
through utility functions by setting;(¢) = 0 for all ¢ < tion 2.1, it is clearly infeasible to make the user specify

g™ We have yet to complete a user-interface study to de-the utility of every quality choice on a point-by-point ba-
cide whether this approach will compromise the simplicity sjs. There are simply too many choices. Instead, one could
of the user-interface. For now, we will use this QoS Con- make the user specify the utility of selected points and then

straint approach. interpolate in order to obtain the utility of the rest. This
For the overall system, with multiple applications possi- might work well in the one-quality dimension case, but in
bly requiring multiple resources, we have the the multi-dimensional case one would need a dense set of
System Utility selected points and therefore again need too many points.
w: Q1 % -+ x Q, — IR, which could be defined as: While we would like a user to provide the service opti-
mization system with the semantically rich service require-
e A (weighted) sum oAppIicatinon Utilities ment specification so that the optimization module can best

accommodate the user’s request, we also want to ensure that
methods and mechanisms are in place in the system that will
facilitate the delivery of these specifications from the user.
for differential serviceswherew; is non-decreasing, In other words, we want to develop a measure and merit

u(qr, .5 qn) = quzuq:(qqz)

and0 < w; < 1 could be the priorit§of T;, or scheme as well as a reasonably user-friendly interface that
o u=u*, where will pose less of a burden on the user without sacrificing the
. . semantically rich capability of the specification intaé.
wiar, o) = min uifg;) We therefore propose a QoS index model from which the
for “fair” sharing. dimension-wise quality utility functions are defined.

The goal is to assign qualitieg;J and allocate resources 3 o Quality Index
(r;) to tasks or applications such that the system utility
is maximized. Therefore we have the followiRgoblem
Functionformulation

Certain quality dimensions, such as frame rate, have eas-
ily defined utility functions while others, such as picture
format, audio sampling rate and end-to-end delay, are in

maximize u(q1,---,qn) non-numeric, non-uniform, or non-increasing order which
. require a quality to numeric mapping. Therefore the Qual-
subjectto ¢; > ¢Morg; =0, i=1,...,n, ity Index is introduced, which maps qualities to indices in
n (QoS Constraints) order of increasing quality.
Zrij < e, j=1,....m, Let us illustrate the concept of the Quality Index through
i=1 (Resource Constraints) an example. Considering a tagkwith seven QoS dimen-
ri b g ) i=1.....n sions. Due to limited space, let us look at only three selected

) imensions:
(Resource Profiles) QoS dimensions

Picture format: Assume the H263 [10] standard format
3. User Specification Interface Format: SQCIF QCIF CIF 4CIF 16CIF
Quality Index: 1 2 3 4 5
Atlt'he core of our.Q'oS. optimization system Ilgs the QoSTherefore Quality Inde,; = {1,2,3,4,5}.
specification. First, it is important that we provide power- ) ) i i
ful and semantically rich QoS specifications that the sys- Audio sampling rate: Assume audio sampling rates range
tem and the user can use for service optimization. Equally ~ ToMAMto CD quality.
important we need to providewser-friendly interfacehat ~ Sampling rate (kHz): 8 16 24 44
facilitates specification acquisition. QualityIndex: 1 2 3 4
The reason for the emphasis on QoS specification antthus we have);; = {1,2,3,4}.
interface design might not be obvious, but the reader shouldg 4 +_eng delay: Assume that end-to-end delays range

see the point shortly as the quality dimensions of typical from 125 ms to 25ms in steps of 25 ms.
multimedia systems, QoS tradeoff and resource tradeoff is- Delay (ms): 125 100 25

Sues are presented. Quality Index: 1 > 5
’Note that the algorithms or schemes presented in this paper are for tkgince high numbers for end-to-end delay are worse than low
weighted sum where the weights are set tior simplification to present

the algorithms. onesQ;r = {1,2,...,5} maps high numbers to low indices.




