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Abstract
We present a QoS management framework that enables

us to quantitatively measure QoS, and to analytically plan
and allocate resources. In this model, end users’ quality
preferences are considered when system resources are ap-
portioned across multipleapplicationssuch that the net util-
ity that accrues to the end-users is maximized. In [23][24],
we primarily worked with continuous QoS dimensions, and
assumed that the utility gained by improvements along a
QoS dimension were always representable by concave func-
tions. In this paper, we relax both assumptions. One, we
support discrete QoS operating points. Two, we make no
assumptions about the concavity of the utility functions. Us-
ing these as the basis, we tackle the problem of maximizing
system utility by allocating a single finite resource to satisfy
the QoS requirements of multiple applications along mul-
tiple QoS dimensions. We present two near-optimal algo-
rithms to solve this problem. The first yields an allocation
within a known bounded distance from the optimal solution,
and the second yields an allocation whose distance from
the optimal solution can be explicitly controlled by the QoS
manager. We compare the run-times of these near-optimal
algorithms and their solution quality relative to the opti-
mal allocation, which in turn is computed using dynamic
programming. These detailed evaluations provide practical
insight into which of these algorithms can be used online in
real-time systems.

1. Introduction

Quality of Service (QoS) control is receiving widespread
attention in commercial markets as well as computer net-
work and real-time multimedia system research. Typi-
cally, service characteristics in existing multimedia and net-
worked systems are fixed when systems are built, therefore
they often do not give users any real influence over the QoS
they can obtain. On the other hand, multimedia applications
and their users can differ enormously in their requirements
for service quality and the resources available to them at the

∗This research was supported in part by the DARPA under agreements
E30602-97-2-0287 and N66001-97-C-8527.

time of application use. Therefore, there is an increasing
need for customizable services that can be tailored for the
end users’ specific requirements.

In the meantime, new and improved systems such as the
one proposed by the Amaranth project at Carnegie Mellon
University [1] are placing more and more complex demands
on the quality of service that are reflected in multiple criteria
over multiple quality dimensions. These QoS requirements
can be objective in some aspects and subjective in others.
Moreover, because of the manifold and subjective nature of
user quality demands, it is very hard to measure whether the
provided quality fulfills the stated demands without guid-
ance and input from end clients.

One issue isQoS Tradeoffswhere a user of an applica-
tion might want to emphasize certain aspects of quality, but
not necessarily others. Users might tolerate different levels
of service, or could be satisfied with different quality com-
bination choices, but the available system resources might
only be able to accommodate some choices but not others.
In situations where a user is able to identify a number of
desirable qualities and rate them, the system should be able
to reconcile these different demands to maximize the user’s
preference and to make the most effective use of the system.
So it is important for a system to provide a large variety of
service qualities and toaccommodate specific user quality
requirements and delivery as good service as it can from the
users’ perspective.

An issue related to QoS Tradeoff isResource Tradeoff.
In this case, the tradeoff refers to reconciling or balancing
competing resource demands. Resource Tradeoff is often
transparent to the user but can be of great help in accom-
modating user requirements including QoS Tradeoff, espe-
cially when the availability of several different resources is
not balanced. It arises when an application is able to use
an excess of one resource, say CPU power, to lower its
demands on another, say network bandwidth, while main-
taining the same level of QoS. For example, video confer-
encing systems often use compression schemes that are ef-
fective, but computationally intensive, to trade CPU time
for network bandwidth. If the bandwidth is congested on
some intermediate links (which is often the case), this ben-



efits the system as a whole. In the case of a mobile client
with limited CPU and memory capacity but sufficient link
speed with a nearby intermediate powerful server, compu-
tationally expensive speech recognition, silence detection
and cancellation, and video compression could be carried
out on the nearby server. For proxy servers which act
as transcoders/transceivers besides caching data, the proxy
servers can distill data for low bandwidth clients (when both
server and client have fast CPU, memory and disk band-
width, but the network link speed in between is limited).

1.1. Related Work

Research on Quality of Service for multimedia applica-
tions has gained significant momentum over the last few
years. Much research has been being conducted on the
end-system or end-to-end architectures for QoS support
[11, 5, 16, 14], and much more work has been conducted
on link, network and transport layer ([28], for instance).

Most of this research has been focused on low-level sys-
tem mechanisms. The authors consider parameters such as
period, buffer size, jitter, bandwidth and so on. No doubt
these are important issues and factors for QoS control, but
they are hardly tangible for the ultimate end-users who ex-
perience the resulting QoS.

Research on adaptive QoS control (e.g. [20]) brings us a
step closer to the QoS support from a user’s perspective by
providing a mechanism in an application to accommodate
potential dynamic changes in the operating environment.
But these mechanisms are still mainly system-oriented in
that a user has limited influence over the quality of the ser-
vice to be delivered or adapted.

