Carnegie Mellon University
Department of Computer Science
15-415/615- Database Applications
C. Faloutsos & A. Pavlo, Spring 2014
Prepared by Alex Beutel
DUE DATE: Tue, 3/25/2014, 1:30pm

Homework 6

IMPORTANT
- Deposit hard copy of your answers in class at 1:30pm on Tue, 3/25/2014.
- Separate answers, as usually, i.e., please solve each of the 4 questions on a separate page, and type the usual, full information, on each page: your name, Andrew ID, course #, Homework #, and Question #.

Reminders
- Plagiarism: Homework may be discussed with other students, but all homework is to be completed individually.
- Typeset all of your answers whenever possible. Illegible handwriting may get no points, at the discretion of the graders.
- Late homeworks: please email late homeworks—
 – to all TAs
 – with the subject line exactly 15-415 Homework Submission (HW 6)
 – and the count of slip-days you are using.

For your information:
- Graded out of 100 points; 4 questions total
- Rough time estimate: ≈6 hours (1-2 hours for each question)

Revision: 2014/04/02 01:00

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Optimization</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Functional Dependencies</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Decompositions</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Normal Forms</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Question 1: Query Optimization [30 points]

Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: __________________________; andrew-id: ___________________; late days:

For this problem we consider a database with following three tables:

1. Movies(title, year)
2. Actors(actorID, name)
3. Acted_in(actorID, title, year)

For these tables we know the following statistics:

• Movies consists of $N_1 = 50,000$ tuples
 - $V(\text{title, Movies}) = 30,000$ distinct movie titles
 - $V(\text{year, Movies}) = 90$ distinct years (1925-2015)
• Actors consists of $N_2 = 200,000$ tuples
 - $V(\text{actorID, Actors}) = 200,000$ distinct actor ID’s
 - $V(\text{name, Actors}) = 160,000$ distinct names
• Acted_in consists of $N_3 = 1,000,000$ tuples
 - $V(\text{actorID, Acted_in}) = 180,000$ distinct actor ID’s
 - $V(\text{title, Acted_in}) = 29,000$ distinct movie titles
 - $V(\text{year, Acted_in}) = 90$ distinct years (1925-2015)

(a) Yes/No questions:

i. [3 points] Ignoring semantics, and given the above statistics, could \texttt{title} be a candidate key for Movies?
□ Yes ■ No

ii. [3 points] Again, ignoring semantics, could \texttt{actorID} be a candidate key for Actors?
■ Yes □ No

iii. [3 points] Could \texttt{actorID} be a candidate key for Acted_in?
□ Yes ■ No

(b) Selectivity estimations. Give fourth significant digit accuracy. No partial credit will be given.

i. [3 points] Estimate the number of resulting tuples for the query:

\begin{verbatim}
SELECT * FROM Movies WHERE year = 1995;
\end{verbatim}

\begin{verbatim}
i. 555.5555
\end{verbatim}

\textbf{Solution:} (Optional) justification: $N_1/90$

ii. [4 points] Estimate the number of resulting tuples for the query:

\begin{verbatim}
SELECT * FROM Movies
WHERE year = 2000 AND title = “Dude, Where’s my Car?”;
\end{verbatim}

\begin{verbatim}
ii. 0.018518
\end{verbatim}

Question 1 continues...
Solution: (Optional) justification: \(N_1 / 90 / 30,000 \)

iii. [4 points] Estimate the number of resulting tuples for the query:

\[
\text{SELECT * FROM Movies WHERE year > 1960;}
\]

iii. \(30000 \)

Solution: (Optional) justification: \(N_1 \cdot \frac{54}{90} \)
Because not well specified, will also accept \(30555.5555 = N_1 \cdot \frac{55}{90} \)

iv. [5 points] Estimate the number of resulting tuples for the query:

\[
\text{SELECT *} \\
\text{FROM Actors JOIN Acted_in AS Ai} \\
\text{ON Actors.actorID = Ai.actorID;}
\]

iv. \(100000 \)

Solution: (Optional) justification: \(\text{actorID} \) is a primary key in \(\text{Actors} \) and a foreign key in \(\text{Acted_in} \). Therefore, \(N_2 \cdot N_3 / 200000 \)

v. [5 points] Estimate the number of resulting tuples for the query:

\[
\text{SELECT *} \\
\text{FROM Movies JOIN Acted_in AS Ai} \\
\text{ON Movies.year = Ai.year AND Movies.title = Ai.title;}
\]

v. \(18518.5185 \) or \(1,000,000 \)