3.3. Dimension-wise Utilities 3.5. User Interface Consideration

When many quality dimensions are involved, it is often
very difficult for a user to express quality preferences. Qual-
ity points in multi-dimensional cases do not have a complete
ordering. The individual dimensions, however, do. More-
over, some common properties associated with dimensiona
quality utility are observed including: non-decreasing, often
guasi-continuous and piecewise concave. Figure 1 depict
some typical utility function shapes. We therefore provide
the user with the capability to specify dimension-wise qual-
ity utilities. As a result, the application utility can then be
defined as a weighted sum of dimension-wise utilities. This
creates an interesting issue regarding how weights are as
signed. We currently use the AHP [25] model to cope with
the problem, but a detailed discussion of this issue is beyon
the scope of this paper.

If a user were to choose quality on a scale of 1 to 10
with some pre-determined quality choices preset by the sys-
tem, the user-interface for specifying utility values can be
relatively simple. A more flexible, but also more sophis-
ticated, scheme is to have a set of parameterized utility
gurves available for each diityg dimension, and to have
the user pick the curves and instantiate appropriate param-
eters/coefficients. In our system, the instantiation is car-
ried by letting the user graphically specBgatisfaction Knee
Point parameters For the exponentialetay used in the
previous exampléu;s(q;3) = 1 — e2%2+) the user could
specify the 50% and 95% levels. This is enough to uniquely
ddeterminea andb. For example, a user could specify (5fps,
0.50) and (20fps, 0.95), and the corresponding utility curve
would then be the one shown in Figure 2, with- —0.1535

u, u, u, andb = 0.0744.
1
/ / . o8 )
L S T T % /"1 - exp(-0.1535 fps + 0.0744) ——
b 0.6 -
Figure 1. Typical dimension-wise utility functions. z
o
Given the Quality Index, a dimension-wise utility could 5 04
be defined and hence the application utility. Again, the ex- 5 Ll
ample task profile is presented in the next subsection to
illustrate the possible structure of dimension-wise utility 0 ‘ ‘ ‘ ‘ ‘
functions and application utility functions. 0 > Ramemems 2%
3.4. Example Dimensional & Application Utilities Figure 2. Dimensional utiity.

Continuing with our example task;, assume thdf; is a
remote surveillance system where video is much more im-
portant to the user than audio. Let's further assume that i i . .
that SQCIF, gray-scale, low frame rate is fine for video, and 4.1. Algorithm [_)e8|gn Issues_— Solution Quality vs.
there is no need for encryption. Figure 2 depicts an example Computational Complexity
dimensional utility function fof7;'s frame rate. Therefore
we could have the following minimum quality specification

4. Issues on Algorithm Choice & Methodology

As is shown in [17] the QoS management optimization
. problems are NP-hard. As a consequence, there are no op-
g =(1,1,2,1,1,1,2) timal solution techniques other than a (possibly complete)
enumeration of the solution space. On the other hand, QoS
management calls for on-line solutions as the optimization
(SQCIF, 1 bpp 2 fps, no encryptions kHz, 8 bps 100 ms). module will ideally be at the heart of an admission control
and adaptive QoS management system. Therefore the goal
Since video is more important to the user than audio, anijs to strike the right balance between solution quality and

which corresponds to the following minimum quality

example application utility function fdf; could be: computational complexity.
For more than two decades, many researchers from
ui(q1, .-, q7) = 5(u1:1(q1:1) +- "+u114(q714)) + the fields of mathematics, computer science and opera-
video tions research have been working on the combinatorial
optimization and solving NP-hard problems. Three ap-
1(“7‘5(%) teoot “7‘7(%7)) proaches [2] [19] have been well studied and widely used:
audio

Enumerative methods
where video quality is weighted five times more than audio.  that are guaranteed to produce an optimal solution [7][8];



Approximation schemes
that run in polynomial time [26][9]; and

Heuristic techniques

(under the general heading of local search) that do not be the utility functiory;

have ara priori guarantee in terms of solution quality or

heuristic to allocate resources among these faslet

= () ()
Ti1 Tik;

's discontinuity points in increasing

r-order (therefore increasing-order as well), and we will

running time, but provide a robust approach to obtaining refer to it as the--u-pair list. Denote by the current re-

a high-quality solution to problems of a realistic size in
reasonable time [2].

