Data mining - detailed outline

- Problem
 - Getting the data: Data Warehouses, DataCubes, OLAP
 - Supervised learning: decision trees
 - Unsupervised learning
 - association rules
 - (clustering)

Problem

Given: multiple data sources
Find: patterns (classifiers, rules, clusters, outliers...)

NY
- sales(p-id, c-id, date, $price) → ???
- customers(c-id, age, income, ...)

SF

PGH
Data Ware-housing
First step: collect the data, in a single place (= Data Warehouse)
How? A: Triggers/Materialized views
How often? A: [Art!]
How about discrepancies / non-homegeneities? A: Wrappers/Mediators

Step 2: collect counts. (DataCubes/OLAP)
Eg.:
OLAP

Problem: “is it true that shirts in large sizes sell better in dark colors?”

<table>
<thead>
<tr>
<th>sales</th>
<th>ci-d</th>
<th>p-id</th>
<th>Size</th>
<th>Color</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td>Shirt</td>
<td>L</td>
<td>Blue</td>
<td>30</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>C10</td>
<td>Pants</td>
<td>XL</td>
<td>Red</td>
<td>50</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>C20</td>
<td>Shirt</td>
<td>XL</td>
<td>White</td>
<td>20</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>

DataCubes

‘color’, ‘size’: DIMENSIONS
‘count’: MEASURE

<table>
<thead>
<tr>
<th>size</th>
<th>color</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>
DataCubes

'color', 'size': DIMENSIONS
'count': MEASURE

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6</td>
<td>18</td>
<td></td>
<td>47</td>
</tr>
</tbody>
</table>

DataCubes

'color', 'size': DIMENSIONS
'count': MEASURE

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6</td>
<td>18</td>
<td></td>
<td>47</td>
</tr>
</tbody>
</table>

DataCubes

'color', 'size': DIMENSIONS
'count': MEASURE

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6</td>
<td>18</td>
<td></td>
<td>47</td>
</tr>
</tbody>
</table>
DataCubes

'color', 'size': DIMENSIONS
'count': MEASURE

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>8</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>

DataCube

SQL query to generate DataCube:

- Naively (and painfully:)
  ```sql
  select size, color, count(*)
  from sales
  where p-id = 'shirt'
  group by size, color
  ```
  ```sql
  select size, count(*)
  from sales
  where p-id = 'shirt'
  group by size
  ```
 ...

- with 'cube by' keyword:
  ```sql
  select size, color, count(*)
  from sales
  where p-id = 'shirt'
  cube by size, color
  ```
DataCubes

DataCube issues:
Q1: How to store them (and/or materialize portions on demand)
Q2: Which operations to allow

A: ROLAP/MOLAP
A: roll-up, drill down, slice, dice
[More details: book by Han+Kamber]

Q1: How to store a dataCube?

<table>
<thead>
<tr>
<th>C/S</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>
DataCubes

Q1: How to store a dataCube?

A1: Relational (R-OLAP)

<table>
<thead>
<tr>
<th>Color</th>
<th>Size</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>6</td>
</tr>
</tbody>
</table>

A2: Multi-dimensional (M-OLAP)

<table>
<thead>
<tr>
<th>Color</th>
<th>Size</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>6</td>
</tr>
</tbody>
</table>

A3: Hybrid (H-OLAP)

<table>
<thead>
<tr>
<th>C/S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>6</td>
<td>47</td>
</tr>
</tbody>
</table>

Pros/Cons:

ROLAP strong points: (DSS, Metacube)
DataCubes

Pros/Cons:
ROLAP strong points: (DSS, Metacube)
 • use existing RDBMS technology
 • scale up better with dimensionality

DataCubes

Pros/Cons:
MOLAP strong points: (EssBase/hyperion.com)
 • faster indexing
 (careful with: high-dimensionality; sparseness)

HOLAP: (MS SQL server OLAP services)
 • detail data in ROLAP; summaries in MOLAP

DataCubes

Q1: How to store a dataCube
Q2: What operations should we support?
Q2: What operations should we support?

DataCubes

Roll-up

<table>
<thead>
<tr>
<th>C / S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Blue</td>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

Drill-down

<table>
<thead>
<tr>
<th>C / S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Blue</td>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>
Q2: What operations should we support?