Solution: (Optional) justification: There are two ways to view this question. If you assume that \((\text{title,year})\) is the primary key of \(\text{Movies} \) and are foreign keys in \(\text{Acted_in} \) then the answer is 1,000,000. However, we do not explicitly make these assumptions so the estimated number of tuples could be calculated as \(N_1 \cdot N_3 \cdot \frac{1}{90} \cdot \frac{1}{30000} \).
Question 2: Functional Dependencies [20 points]
Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: __________________________; andrew-id: __________________________; late days:

2.1 (This question is a modified version of exercise 19.6 in the textbook.) For the first set of questions consider the following legal instance of a relational schema S with attributes ABC:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>b</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Legal instance of schema S for question 2.1

(a) Which of the following dependencies are violated by the instance of S in Table 1:

i. [1 point] □ Yes ■ No : $A \rightarrow B$ is violated.

ii. [1 point] ■ Yes □ No : $B \rightarrow A$ is violated.

iii. [1 point] □ Yes ■ No : $BC \rightarrow A$ is violated.

iv. [1 point] ■ Yes □ No : $B \rightarrow C$ is violated.

v. [1 point] ■ Yes □ No : $C \rightarrow AB$ is violated.

(b) [1 point] By only observing the instance of S in Table 1, can you identify the functional dependencies that hold on schema S?

□ Yes ■ No

Solution: No, because we can only see an instance.

2.2 For the next set of questions consider the relational schema $r = \{P, Q, R, S, T, U, V\}$ and the set of functional dependencies FD:

\[
\begin{align*}
P & \rightarrow S \\
PQ & \rightarrow ST \\
S & \rightarrow RU \\
RU & \rightarrow S \\
PT & \rightarrow V
\end{align*}
\]

(a) [3 points] Which of the following is a minimum cover of the FD?

(a) The given FD is a minimum cover.

(b) $\{P \rightarrow S; PQ \rightarrow T; PQ \rightarrow S; S \rightarrow R; S \rightarrow U; PT \rightarrow V; RU \rightarrow S\}$

(c) $\{P \rightarrow R; P \rightarrow U; PQ \rightarrow T; PT \rightarrow V\}$

(d) $\{P \rightarrow S; PQ \rightarrow T; S \rightarrow R; S \rightarrow U; PT \rightarrow V; RU \rightarrow S\}$

(e) none of the above - the cover is __________________________

Question 2 continues...
(b) Yes/No: Which of the following functional dependencies can be deduced, from
the above set of functional dependencies (Eq. (1)-(5))?
 i. [1 point] ■ Yes □ No : \(P \rightarrow U \)
 ii. [2 points] ■ Yes □ No : \(PT \rightarrow SV \)
 iii. [1 point] □ Yes ■ No : \(SQ \rightarrow V \)
 iv. [1 point] □ Yes ■ No : \(PS \rightarrow RV \)
 v. [1 point] ■ Yes □ No : \(PQ \rightarrow V \)
 vi. [1 point] □ Yes ■ No : \(PSRU \rightarrow QT \)

(c) [2 points] True or False: The attribute closure \(\{ P \}^+ \) is \(\{ R, S, U \} \).
 □ True ■ False

Solution: It should include \(P \), ie., \(\{ P, R, S, U \} \).

(d) [2 points] True or False: The attribute closure \(\{ PQ \}^+ \) is \(\{ P, Q, R, S, T, U, V \} \).
■ True □ False

Homework 6 continues...
Question 3: Decompositions [20 points]

Submit on separate page

Course: 15-415/615; HW: ; Q:

Name: __________________; andrew-id: __________________; late days:

For this set of questions consider the following relational schema \(S = \{A, B, C, D, E, F, G\} \):

\[
\begin{align*}
A & \rightarrow D \\
AB & \rightarrow E \\
D & \rightarrow C \\
D & \rightarrow F \\
AE & \rightarrow G \\
CF & \rightarrow D
\end{align*}
\]

Optional, but strong hint: derive the cover of the above functional dependencies.