maining resource capacity after certain resources have been
allocated; dist[:].t, s list[¢].r, slist[i].u the task id, the as-

An important attribute is the incremental and state-reuse Sociated--value andi-value of the correspondingu-pair
property of a scheme, so as to avoid having to completelyist; r[i] andu[i] are the resource allocated and correspond-

redo expensive computations to accommodatelyfmamic
arrival and departure of tasks. Also, we ensure that all algo-
rithms should be formulated so that the search for an opti- 1
mal solution can be terminated at any time while s&ich-
ing a feasible,but sub-optimal and hopefully good, solu-
tion. These two properties are essential for an algorithm to
be used in an online (or near-online) environment.

We have developed a series of schemes that give an ap- .’
proximation, an approximation with a bound, and an ex- -
act solution, each with increased asymptotic computational 8.

OU AW

complexity. 0.
4.2. Resource-Utility Function Composition ﬂ

Due to the multi-dimensional nature of quality of ser- 12.
vices, there is often no complete ordering among quality- 13.

asrmdi(n, C1, ...

ing utility for T; respectively.

,Cn)
for i = 1ton do
C! := convexhull frontier (C;)
rli] :=0
uli] :=0
s list= merge(Cy, . .
7,,(1 = Tmax
u:=0
for j = 1to |slist| do
i:= slist[j].t
B = slist[j].r — r[i]
if (6 <r°) then
r¢i=rc—p
r[i] := slist[j].r

- Ch)

of-service points, even for individual tasks. So some struc- 14,
tural composition is required for those algorithms that call 15,
for mapping from resources to utility. Specifically, &U 16.
(Resource to Utility) function can be constructed éach 17.
task through aask profile 18.
Recall that given a resource allocation to a task, one1g.
could use the resource to improve different QoS dimen- 20,
sions, which could therefore lead to different utility val-
ues. But the most valued QoS point for each resource valug\ote that eachy[i] provides a set of quality choices from
can be picked, as intuitively, we certainly want to assign re- Which T (its user, or session manager) could choose to
sources to those quality points with the highest utility value. make further QoS tradeoffs.
We therefore define a functiap : R — IR, such that Notice that in the implementation, we actually replace
N , , 1 “break” in line 16 with “continue” (i.e., let the loop continue
gi(r) = max{wi(q) | = a} 1) when condition at step 11 does not hold). This means that
and defineh; : R — P(Q;) to retain the quality points  after the optimal condition is violated, the residual capacity
associated with the utility valug (r): (r°) will be greedily filled. The continuation can be thought
hi(r) ={q€ Qi |ui(e) =g(r)Ariq} (2

of as a post-optimization process. The error bound property
Then anR-U graph can be generated for each task, each of I

to be proved below holds for either case.
; 4 . . = max}, |C;|. After the procedurecon-
which would be a step function (perhaps with multiple level |
of steps).

uli] := slist[j].u /* Update alloc ofT; */
else
break
for i = 1ton do
q[i] := hi(r[i]) I* See Equation (2). */
= u + ulf]

return (g[1],...,q[n],u)

vex hull_frontier* (which takes timeD(nL)) a convex hull
frontier with non-increasing slope segmentse(@-wise
. concave) is obtained for each task. The segments are
5. SRMD Algorithms merged at step 5 using a divide-and-conquer approach with

5.1. An Approximation Scheme

3The algorithm is somewhat similar to the one described in [24] but
without the restrictions, such as piece-wise concavity and continuity, being
assumed.

4Overmars & Leeuwen’s [21] algorithm, or simply the quickhull [22]
or Graham-Scan [6] whef; are not pre-sorted.

By constructing the convex hull for each gf(see Equa-
tion (1)) functions we get piece-wise linear relaxation func-
tionsg?, ¢ = 1...n. The gradients 0§ can be used as a



log, n levels, each level hasnL comparisons. Merg-

ing thus takes tim& (nLlogn). Steps 8 through 16 re-
quire O(|s-list]) = O(nL). Steps 17 through 19 take
O(n). The total running time of the algorithm is thus
O(nLlogn) + O(nL) = O(nLlogn).