In coping with the shortage of QoS support from an end-
user point of view, we proposed a basic framework [15, 17,
23] that enables the end users to give guidance on the qual-
ities they care about and the tradeoffs they are willing to
make under potential resource constraints. Working from
the user’s perspective and maximizing the user perceived
quality or utility has also been addressed in [13, 3, 4]. In
[13], a user-centric approach is taken, where a user’s prefer-
ences are considered for application runtime behavior con-
trol and resource allocation planning. Example preferences
include statements that a video-phone call should pause a
movie unless it’s being recorded and that video should be
degraded before audio when all desired resources are not
available. These are useful hints for high-level QoS control
and resource planning, but are inadequate for quantitatively
measuring QoS, or analytically planning and allocating re-
sources.

The notion of using utility functions to represent varying
satisfaction with QoS changes is certainly not new. Jensen
et al. [12] and Locke [18] are perhaps among the first to
study “value functions” to represent the benefit of differ-
ent completion times of a task. Their value function model

is a utility function along the latency quality dimension of
real-time tasks. Our model can be viewed as extending this
notion to include quality dimensions other than timeliness.
Another utility model for QoS control is used in [3]. The
authors propose a mechanism for QoS (re-)negotiation as
a way to ensure graceful degradation. The authors suggest
that a user should be able to express, in his/her service re-
quests, the spectrum of QoS levels the user can accept from
the provider, as well as the perceived utility of receiving
service at each of these levels. But the authors did not ad-
dress the resource tradeoff problem. Also, no specification
method and mechanism is provided to facilitate utility data
acquisition. Interesting research is being conducted in [4],
where the authors present a framework for the construction
of network-aware applications. The basic idea is to allow
an application to adapt to its network environment, e.g. by
trading off the volume (and with it the quality) of the data
to be transfered and the time needed for the transfer. Their
mechanism coincides with one of our schemes for imple-
menting the resource tradeoff (r |=i q). The model defined
in [17] can be considered a generalization of [4].

2. Problem Taxonomy and Modeling

2.1. Quality Dimensions

Consider a video-conferencing system which deals with
real-time audio and video data streams being encrypted and
transmitted across potentially unreliable networks. In this
context, we consider the following example quality dimen-
sions with their corresponding dimensional space ordered
from worst to best:

• Cryptographic Security (encryption key-length)

– 0(off), 56, 64, 128

• Data Delivery Reliability, which could be

– maximum packet loss : in percentage
– expected packet loss : in percentage
– packet loss occurrence : in probability

• Video Related Quality

– picture format1: SQCIF, QCIF, CIF, 4CIF, 16CIF
– color depth(bits): 1, 3, 8, 16, 24, . . .

black/white, grey scale to high color
– video timeliness — frame rate(fps): 1, 2, . . . , 30

low rate animation to high motion picture video

• Audio Related Quality

– sampling rate(kHz): 8, 16, 24, 44, . . .
AM, FM, CD quality to higher fidelity audio

– sample bit(bits): 8, 16, . . .

1The choices listed here come from [10] [27]. Other standards, such as
MPEG could have been used instead.



– audio timeliness, or end-to-end delay(ms)
. . . , 100, 75, 50, 25, . . .

The specification above contains ellipses “. . . ” to in-
dicate that more choices could have been listed. Ignoring
extra choices for a moment, the total number of different
choices (quality points) in this example (a single option in
data delivery reliability, encryption on or off, and 30 frame
rates could be chosen) will be

2× 1× 5× 5× 30× 4× 2× 4 = 48000

With this many quality points it would be completely out of
the question to have the user specify the quality on a point-
by-point basis. Therefore a pragmatic scheme is needed to
address the issue.

2.2. Problem Taxonomy

We assume that multiple applications similar to the one
described in the previous subsection can co-exist in a sys-
tem. Bearing in mind that discrete choices are available
along each QoS dimension, we classify our problem based
on resources and QoS dimensions as follows:

• Single Resource Single QoS Dimension: SRSD

• Single Resource Multiple QoS Dimension: SRMD

• Multiple Resource Single QoS Dimension: MRSD

• Multiple Resource Multiple QoS Dimension: MRMD

Since SRMD is a superset of SRSD, and MRMD a super-
set of MRSD, SRMD and MRMD can be treated directly. In
this paper, we focus only on SRMD. The reason for address-
ing SRMD is that we could develop efficient schemes that
might not be easily achievable for MRMD. The schemes we
have for SRMD readily lead us to a QoS-driven single re-
source allocation when only a single resource is of concern
(either it is the only resource under consideration, or it is
relatively more scarce and other resources are abundant).
For instance, these schemes can be used for QoS-driven
disk, memory, network bandwidth as well as for processor
scheduling.

2.3. Problem Formulation

Consider a system with multiple independent applica-
tions and multiple resources. Each application, with its own
quality-of-service requirements, contends with others for fi-
nite system resources. Let the following be given

T1, T2, . . . ,Tn — tasks (or applications)
R1,R2, . . . ,Rm — shared system resources
Qi1,Qi2, . . . ,Qidi — QoS dimensions for taskTi

EachRi is a set of non-negative values representing the
possible allocation choices of theith shared resource. The
set of possible resource vectors, denoted asR, is given by
R = R1 × · · · ×Rm. Each shared resource is finite, so we
also havermax = (rmax

1 , . . . , rmax
m ).

