Functional dependencies

- motivation: ‘good’ tables

```sql
takes1 (ssn, c-id, grade, name, address)
```

‘good’ or ‘bad’?

<table>
<thead>
<tr>
<th>ssn</th>
<th>c-id</th>
<th>Grade</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>413</td>
<td>A</td>
<td>smith</td>
<td>Main</td>
</tr>
<tr>
<td>123</td>
<td>415</td>
<td>B</td>
<td>smith</td>
<td>Main</td>
</tr>
<tr>
<td>123</td>
<td>211</td>
<td>A</td>
<td>smith</td>
<td>Main</td>
</tr>
</tbody>
</table>
Functional dependencies

‘Bad’ – Q: why?

<table>
<thead>
<tr>
<th>ssn</th>
<th>c-id</th>
<th>Grade</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>413</td>
<td>A</td>
<td>smith</td>
<td>Main</td>
</tr>
<tr>
<td>123</td>
<td>415</td>
<td>B</td>
<td>smith</td>
<td>Main</td>
</tr>
<tr>
<td>123</td>
<td>211</td>
<td>A</td>
<td>smith</td>
<td>Main</td>
</tr>
</tbody>
</table>

Functional Dependencies

• A: Redundancy
 – space
 – inconsistencies
 – insertion/deletion anomalies (later…)
• Q: What caused the problem?

Functional dependencies

• A: ‘name’ depends on the ‘ssn’
• define ‘depends’
Overview

- Functional dependencies
 - why
 - definition
 - Armstrong’s “axioms”
 - closure and cover

Functional dependencies

Definition: \(a \rightarrow b \)

‘a’ functionally determines ‘b’

<table>
<thead>
<tr>
<th>id</th>
<th>c-id</th>
<th>Grade</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>A</td>
<td>smith</td>
<td>Main</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>B</td>
<td>smith</td>
<td>Main</td>
</tr>
<tr>
<td>1</td>
<td>211</td>
<td>A</td>
<td>smith</td>
<td>Main</td>
</tr>
</tbody>
</table>

Informally: ‘if you know ‘a’, there is only one ‘b’ to match’
Functional dependencies

formally:

\[X \rightarrow Y \implies (t_1[x] = t_2[x] \implies t_1[y] = t_2[y]) \]

if two tuples agree on the ‘X’ attribute, the *must* agree on the ‘Y’ attribute, too
(eg., if ssn is the same, so should address)

- ‘X’, ‘Y’ can be sets of attributes
- Q: other examples??

<table>
<thead>
<tr>
<th>ssn</th>
<th>c-id</th>
<th>Grade</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>413</td>
<td>A</td>
<td>smith</td>
<td>Main</td>
</tr>
<tr>
<td>123</td>
<td>415</td>
<td>B</td>
<td>smith</td>
<td>Main</td>
</tr>
<tr>
<td>123</td>
<td>211</td>
<td>A</td>
<td>smith</td>
<td>Main</td>
</tr>
</tbody>
</table>

Functional dependencies

- ssn -> name, address
- ssn, c-id -> grade
Overview

• Functional dependencies
 – why
 – definition
 – Armstrong’s “axioms”
 – closure and cover

Functional dependencies

Closure of a set of FD: all implied FDs - eg.:

- ssn -> name, address
- ssn, c-id -> grade

imply
- ssn, c-id -> grade, name, address
- ssn, c-id -> ssn

FDs - Armstrong’s axioms

Closure of a set of FD: all implied FDs - eg.:

- ssn -> name, address
- ssn, c-id -> grade

how to find all the implied ones, systematically?
FDs - Armstrong’s axioms

“Armstrong’s axioms” guarantee soundness and completeness:

- Reflexivity: \(Y \subseteq X \Rightarrow X \rightarrow Y \)

 eg., ssn, name -> ssn

- Augmentation: \(X \rightarrow Y \Rightarrow XW \rightarrow YW \)

 eg., ssn->name then ssn,grade-> name,grade

FDs - Armstrong’s axioms

- Transitivity

\[
\begin{align*}
X \rightarrow Y \\
Y \rightarrow Z
\end{align*}
\]

ssn -> address
address -> county-tax-rate

THEN:

ssn -> county-tax-rate

sound and **complete**
FDs - Armstrong’s axioms

Additional rules:

• Union
 \[X \rightarrow Y \ \text{and} \ \ X \rightarrow Z \implies X \rightarrow YZ \]

• Decomposition
 \[X \rightarrow YZ \implies X \rightarrow Y \ \text{and} \ \ X \rightarrow Z \]

• Pseudo-transitivity
 \[X \rightarrow Y \quad \text{and} \quad YW \rightarrow Z \implies XW \rightarrow Z \]