Denote by; the maximum utility difference between ad-
jacent discontinuity points of’/, i.e., the largest increase
in utility for task T; on the convex hull frontier. Let =
max}_, §;. Denote byUsp the optimal utility andUsmd1
the approximation result obtained by algorithsrmd1.

Theorem 1 Usmmaz is within x of Ugpy, i.€. Ugpt — x <
Usrmdl < Uopt-

Proof Interested readers should see [17].
Although asrmd1lis a polynomial approximation algo-

7. for j =1to|C;| do
8. if (7“7;]' >por hq(ﬁ]) < q;"i”) break
9. ui=wu; +v(i —1,p—rij)

10. if u> u*then

11. u* =

12. =y

13. gogi,p) := qogi — 1,p — ryj+)

concat[h;(r;+)]
14, v(i,p) == u*
15. return v(n, P) andqos(n, P)

The resultv(n, P), the utility accrued wherl00% of the
resource is available, is optimal. LBt= max?_, |C;|. The
time complexity of the algorithm i©)(nLP) or O(nP?),
which is pseudo-polynomial.

One of the positive aspects of this scheme (also true for

rithm with a'describable and poteqtially small error bound the corresponding MRMD scheme described in [17]) is its
from the optimal result, the bound is not controllable. Sec- incremental and state-reuse property in which when a new
tion 5.3 presents another polynomial approximation schemetask arrives, previous results can be directly reused to avoid

with a controllable error bound.
5.2. An Optimal Solution Scheme

Assume that the resources are always allocatetiised
in units of ™&/P for some integerP. If, for example,

the expensive recomputation of the complete new task set.
See [17] for detail discussion. The algorithm, with minor
change, would be suitable to deal with stabilityproblem
when a user prefers (or a policy requires) a relative stable
quality. Note that the computation time of srmd increases as
the granularity of resource allocation increases. For exam-

P = 100 this would mean that allocation is in integer per- ple, if the required resource allocation is in fractional units,
centages. Under this assumption, we can characterize thgay 0.1%, of the available, the® needs to be increased to
structure of the optimal solution and recursively define its 1000. Nevertheless, for fixed values of resource granularity

value as follows:

Denote byv(i, p) the maximum utility achievable when
the firsti tasks are considered with resour€&p/ P avail-
able for allocation, and define

max {g:(p) +v(i—-1,p—p")} (@3)

v(i,p) = yomax

The set of interesting’ values is in fact just all the (start-
ing) discontinuity points ofy; (see Equation (1)). Therefore
v(n, P) will be the maximum utility achievable by allocat-
ing up tor™®*to then tasks, i.e., the best allocation overall.

Based on Equation 3, the following algorittermd can
be constructed through dynamic programming. Let

(G )

denote the utility functiory;’s discontinuity points in in-
creasingu-order, andqog, p) the list of QoS allocation
choices forT} throughT; towardsv(s, p).

srmd(n, P,Cy,...,Cy)
1. forp=0to P do
2 gog0, p) :=nil,v(0,p) :=0
3. fori=1tondo
4, gog4,0) := nil, v(7,0) :=0
5
6

C;=

forp=1to Pdo
u*:=0,j":=0

and a fixed number of quality levels, the computation time
for srmd is polynomial im, the number of tasks. We will
see from our experimental results that srmd is a fairly effi-
cient algorithm for finding the optimal solution for certain
resource allocation granularities.

5.3. A Polynomial Scheme with Controllable Bound

The algorithmasrmd2to be described will give an ap-
proximate quality and resource allocation which is guaran-
teed to have a maximum relative errerwhere0 < ¢ < 1
is a user-specified value. A relative errorzaheans that the
utility Usrmgzfound by the algorithm satisfies

(1 — E)Uopt < Usrmd2 < Uopt

whereUyp is the optimal utility.