Similarly, eachQij is a finite set of quality choices for
the ith task’sjth QoS dimension, and we define the set of
possible quality vectors byQi = Qi1 × · · · ×Qidi .

Associated with eachTi is an task profile, which con-
sists of anapplication profileand auser profile.An Appli-
cation profile comes from an application designer, while a
user profile provides user-specific quality requirement asso-
ciated with each session. For simplicity, we will not distin-
guish the two sources and use task profile from now on.

A task profile forTi consists of:

• Quality Space —Qi

• Quality Index — a bijective function

fij : Qij → {1, 2, . . ., |Qij|}
that preserves the ordering, i.e., ifq1 is “better than”
q2, thenfij(q1) > fij(q2).

• Dimension-wise Quality Utility —uij : Qij → IR

• Application Utilities— a rate of service measure

ui : Qi → IR
It could be defined as a weighted sum ofuij

ui(qi) =
di∑
j=1

wijuij(qij)

We require thatui is non-decreasing and non-negative.

• Resource Profile: a relation betweenR andQi

r |=i q

which describes a list of potential resource allocation
schemes to achieve each quality point q.

Note that bothR andQi have partial orderings which
|=i must respect. That is, ifr1 |=i q1, r2 |=i q2, andr1 >
r2, then we will haveq1 6< q2. This partial ordering is
required to ensure that utility is non-decreasing with respect
to resources. In other words, more resources should not lead
to reduced quality (and thus utility),which is reasonable and
natural.

It is important to note that we can only define a relation
but not a function betweenQi andR. For a given value
of q, multiple resource allocation schemes could be used to
achieve the same level of quality; likewise, for a given re-
source allocation, one could use the resource(s) to improve
different QoS dimensions, which could yield different qual-
ity results. Furthermore, a user could specify its

QoS Constraint
which is the minimum QoS requirement specification

qmin
i = (qmin

i1 , qmin
i2 , . . . , q

min
idi ).



When the minimum requirements cannot be satisfied, the
user of taskTi might choose not to runTi at all. Alter-
natively we could let the user implicitly specify theqmin

i

through utility functions by settingui(q) = 0 for all q <
qmin
i . We have yet to complete a user-interface study to de-

cide whether this approach will compromise the simplicity
of the user-interface. For now, we will use this QoS Con-
straint approach.

For the overall system, with multiple applications possi-
bly requiring multiple resources, we have the

System Utility
u : Q1 × · · · ×Qn → IR, which could be defined as:

• A (weighted) sum ofApplication Utilities

u(q1, . . . , qn) =
n∑
i=1

wiui(qi)

for differential services,whereui is non-decreasing,
and0 ≤ wi ≤ 1 could be the priority2 of Ti, or

• u = u∗, where

u∗(q1, . . . , qn) = min
i=1...n

ui(qi)

for “fair” sharing.

The goal is to assign qualities (qi) and allocate resources
(ri) to tasks or applications such that the system utilityu
is maximized. Therefore we have the followingProblem
Functionformulation

maximize u(q1, . . . , qn)

subject to qi ≥ qmin
i or qi = 0 , i = 1, . . . , n,

(QoS Constraints)n∑
i=1

rij ≤ rmax
j , j = 1, . . . , m,

(Resource Constraints)

ri |=i qi , i = 1, . . . , n.
(Resource Profiles)

3. User Specification Interface

At the core of our QoS optimization system lies the QoS
specification. First, it is important that we provide power-
ful and semantically rich QoS specifications that the sys-
tem and the user can use for service optimization. Equally
important we need to provide auser-friendly interfacethat
facilitates specification acquisition.

The reason for the emphasis on QoS specification and
interface design might not be obvious, but the reader should
see the point shortly as the quality dimensions of typical
multimedia systems, QoS tradeoff and resource tradeoff is-
sues are presented.

2Note that the algorithms or schemes presented in this paper are for the
weighted sum where the weights are set to1 for simplification to present
the algorithms.

3.1. Application Utility and QoS Tradeoff
Application utility functions are conceptually easy to

imagine but difficult to construct. As pointed out in Sec-
tion 2.1, it is clearly infeasible to make the user specify
the utility of every quality choice on a point-by-point ba-
sis. There are simply too many choices. Instead, one could
make the user specify the utility of selected points and then
interpolate in order to obtain the utility of the rest. This
might work well in the one-quality dimension case, but in
the multi-dimensional case one would need a dense set of
selected points and therefore again need too many points.

While we would like a user to provide the service opti-
mization system with the semantically rich service require-
ment specification so that the optimization module can best
accommodate the user’s request, we also want to ensure that
methods and mechanisms are in place in the system that will
facilitate the delivery of these specifications from the user.
In other words, we want to develop a measure and merit
scheme as well as a reasonably user-friendly interface that
will pose less of a burden on the user without sacrificing the
semantically rich capability of the specification interface.
We therefore propose a QoS index model from which the
dimension-wise quality utility functions are defined.