Slice

<table>
<thead>
<tr>
<th>C</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>25</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>

Dice

<table>
<thead>
<tr>
<th>C</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>25</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>

- Roll-up
- Drill-down
- Slice
- Dice
- (Pivot/rotate, drill-across, drill-through)
- top N
- moving averages, etc
D/W - OLAP - Conclusions

- D/W: copy (summarized) data + analyze
- OLAP - concepts:
 - DataCube
 - R/M/H-OLAP servers
 - ‘dimensions’; ‘measures’

Outline

- Problem
- Getting the data: Data Warehouses, DataCubes, OLAP
 - Supervised learning: decision trees
 - Unsupervised learning
 - association rules
 - (clustering)

Decision trees - Problem
Decision trees

- Pictorially, we have

 num. attr#1 (eg., 'age')

 num. attr#2 (eg., chol-level)

- and we want to label '?'

 num. attr#1 (eg., 'age')

 num. attr#2 (eg., chol-level)

- so we build a decision tree:

 num. attr#1 (eg., 'age')

 num. attr#2 (eg., chol-level)
Decision trees

- so we build a decision tree:

```
     age<50
    / \      
   Y   N
  +   Y
 +   chol. <40
  -   N
       ...
```

Outline

- Problem
- Getting the data: Data Warehouses, DataCubes, OLAP
- Supervised learning: decision trees
 - problem
 - approach
 - scalability enhancements
- Unsupervised learning
 - association rules
 - (clustering)

Decision trees

- Typically, two steps:
 - tree building
 - tree pruning (for over-training/over-fitting)
Tree building

• How?

num. attr#1 (eg., ’age’)

num. attr#2
(eg., chol-level)

+ + + - -
+ + - - -
+ + - - -
+ + - - -
+ + - - -
+ + - - -

Tree building

• How?
• A: Partition, recursively - pseudocode:
 Partition (Dataset S)
 if all points in S have same label
 then return
 evaluate splits along each attribute A
 pick best split, to divide S into S1 and S2
 Partition(S1); Partition(S2)

Conclusions for classifiers

• Classification through trees
• Building phase - splitting policies
• Pruning phase (to avoid over-fitting)
• For scalability:
 – dynamic pruning
 – clever data partitioning
Outline

- Problem
- Getting the data: Data Warehouses, DataCubes, OLAP
- Supervised learning: decision trees
 - problem
 - approach
 - scalability enhancements
- Unsupervised learning
 - association rules
 - (clustering)

Association rules - idea

[Agrawal+SIGMOD93]
- Consider ‘market basket’ case:
 - (milk, bread)
 - (milk)
 - (milk, chocolate)
 - (milk, bread)
- Find ‘interesting things’, eg., rules of the form:
 - milk, bread -> chocolate | 90%

Association rules - idea

In general, for a given rule

\[I_j, I_k, \ldots I_m \rightarrow I_x | \epsilon \]

\(\epsilon \) = ‘confidence’ (how often people by \(I_x \), given that they have bought \(I_j, \ldots I_m \)

\(\text{‘s’} \) = support: how often people buy \(I_j, \ldots I_m, I_x \)
Association rules - idea

Problem definition:
• given
 – a set of ‘market baskets’ (=binary matrix, of N rows/baskets and M columns/products)
 – min-support ‘s’ and
 – min-confidence ‘c’
• find
 – all the rules with higher support and confidence

Closely related concept: “large itemset”

\(I_j, I_k, \ldots I_m, I_x \)

is a ‘large itemset’, if it appears more than ‘min-support’ times

Observation: once we have a ‘large itemset’, we can find out the qualifying rules easily (how?)
Thus, let’s focus on how to find ‘large itemsets’

Naive solution: scan database once; keep \(2^{\lvert I\rvert}\) counters

Drawback?

Improvement?
Association rules - idea

Naive solution: scan database once; keep $2^{||I||}$ counters
Drawback: 2^{1000} is prohibitive...
Improvement? scan the db $||I||$ times, looking for 1-, 2-, etc itemsets

Eg., for $||I||=3$ items only (A, B, C), we have

\[
\begin{align*}
\text{first pass} & \quad \text{min-sup:10} \\
A & \quad 100 \\
B & \quad 200 \\
C & \quad 2 \\
A,B & \\
A,C & \\
B,C &
\end{align*}
\]
Association rules - idea

Anti-monotonicity property:
if an itemset fails to be ‘large’, so will every superset of it (hence all supersets can be pruned)

Sketch of the (famous!) ‘a-priori’ algorithm
Let \(L(i-1) \) be the set of large itemsets with \(i-1 \) elements
Let \(C(i) \) be the set of candidate itemsets (of size \(i \))

Association rules - idea

Compute \(L(1) \), by scanning the database.
repeat, for \(i=2,3,... \),
 "join" \(L(i-1) \) with itself, to generate \(C(i) \)
 prune the itemsets of \(C(i) \) (how?)
 scan the db, finding the counts of the \(C(i) \) itemsets - set this to be \(L(i) \)
 unless \(L(i) \) is empty, repeat the loop

Association rules - Conclusions

Association rules: a new tool to find patterns
• easy to understand its output
• fine-tuned algorithms exist
• still an active area of research
Overall Conclusions

- Data Mining: of high commercial interest
- DM = DB+ ML+ Stat
- Data warehousing / OLAP: to get the data
- Tree classifiers (SLIQ, SPRINT)
- Association Rules - ‘a-priori’ algorithm
- (clustering: BIRCH, CURE, OPTICS)

Reading material

Additional references

- Jiawei Han and Micheline Kamber, Data Mining, Morgan Kaufman, 2001, chapters 2.2-2.3, 6.1-6.2, 7.3.5