Before presentingsrmd2 Jet us define some data struc-
tures and operations to be used in the algorithm. All of util-
ity function g;’s discontinuity points are listed in increasing

u-order as
Uq1 Uik,
Ti1 Y Tik;
0

where () is the first element, and referred to &s.-pair
lists. We also define the following operation fon-pair
lists andr-u-pair elements.

() G () = (0 ()

Ci =



Note, that this operation produces a newi-list that is
sorted non-decreasingly in thevalue. From now on such
sorting will be assumed.

Let A and B be r-u-pair lists. The procedureom-
bine.and-mergewill combine A and B into a singler-u-
pair list.

combine.and-merge( A, B)
1. foreachb, € B

2. A; := A+ b; I* A; is now increasing ini-value. */
3. C:=merge(4y,..., Ap)
4. return C.

wherek = |B|, andA;, 1 < i < k, are intermediate-u-
pair lists.

Steps 1 and 2 takeO(|A||B|), step 3 takes
O(]A||B|log|B|) if we do it using divide-and-conquer
and merge lists in pairs recursively. 8ambineand.merge
is O(|A||B|log|B|). The procedureesourcesievetrims

thoser-u-pair elements of list. <(“;11), e (“;:)>
which do not satisfyr < ™ and those inefficient ele-
ments. By inefficient we mean: for each eleméfr) and
element(ﬁjﬁ) from L, if ;11 < r; (andu; < u,;41 since
elements are sorted) théfi’) is inefficient and should be
removed fromL. Intuitively, we only want to keep those

fori=2to|L| —1do
if (u* <wu;(1—49))then
append(;’) to L/
u* = uy
return L'

NogAM®

Given the above procedures, the bounded approximation
scheme can be constructed as follows. For the sake of sim-
plicity of the complexity analysis to be followed, we intro-
duce some intermediate lists,, L;, andL;.

W Chy€)
L Lo:=((o))
2. d:=¢/n

3. fori=1tondo

4. L;, := combineand_merge(L;_1, C;)
5. L;p, := resourcesieve L;,, r™®)
6

7

8

asrmd2(Cy, ..

L; := representativelist(L;, 0)
let(%) be the element w/ the largest utility valuelip
return ()

T

Withoutresourcesieveandrepresentativdist the length
of the list obtained at step 4 asrmd2could increase expo-
nentially. We will show that with those steps, the length of
of L; will be bounded bylw + 2|, whereuyp

anduyo, are easily determined frodY; and f is a suitable

choices that use less resource while achieving the same 0ggnstant.

higher utility. The procedure takes tim¥|L|).

resourcesieve L, r™®)
1. i:=1
2. whilei < |L|do
3. ifrips > r™*then
4 Remove("+!) from L
i1
5. else
6 while s > 1 and Tit1 < T do
7 Remove("') from L
8. i=i—1
9. i:=14+1
if r; > r™*then
Remove(“;j) from L
return L.

The procedureepresentativdist trims ther-u-pair list
furtherinO(|L|) by removing elements that are too close to
other element in terms afvalue. That is, for each adjacent
(“) and (“;Ill) from L, if (u;01 — us)/uipr < 6, then
(7;;1) can be presented bf}:’) with a discrepancy of at

most§ w.r.t. theu-value of (*'*') , and therefore(!*!+!)
Tit1 Tit1
can be removed from.

representativelist(L, §)

LoL=((%)

2. U i=u

Theorem 2 asrmd2is a polynomial approximation for
SRMD, and its approximation is within a boundzoiv.r.t.
the optimal.

Proof Interested readers could see [17] for detail.

6. Practical Performance Evaluation

In the previous section, we discussed the theoretical be-
havior of the SRMD algorithms. We will now examine
their practical performance. We compare actual computa-
tion cost in terms of running time, and solution quality with
respect to the optimum.

6.1. Comparative Evaluation of asrmdl & srmd

Before we review the performance results on the com-
plete set of ranges mentioned above, we present a simple ex-
ample to illustrate the asrmd1 algorithm. Figure 3 depicts a
set of simplified task profiles after the resource-utility struc-
tural composition is done (see Equation (1) and (2)). In this
case, there are eight tasks, each with twenty different qual-
ity levels specified, and a total available resource of 100.