3.2. Quality Index
Certain quality dimensions, such as frame rate, have eas-

ily defined utility functions while others, such as picture
format, audio sampling rate and end-to-end delay, are in
non-numeric, non-uniform, or non-increasing order which
require a quality to numeric mapping. Therefore the Qual-
ity Index is introduced, which maps qualities to indices in
order of increasing quality.

Let us illustrate the concept of the Quality Index through
an example. Considering a taskTi with seven QoS dimen-
sions. Due to limited space, let us look at only three selected
QoS dimensions:

Picture format: Assume the H263 [10] standard format

Format: SQCIF QCIF CIF 4CIF 16CIF
Quality Index: 1 2 3 4 5

Therefore Quality IndexQi1 = {1, 2, 3, 4, 5}.
Audio sampling rate: Assume audio sampling rates range

from AM to CD quality.

Sampling rate (kHz): 8 16 24 44
Quality Index: 1 2 3 4

Thus we haveQi5 = {1, 2, 3, 4}.
End-to-end delay: Assume that end-to-end delays range

from 125 ms to 25 ms in steps of 25 ms.

Delay (ms): 125 100 . . . 25
Quality Index: 1 2 . . . 5

Since high numbers for end-to-end delay are worse than low
ones,Qi7 = {1, 2, . . . , 5}maps high numbers to low indices.



3.3. Dimension-wise Utilities

When many quality dimensions are involved, it is often
very difficult for a user to express quality preferences. Qual-
ity points in multi-dimensionalcases do not have a complete
ordering. The individual dimensions, however, do. More-
over, some common properties associated with dimensional
quality utilityare observed including: non-decreasing, often
quasi-continuous and piecewise concave. Figure 1 depicts
some typical utility function shapes. We therefore provide
the user with the capability to specify dimension-wise qual-
ity utilities. As a result, the application utility can then be
defined as a weighted sum of dimension-wise utilities. This
creates an interesting issue regarding how weights are as-
signed. We currently use the AHP [25] model to cope with
the problem, but a detailed discussion of this issue is beyond
the scope of this paper.

min max

iju ijuiju

ijq ijqijq

Figure 1. Typical dimension-wise utility functions.

Given the Quality Index, a dimension-wise utility could
be defined and hence the application utility. Again, the ex-
ample task profile is presented in the next subsection to
illustrate the possible structure of dimension-wise utility
functions and application utility functions.

3.4. Example Dimensional & Application Utilities

Continuing with our example taskTi, assume thatTi is a
remote surveillance system where video is much more im-
portant to the user than audio. Let’s further assume that
that SQCIF, gray-scale, low frame rate is fine for video, and
there is no need for encryption. Figure 2 depicts an example
dimensional utility function forTi’s frame rate. Therefore
we could have the following minimum quality specification

qmin
i = (1, 1, 2, 1, 1, 1, 2)

which corresponds to the following minimum quality

(SQCIF, 1 bpp, 2 fps, no encryption, 8 kHz, 8 bps, 100 ms).

Since video is more important to the user than audio, an
example application utility function forTi could be:

ui(q1, . . . , q7) = 5
(
ui1(qi1) + · · ·+ ui4(qi4)︸ ︷︷ ︸

video

)
+

1
(
ui5(qi5) + · · ·+ ui7(qi7)︸ ︷︷ ︸

audio

)
where video quality is weighted five times more than audio.

3.5. User Interface Consideration

If a user were to choose quality on a scale of 1 to 10
with some pre-determined quality choices preset by the sys-
tem, the user-interface for specifying utility values can be
relatively simple. A more flexible, but also more sophis-
ticated, scheme is to have a set of parameterized utility
curves available for each quality dimension, and to have
the user pick the curves and instantiate appropriate param-
eters/coefficients. In our system, the instantiation is car-
ried by letting the user graphically specifySatisfactionKnee
Point parameters. For the exponential-decay used in the
previous example(ui3(qi3) = 1 − eaqi3+b), the user could
specify the 50% and 95% levels. This is enough to uniquely
determinea andb. For example, a user could specify (5fps,
0.50) and (20fps, 0.95), and the corresponding utility curve
would then be the one shown in Figure 2, witha = −0.1535
andb = 0.0744.
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Figure 2. Dimensional utility.

4. Issues on Algorithm Choice & Methodology

4.1. Algorithm Design Issues — Solution Quality vs.
Computational Complexity

As is shown in [17] the QoS management optimization
problems are NP-hard. As a consequence, there are no op-
timal solution techniques other than a (possibly complete)
enumeration of the solution space. On the other hand, QoS
management calls for on-line solutions as the optimization
module will ideally be at the heart of an admission control
and adaptive QoS management system. Therefore the goal
is to strike the right balance between solution quality and
computational complexity.

For more than two decades, many researchers from
the fields of mathematics, computer science and opera-
tions research have been working on the combinatorial
optimization and solving NP-hard problems. Three ap-
proaches [2] [19] have been well studied and widely used:

Enumerative methods:
that are guaranteed to produce an optimal solution [7][8];



Approximation schemes:
that run in polynomial time [26][9]; and

Heuristic techniques:
(under the general heading of local search) that do not
have ana priori guarantee in terms of solution quality or
running time, but provide a robust approach to obtaining
a high-quality solution to problems of a realistic size in
reasonable time [2].