(a) [3 points] Is the decomposition \(\{ACF, ABEG, AD\} \) lossless?

■ Yes □ No

Solution: Optional Justification: \(A \) is the candidate key in \(AD \) and \(ACF \)

(b) [4 points] Is the decomposition \(\{DCF, ABEG, AD\} \) lossless?

■ Yes □ No

Solution: Yes: \(D \) is a candidate key in \(DCF \), for the join \(AD \) and \(DCF \); and then \(A \) is the candidate key in \(ADCF \), for the join with \(ABEG \)

(c) [4 points] Is the decomposition \(\{ABDE, BEG, ADCF\} \) lossless?

□ Yes ■ No

Solution: No: while \(ADCF \) and \(ABDE \) can be joined on \(A \) which is a candidate key for \(ADCF \), the joining attributes \(BE \) are not a candidate key in either \(BEG \), nor \(ABDCFE \)

(d) [3 points] Is the decomposition \(\{ACF, ABEG, AD\} \) dependency preserving?

□ Yes ■ No

Solution: We lost both \(CF \rightarrow D \), as well as \(D \rightarrow CF \)

(e) [3 points] Is the decomposition \(\{DCF, ABEG, AD\} \) dependency preserving?

■ Yes □ No

(f) [3 points] Is the decomposition \(\{ABDE, BEG, ADCF\} \) dependency preserving?

□ Yes ■ No

Solution: We lost \(AE \rightarrow G \)

Homework 6 continues...
Question 4: Normal Forms [30 points]
Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: __________________; andrew-id: ______________; late days:

Consider the relation schema \(r = \{P, Q, R, S, T, U, V\} \) and the functional dependencies FD:

\[
\begin{align*}
PR & \rightarrow S \\
P & \rightarrow T \\
PT & \rightarrow R \\
S & \rightarrow U \\
ST & \rightarrow V \\
TV & \rightarrow S \\
QT & \rightarrow V \\
V & \rightarrow Q
\end{align*}
\]

Consider the relational schemas:

- \(r_1 = \{P, R, S, T\} \)
- \(r_2 = \{Q, T, V\} \)
- \(r_3 = \{S, T, U, V\} \)

(a) [2 points] What is the projection of the FDs on \(r_1 \)?

Solution: \(\{PR \rightarrow S, P \rightarrow T, PT \rightarrow R\} \)

(b) [2 points] Indicate all the candidate key(s) for \(r_1 \):

- \(\{P\} \)
- \(\{PR\} \)
- \(\{PRT\} \)
- \(\{PR\} \) and \(\{PT\} \)
- Other: ______________

(c) [3 points] Is \(r_1 \) 3NF? ■ Yes □ No

(d) [3 points] Is \(r_1 \) BCNF? ■ Yes □ No

(e) [2 points] What is the projection of the FDs on \(r_2 \)?

Solution: \(\{QT \rightarrow V, V \rightarrow Q\} \)

(f) [2 points] Indicate all the candidate key(s) for \(r_2 \):

- \(\{Q\} \) and \(\{T\} \)
- \(\{QT\} \)
- \(\{TV\} \)

Question 4 continues...
- \{Q_T\} and \{T_V\}
- \{Q_T\} and \{Q_V\}
- Other:

(g) [3 points] Is \(r_2\) 3NF? ■ Yes □ No
(h) [3 points] Is \(r_2\) BCNF. □ Yes ■ No
(i) [2 points] What is the projection of the FDs on \(r_3\)?

Solution: \(\{S \rightarrow U, ST \rightarrow V, TV \rightarrow S\}\)

(j) [2 points] Is \(r_3\) 3NF? □ Yes ■ No
(k) [2 points] Is \(r_3\) BCNF? □ Yes ■ No
(l) [3 points] Decompose \(r_3\) to two relational schemas \(r_{3,1}\) and \(r_{3,2}\) so that they are in 3NF, and the decomposition is lossless and dependency preserving. Give those relational schemas.

(l) \(\{S, U\}, \{S, T, V\}\)

(m) [1 point] Yes/No: is it possible to decompose \(r_3\) into two BCNF schemas \(r'_{3,1}\) and \(r'_{3,2}\), with a lossless and dependency-preserving decomposition?

■ Yes □ No

Solution: The earlier answer, SU and STV, are all in BCNF