Plotted in Figure 4 are the approximation data points for
each task after theonvex hull _frontier procedure is called
in asrmdl. Table 1 shows the resource allocation results of
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Figure 4. Convex hull frontier approximation.

both asrmd1 and srmd, and they happen to be exactly theO

same.

We now present a series of experiments conducted to

compare the run-time efficiency and solution quality of
asrmdl relative to the optimal srmd algorithm. All exper-

iments were conducted on a 300 MHz Pentium machine.

running RedHat Linux. The three main variables among
the parameters we study are:

e Number of tasks (nuntasks: ranging from 8 to 1024).
o Number of quality levels (ranging from 8 to 128).
¢ Total available resources®: 102 to 10° units).

Note that the number of quality levels is specified in
terms of utility value, which is less than or equal to the num-
ber of quality points. The point with the highest utility is

task asrmdl srmd
resrc | utility || resrc | utility
1 2 .2689 2 .2689
2 24 .6891 24 .6891
3 18 4842 18 4842
4 1 .2342 1 .2342
5 1 2121 1 2121
6 26 .6738 26 .6738
7 27 .7513 27 .7513
8 1 .2337 1 .2337
total 100 3.547 100 3.547

Table 1. Example resource allocations.

taken when the same resource allocation supports multiple
quality points.

We can think
of Y™ in terms
of the precision
of the resource
allocation  for
the srmd algo-
rithm. When
rmax > 1000,
srmd effectively
gives frac-
tional resource
allocations.

For example,
pmax 10000
corresponds to a
precision of one °
one-hundredth
of resource units.

Juton Qualty (% of optimum)

While asrmdl
and asrmd2
handle non-

integral resource
allocation with-
ut any added
computational
complexity, the N —
computation

time of srmd Figure 5. Runtime and quality:
increases as the asrmdl/srmd(rmax: 800)
granularity of resource allocation increases.

Figures 5 and 6 present the run-times of algorithms
asrmdl and srmd. Each figure contains three graphs. The
first and third graphs plot the run-times (ins) for algo-
rithms asrmd1 and srmd respectively as the number of tasks
in the system is increased. The second graph plots the so-
lution quality of algorithm asrmd1 relative to the optimal
solution obtained by srmd. Figure 5 hd¥* = 800 while
Figure 6 hasg™® = 12800, each tested with various qual-
ity levels — 16, 32, 64, or 128. Each workload in these
experiments was generated 100 times, each with different
task profiles so that we could examine the solution quality
of approximation algorithms in a broad range of scenarios.

Notice how algorithm asrmd1 consistently runs about an
order of magnitude faster than the exact algorithm srmd in
Figures 5 and 6. The difference approaches two orders of
magnitude when the granularity of resource allocation is
finer in Figures 5 and 6. Notice further that the average
solution quality for algorithm asrmdl in the second graph
of each figure stays above 99% for most cases. Since the
plotted values are the average over 100 runs, the worst case
obviously is lower. However, in general, it is easy to con-
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Figure 6. Runtime and quality: asrmd1 /srmd (7™ = 12800).

clude that the approximation algorithm asrmd1 exhibits ex- They show that asrmd1 is mostly within 1% of the optimal

cellent behavior in achieving near-optimal results within a solution while asrmd2, which must always be within 1%, on

small fraction of time needed to find the optimal solution. the average yields a solution very close to the optimal solu-
tion. However, the difference in run-times is much too high

6.2. Comparative Evaluation of asrmd1 & asrmd2 for asrmd2, particularly when the solution quality obtained
by asrmd1 is extremely good.