An important attribute is the incremental and state-reuse
property of a scheme, so as to avoid having to completely
redo expensive computations to accommodate thedynamic
arrival and departure of tasks. Also, we ensure that all algo-
rithms should be formulated so that the search for an opti-
mal solution can be terminated at any time while still reach-
ing a feasible,but sub-optimal and hopefully good, solu-
tion. These two properties are essential for an algorithm to
be used in an online (or near-online) environment.

We have developed a series of schemes that give an ap-
proximation, an approximation with a bound, and an ex-
act solution, each with increased asymptotic computational
complexity.

4.2. Resource-Utility Function Composition

Due to the multi-dimensional nature of quality of ser-
vices, there is often no complete ordering among quality-
of-service points, even for individual tasks. So some struc-
tural composition is required for those algorithms that call
for mapping from resources to utility. Specifically, anR-U
(Resource to Utility) function can be constructed foreach
task through atask profile.

Recall that given a resource allocation to a task, one
could use the resource to improve different QoS dimen-
sions, which could therefore lead to different utility val-
ues. But the most valued QoS point for each resource value
can be picked, as intuitively, we certainly want to assign re-
sources to those quality points with the highest utility value.

We therefore define a functiongi : R→ IR, such that

gi(r) = max{ ui(q) | r |=i q } (1)

and definehi : R → P(Qi) to retain the quality points
associated with the utility valuegi(r):

hi(r) = { q ∈ Qi | ui(q) = gi(r) ∧ r |=i q } (2)

Then anR-U graph can be generated for each task, each of
which would be a step function (perhaps with multiple level
of steps).

5. SRMD Algorithms

5.1. An Approximation Scheme

By constructing the convex hull for each ofgi (see Equa-
tion (1)) functions we get piece-wise linear relaxation func-
tionsg◦i , i = 1 . . .n. The gradients ofg◦i can be used as a

heuristic to allocate resources among these tasks3. Let

Ci =
〈(

ui1
ri1

)
, . . . ,

(
uiki
riki

)〉
be the utility functiongi’s discontinuity points in increasing
r-order (therefore increasingu-order as well), and we will
refer to it as ther-u-pair list. Denote byrc the current re-
maining resource capacity after certain resources have been
allocated; slist[i].t, s list[i].r, s list[i].u the task id, the as-
sociatedr-value andu-value of the correspondingr-u-pair
list; r[i] andu[i] are the resource allocated and correspond-
ing utility for Ti respectively.

asrmd1(n, C1, . . . , Cn)
1. for i = 1 to n do
2. C ′i := convex hull frontier (Ci)
3. r[i] := 0
4. u[i] := 0
5. s list= merge(C ′1, . . . , C ′n)
6. rc := rmax

7. u := 0
8. for j = 1 to |s list| do
9. i := s list[j].t

10. β = s list[j].r− r[i]
11. if (β ≤ rc) then
12. rc := rc − β
13. r[i] := s list[j].r
14. u[i] := s list[j].u /* Update alloc ofTi */
15. else
16. break
17. for i = 1 to n do
18. q[i] := hi(r[i]) /* See Equation (2). */
19. u := u+ u[i]
20. return (q[1], . . . , q[n], u)

Note that eachq[i] provides a set of quality choices from
which Ti (its user, or session manager) could choose to
make further QoS tradeoffs.

Notice that in the implementation, we actually replace
“break” in line 16 with “continue” (i.e., let the loop continue
when condition at step 11 does not hold). This means that
after the optimal condition is violated, the residual capacity
(rc) will be greedily filled. The continuation can be thought
of as a post-optimization process. The error bound property
to be proved below holds for either case.

Let L = maxni=1 |Ci|. After the procedurecon-
vex hull frontier4 (which takes timeO(nL)) a convex hull
frontier with non-increasing slope segments (piece-wise
concave) is obtained for each task. The segments are
merged at step 5 using a divide-and-conquer approach with

3The algorithm is somewhat similar to the one described in [24] but
without the restrictions, such as piece-wise concavity and continuity, being
assumed.

4Overmars & Leeuwen’s [21] algorithm, or simply the quickhull [22]
or Graham-Scan [6] whenCi are not pre-sorted.



log2 n levels, each level hasnL comparisons. Merg-
ing thus takes timeO(nL logn). Steps 8 through 16 re-
quire O(|s list|) = O(nL). Steps 17 through 19 take
O(n). The total running time of the algorithm is thus
O(nL logn) +O(nL) = O(nL logn).

Denote byδi the maximum utility difference between ad-
jacent discontinuity points ofC ′i, i.e., the largest increase
in utility for task Ti on the convex hull frontier. Letχ =
maxni=1 δi. Denote byUopt the optimal utility andUsrmd1

the approximation result obtained by algorithmasrmd1.

Theorem 1 Usrmd1 is within χ of Uopt, i.e. Uopt − χ <
Usrmd1≤ Uopt.

Proof Interested readers should see [17].
Although asrmd1is a polynomial approximation algo-

rithm with a describable and potentially small error bound
from the optimal result, the bound is not controllable. Sec-
tion 5.3 presents another polynomial approximation scheme
with a controllable error bound.

5.2. An Optimal Solution Scheme

Assume that the resources are always allocatedandused
in units of rmax/P for some integerP . If, for example,
P = 100 this would mean that allocation is in integer per-
centages. Under this assumption, we can characterize the
structure of the optimal solution and recursively define its
value as follows:

Denote byv(i, p) the maximum utility achievable when
the firsti tasks are considered with resourcermaxp/P avail-
able for allocation, and define

v(i, p) = max
p′∈{0,...,p}

{gi(p′) + v(i− 1, p− p′)} (3)

The set of interestingp′ values is in fact just all the (start-
ing) discontinuity points ofgi (see Equation (1)). Therefore
v(n, P ) will be the maximum utility achievable by allocat-
ing up tormax to then tasks, i.e., the best allocation overall.

Based on Equation 3, the following algorithmsrmdcan
be constructed through dynamic programming. Let

Ci =
〈(

ui1
ri1

)
, . . . ,

(
uiki
riki

)〉
denote the utility functiongi’s discontinuity points in in-
creasingu-order, andqos(i, p) the list of QoS allocation
choices forT1 throughTi towardsv(i, p).

srmd(n, P, C1, . . . , Cn)
1. for p = 0 to P do
2. qos(0, p) := nil, v(0, p) := 0
3. for i = 1 to n do
4. qos(i, 0) := nil, v(i, 0) := 0
5. for p = 1 to P do
6. u∗ := 0, j∗ := 0

7. for j = 1 to |Ci| do
8. if (rij > p or hi(rij) < qmin

i ) break
9. u := uij + v(i− 1, p− rij)

10. if u > u∗ then
11. u∗ := u
12. j∗ := j
13. qos(i, p) := qos(i− 1, p− rij∗)

concat[hi(rij∗)]
14. v(i, p) := u∗

15. return v(n, P ) andqos(n, P )

The resultv(n, P ), the utility accrued when100% of the
resource is available, is optimal. LetL = maxni=1 |Ci|. The
time complexity of the algorithm isO(nLP ) or O(nP 2),
which is pseudo-polynomial.

One of the positive aspects of this scheme (also true for
the corresponding MRMD scheme described in [17]) is its
incremental and state-reuse property in which when a new
task arrives, previous results can be directly reused to avoid
the expensive recomputation of the complete new task set.
See [17] for detail discussion. The algorithm, with minor
change, would be suitable to deal with thestabilityproblem
when a user prefers (or a policy requires) a relative stable
quality. Note that the computation time of srmd increases as
the granularity of resource allocation increases. For exam-
ple, if the required resource allocation is in fractional units,
say 0.1%, of the available, thenrmaxneeds to be increased to
1000. Nevertheless, for fixed values of resource granularity
and a fixed number of quality levels, the computation time
for srmd is polynomial inn, the number of tasks. We will
see from our experimental results that srmd is a fairly effi-
cient algorithm for finding the optimal solution for certain
resource allocation granularities.

5.3. A Polynomial Scheme with Controllable Bound
The algorithmasrmd2to be described will give an ap-

proximate quality and resource allocation which is guaran-
teed to have a maximum relative error,ε, where0 < ε < 1
is a user-specified value. A relative error ofεmeans that the
utility Usrmd2found by the algorithm satisfies

(1− ε)Uopt≤ Usrmd2≤ Uopt

whereUopt is the optimal utility.
Before presentingasrmd2,let us define some data struc-

tures and operations to be used in the algorithm. All of util-
ity functiongi’s discontinuity points are listed in increasing
u-order as

Ci =
〈(

ui1
ri1

)
, . . . ,

(
uiki
riki

)〉
where

(
0
0

)
is the first element, and referred to asr-u-pair

lists. We also define the following operation forr-u-pair
lists andr-u-pair elements.〈(

u1

r1

)
, . . . ,

(
uk
rk

)〉
+
(
u

r

)
=
〈(

u1 + u

r1 + r

)
, . . . ,

(
uk + u

rk + r

)〉



Note, that this operation produces a newr-u-list that is
sorted non-decreasingly in theu-value. From now on such
sorting will be assumed.

Let A andB be r-u-pair lists. The procedurecom-
bine and mergewill combineA andB into a singler-u-
pair list.

combine and merge(A,B)
1. foreach bi ∈ B
2. Ai := A+ bi /* Ai is now increasing inu-value. */
3. C := merge(A1, . . . , Ak)
4. return C.

wherek = |B|, andAi, 1 ≤ i ≤ k, are intermediater-u-
pair lists.