We conducted a second series of experiments to compare Based on the
the performance of algorithms asrmdl and asrmd2. To save .. - above two sets of
time and space, the number of QoS options per task was ! - experiments, we
held constant at 16 in each experiment, anslas chosen wool conclude that the
to be a constant 0.01 (i.e. the desired quality obtained by = "1 asrmd1  algorithm
asrmd2 must be within 1% of the optimal solution). using the convex

The  run-times hull  frontier ap-
~— == and solution qual- f proach yields the

e ities of the  two biggest benefit for

o approximation ’ the limited compu-

L algorithms  along
with the optimal

// srmd  algorithm
o were measured with

rmax — 104, 10° and
10%. The resulting

tational time that
it consumes. It is
practically useful to
note that in absolute
terms, even with
128 tasks and 128

Solution Qualty (% of optimum)

graphs are plotted quality levels per
- in Figure 7 and 8 task, asrmdl yields
i (due to the limited a near-optimal result
space, only thel0* _ in about 20ms. The
c, and 10 cases are Figure 8. asrmdl / asrmd2 / result is also within
o shown).  The first simd (77 = 10°) 0.5% of the optimal

of two graphs in  solution on the average. Such runtime can be used in

v i & & & - each figure plots practice in real-time systems to make near-optimal online

the run-times of the  QoS-based allocations.
Figure 7. asrmdl / asrmd2 / three algorithms as
srmd (M = 10%). the number of tasks

is increased (to keep 7. Conclusion

run-times feasible, the maximum number of tasks tested

had to be significantly dropped). The second graph plots We have proposed a transluceroS management

the solution qualities. framework [15][23] for QoS optimization in systems that
As discussed earlier, algorithm asrmd2 is very promising must satisfy application needs along multiple dimensions

from a theoretical point of view: it always delivers a guaran- The architecture consists of a semantically rich (in terms of

teed SOIUtiqn qula”ty in pOIynO-mia-I time. Unfortb-mately fts 5The framework is translucent in the sense that some aspects are made

actual running time, as shown in Figure 7 and 8, is up to two visible to the end-users so that they can control the delivered QoS param-

orders of magnitude Qf asrmdl. 'The solution quality graphs eters, while at the same time hiding how the requested delivery is accom-
plot the solution quality of algorithms asrmd1 and asrmd2. plished.




customizability and expressiveness) QoS specification in- [11] K. Jeffay, D. Stone, and F. Smith. Kernel support for live
terface for multi-dimensional QoS provisioning, a quality- digital audio and video. IProceedings of the Second Inter-
of-service index model to help the user make quality trade- national Workshop on Network and Operating System Sup-
off decision, and a unified QoS-based admission controland ___ Portfor Digital Audio and Videppages 1021, Nov. 1991.
resource planning system. Our QoS specification allows [12] E- D- Jensen, C. D. Locke, and H. Tokuda. A Time-Driven

N . Scheduling Model for Real-Time Operating Systems. In
appllca'tlons and users to put values'on the dlffe‘r‘ent Ie'Y(?Is Proceedings of the 6th IEEE Real-Time Systems Symposium
of service that the system can provide. When “value” is

. . . - Dec. 1985.
taken literally, this means that our model is able to facilitate [13] M. Jones, P. Leach, R. Draves, and J. Barrera. Modular
market-efficient resource distribution.

Real-Time Resource Management in the Rialto Operating

We presented and compared one exact and two near- System. InProceedings of theifth Workshop on Hot Top-
optimal algorithms with one yielding a solution within a ics in Operating Systemblay 1995.
bounded distance from the optimal solution and another [14] K. Kawachiya and H. Tokuda. A Negotiation-Based Re-
yielding a solution within a user-specified distance from the source Management Framework for Dynamic QoS Control.
optimal solution. Detailed evaluations of the run-times of 18] 'c"; T_g’:ezq;?gssﬁiae';'ggs“’zﬂi\t/‘e/?:;l'jfgoﬂﬁ’ﬁoﬁzgea %r?ggé,f
the three algorithms and their solution qualities shows that thé RT-Mach Workshop'9Aug. 1997 ' 9
the first near-optimal algorithm performs very close to the [16] ' '

. . h ’ . C. Lee, Y. Katsuhiko, R. Rajkumar, and C. Mercer. Pre-
optimal solution. It also has very practical run-times that it dictable Communication Protocol Processing in Real-Time
can even be used on-line.
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