Steps 1 and 2 takeO(|A| |B|), step 3 takes
O(|A| |B| log |B|) if we do it using divide-and-conquer
and merge lists in pairs recursively. Socombineand merge
is O(|A| |B| log |B|). The procedureresourcesievetrims

thoser-u-pair elements of listL =
〈(

ui1
ri1

)
, . . . ,

(
uin
rin

)〉
which do not satisfyr < rmax; and those inefficient ele-
ments. By inefficient we mean: for each element

(
ui
ri

)
and

element
(
ui+1
ri+1

)
from L, if ri+1 ≤ ri (andui ≤ ui+1 since

elements are sorted) then
(
ui
ri

)
is inefficient and should be

removed fromL. Intuitively, we only want to keep those
choices that use less resource while achieving the same or
higher utility. The procedure takes timeO(|L|).

resource sieve(L, rmax)
1. i := 1
2. while i < |L| do
3. if ri+1 > rmax then
4. Remove

(
ui+1
ri+1

)
fromL

5. else
6. while i ≥ 1 and ri+1 ≤ ri do
7. Remove

(
ui
ri

)
fromL

8. i := i− 1
9. i := i+ 1

10. if ri > rmax then
11. Remove

(
ui
ri

)
fromL

12. return L.

The procedurerepresentativelist trims ther-u-pair list
further inO(|L|) by removing elements that are too close to
other element in terms ofu-value. That is, for each adjacent(
ui
ri

)
and

(
ui+1
ri+1

)
from L, if (ui+1 − ui)/ui+1 ≤ δ, then(

ui+1
ri+1

)
can be presented by

(
ui
ri

)
with a discrepancy of at

most δ w.r.t. theu-value of
(
ui+1
ri+1

)
, and therefore

(
ui+1
ri+1

)
can be removed fromL.

representative list(L, δ)
1. L′ :=

〈(
u1
r1

)〉
2. u∗ := u1

3. for i = 2 to |L| − 1 do
4. if (u∗ < ui(1− δ)) then
5. append

(
ui
ri

)
toL′

6. u∗ := ui
7. return L′

Given the above procedures, the bounded approximation
scheme can be constructed as follows. For the sake of sim-
plicity of the complexity analysis to be followed, we intro-
duce some intermediate listsLia, Lib andLi.

asrmd2(C1, ..., Cn, ε)
1. L0 :=

〈(
0
0

)〉
2. δ := ε/n
3. for i = 1 to n do
4. Lia := combine and merge(Li−1, Ci)
5. Lib := resource sieve(Lia, rmax)
6. Li := representative list(Lib, δ)
7. let

(
u
r

)
be the element w/ the largest utility value inLn

8. return
(
u
r

)
Withoutresourcesieveandrepresentativelist the length

of the list obtained at step 4 inasrmd2could increase expo-
nentially. We will show that with those steps, the length of

of Li will be bounded by
⌊
n ln(uup/ulow)

ε + 2
⌋
, whereuup

andulow are easily determined fromCi andf is a suitable
constant.

Theorem 2 asrmd2 is a polynomial approximation for
SRMD, and its approximation is within a bound ofε w.r.t.
the optimal.

Proof Interested readers could see [17] for detail.

6. Practical Performance Evaluation

In the previous section, we discussed the theoretical be-
havior of the SRMD algorithms. We will now examine
their practical performance. We compare actual computa-
tion cost in terms of running time, and solution quality with
respect to the optimum.

6.1. Comparative Evaluation of asrmd1 & srmd

Before we review the performance results on the com-
plete set of ranges mentioned above, we present a simple ex-
ample to illustrate the asrmd1 algorithm. Figure 3 depicts a
set of simplified task profiles after the resource-utility struc-
tural composition is done (see Equation (1) and (2)). In this
case, there are eight tasks, each with twenty different qual-
ity levels specified, and a total available resource of 100.

Plotted in Figure 4 are the approximation data points for
each task after theconvex hull frontier procedure is called
in asrmd1. Table 1 shows the resource allocation results of
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Figure 3. Simplified task profiles.
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Figure 4. Convex hull frontier approximation.

both asrmd1 and srmd, and they happen to be exactly the
same.

We now present a series of experiments conducted to
compare the run-time efficiency and solution quality of
asrmd1 relative to the optimal srmd algorithm. All exper-
iments were conducted on a 300 MHz Pentium machine
running RedHat Linux. The three main variables among
the parameters we study are:

• Number of tasks (numtasks: ranging from 8 to 1024).

• Number of quality levels (ranging from 8 to 128).

• Total available resources (rmax: 102 to 106 units).

Note that the number of quality levels is specified in
terms of utility value, which is less than or equal to the num-
ber of quality points. The point with the highest utility is

task asrmd1 srmd
resrc utility resrc utility

1 2 .2689 2 .2689
2 24 .6891 24 .6891
3 18 .4842 18 .4842
4 1 .2342 1 .2342
5 1 .2121 1 .2121
6 26 .6738 26 .6738
7 27 .7513 27 .7513
8 1 .2337 1 .2337

total 100 3.547 100 3.547

Table 1. Example resource allocations.

taken when the same resource allocation supports multiple
quality points.

We can think
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Figure 5. Runtime and quality:
asrmd1 / srmd ( rmax = 800).

of rmax in terms
of the precision
of the resource
allocation for
the srmd algo-
rithm. When
rmax ≥ 1000,
srmd effectively
gives frac-
tional resource
allocations.
For example,
rmax = 10000
corresponds to a
precision of one
one-hundredth
of resource units.
While asrmd1
and asrmd2
handle non-
integral resource
allocation with-
out any added
computational
complexity, the
computation
time of srmd
increases as the
granularity of resource allocation increases.

Figures 5 and 6 present the run-times of algorithms
asrmd1 and srmd. Each figure contains three graphs. The
first and third graphs plot the run-times (inms) for algo-
rithms asrmd1 and srmd respectively as the number of tasks
in the system is increased. The second graph plots the so-
lution quality of algorithm asrmd1 relative to the optimal
solution obtained by srmd. Figure 5 hasrmax = 800 while
Figure 6 hasrmax = 12800, each tested with various qual-
ity levels — 16, 32, 64, or 128. Each workload in these
experiments was generated 100 times, each with different
task profiles so that we could examine the solution quality
of approximation algorithms in a broad range of scenarios.

Notice how algorithm asrmd1 consistently runs about an
order of magnitude faster than the exact algorithm srmd in
Figures 5 and 6. The difference approaches two orders of
magnitude when the granularity of resource allocation is
finer in Figures 5 and 6. Notice further that the average
solution quality for algorithm asrmd1 in the second graph
of each figure stays above 99% for most cases. Since the
plotted values are the average over 100 runs, the worst case
obviously is lower. However, in general, it is easy to con-
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Figure 6. Runtime and quality: asrmd1 / srmd ( rmax = 12800).

clude that the approximation algorithm asrmd1 exhibits ex-
cellent behavior in achieving near-optimal results within a
small fraction of time needed to find the optimal solution.

6.2. Comparative Evaluation of asrmd1 & asrmd2

We conducted a second series of experiments to compare
the performance of algorithms asrmd1 and asrmd2. To save
time and space, the number of QoS options per task was
held constant at 16 in each experiment, andε was chosen
to be a constant 0.01 (i.e. the desired quality obtained by
asrmd2 must be within 1% of the optimal solution).

The run-times
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Figure 7. asrmd1 / asrmd2 /

srmd ( rmax = 104).

and solution qual-
ities of the two
approximation
algorithms along
with the optimal
srmd algorithm
were measured with
rmax = 104, 105 and
106. The resulting
graphs are plotted
in Figure 7 and 8
(due to the limited
space, only the104

and 106 cases are
shown). The first
of two graphs in
each figure plots
the run-times of the
three algorithms as
the number of tasks
is increased (to keep

run-times feasible, the maximum number of tasks tested
had to be significantly dropped). The second graph plots
the solution qualities.

As discussed earlier, algorithm asrmd2 is very promising
from a theoretical point of view: it always delivers a guaran-
teed solution quality in polynomial time. Unfortunately its
actual running time, as shown in Figure 7 and 8, is up to two
orders of magnitude of asrmd1. The solution quality graphs
plot the solution quality of algorithms asrmd1 and asrmd2.

They show that asrmd1 is mostly within 1% of the optimal
solution while asrmd2, which must always be within 1%, on
the average yields a solution very close to the optimal solu-
tion. However, the difference in run-times is much too high
for asrmd2, particularly when the solution quality obtained
by asrmd1 is extremely good.

Based on the
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Figure 8. asrmd1 / asrmd2 /
srmd ( rmax = 106)

above two sets of
experiments, we
conclude that the
asrmd1 algorithm
using the convex
hull frontier ap-
proach yields the
biggest benefit for
the limited compu-
tational time that
it consumes. It is
practically useful to
note that in absolute
terms, even with
128 tasks and 128
quality levels per
task, asrmd1 yields
a near-optimal result
in about 20ms. The
result is also within
0.5% of the optimal

solution on the average. Such runtime can be used in
practice in real-time systems to make near-optimal online
QoS-based allocations.

7. Conclusion

We have proposed a translucent5 QoS management
framework [15][23] for QoS optimization in systems that
must satisfy application needs along multiple dimensions
The architecture consists of a semantically rich (in terms of

5The framework is translucent in the sense that some aspects are made
visible to the end-users so that they can control the delivered QoS param-
eters, while at the same time hiding how the requested delivery is accom-
plished.



customizability and expressiveness) QoS specification in-
terface for multi-dimensional QoS provisioning, a quality-
of-service index model to help the user make quality trade-
off decision, and a unified QoS-based admission control and
resource planning system. Our QoS specification allows
applications and users to put values on the different levels
of service that the system can provide. When “value” is
taken literally, this means that our model is able to facilitate
market-efficient resource distribution.

We presented and compared one exact and two near-
optimal algorithms with one yielding a solution within a
bounded distance from the optimal solution and another
yielding a solution within a user-specified distance from the
optimal solution. Detailed evaluations of the run-times of
the three algorithms and their solution qualities shows that
the first near-optimal algorithm performs very close to the
optimal solution. It also has very practical run-times that it
can even be used on-line.
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