FDs - Armstrong’s axioms

Prove ‘Union’ from three axioms:

\[X \rightarrow Y \quad \text{and} \quad X \rightarrow Z \implies X \rightarrow YZ \]
FDs - Armstrong’s axioms

Prove Pseudo-transitivity:

\[Y \subseteq X \Rightarrow X \rightarrow Y \]
\[X \rightarrow Y \Rightarrow XW \rightarrowYW \]
\[X \rightarrow Y \]
\[Y \rightarrow Z \] \Rightarrow X \rightarrow Z

\[X \rightarrow Y \]
\[YW \rightarrow Z \] \Rightarrow X \rightarrow Z

Overview

- Functional dependencies
 - why
 - definition
 - Armstrong’s “axioms”
 - closure and cover
FDs - Closure F+

Given a set F of FD (on a schema)

F+ is the set of all implied FD. Eg.,

- takes(ssn, c-id, grade, name, address)
- ssn, c-id -> grade
- ssn-> name, address

\[F \]

FDs - Closure A+

Given a set F of FD (on a schema)

A+ is the set of all attributes determined by A:

- takes(ssn, c-id, grade, name, address)
- ssn, c-id -> grade
- ssn-> name, address

\[\{ \text{ssn}\} + =?? \]
FDs - Closure A+

takes(ssn, c-id, grade, name, address)
ssn, c-id -> grade \{F\}
ssn-> name, address \{F\}

\{{\text{ssn}}\}^+ = \{{\text{ssn}},
\text{name, address} \}\}

FDs - Closure A+

takes(ssn, c-id, grade, name, address)
ssn, c-id -> grade \{F\}
ssn-> name, address \{F\}

\{{\text{c-id}}\}^+ = ??

FDs - Closure A+

takes(ssn, c-id, grade, name, address)
ssn, c-id -> grade \{F\}
ssn-> name, address \{F\}

\{{\text{c-id, ssn}}\}^+ = ??
FDs - Closure A+

if $A^+ = \{\text{all attributes of table}\}$
then ‘A’ is a **superkey**

FDs - A+ closure - not in book

Diagrams

$A \rightarrow B\rightarrow C$ (1)
$A \rightarrow BC$ (2)
$B \rightarrow C$ (3)
$A \rightarrow B$ (4)

FDs - ‘canonical cover’ F_c

Given a set F of FD (on a schema)
F_c is a minimal set of equivalent FD. Eg.,
takes(ssn, c-id, grade, name, address)

\[
\begin{align*}
\text{ssn, c-id} & \rightarrow \text{grade} \\
\text{ssn} & \rightarrow \text{name, address} \\
\text{ssn, name} & \rightarrow \text{name, address} \\
\text{ssn, c-id} & \rightarrow \text{grade, name}
\end{align*}
\]
FDs - ‘canonical cover’ \(F_c \)

- why do we need it?
- define it properly
- compute it efficiently

\[F_c : \]

- \(\text{ssn, c-id} \rightarrow \text{grade} \)
- \(\text{ssn} \rightarrow \text{name, address} \)
- \(\text{ssn, name} \rightarrow \text{name, address} \)
- \(\text{ssn, c-id} \rightarrow \text{name, grade, address} \)
FDs - ‘canonical cover’ Fc

• define it properly - three properties
 – 1) the RHS of every FD is a single attribute
 – 2) the closure of Fc is identical to the closure of F (i.e., Fc and F are equivalent)
 – 3) Fc is minimal (i.e., if we eliminate any attribute from the LHS or RHS of a FD, property #2 is violated

#3: we need to eliminate ‘extraneous’ attributes. An attribute is ‘extraneous if
 – the closure is the same, before and after its elimination
 – or if F-before implies F-after and vice-versa

Examples

<table>
<thead>
<tr>
<th>FDs</th>
<th>Canonical Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssn, c-id -> grade</td>
<td>Fc</td>
</tr>
<tr>
<td>ssn-> name, address</td>
<td></td>
</tr>
<tr>
<td>ssn,name-> name, address</td>
<td></td>
</tr>
<tr>
<td>ssn, c-id-> grade, name</td>
<td></td>
</tr>
</tbody>
</table>

F

FDs - ‘canonical cover’ Fc

Algorithm:
• examine each FD; drop extraneous LHS or RHS attributes; or redundant FDs
• make sure that FDs have a single attribute in their RHS
• repeat until no change

FDs - ‘canonical cover’ Fc

Trace algo for
AB->C (1)
A->BC (2)
B->C (3)
A->B (4)

split (2):

AB->C (1)
A->B (2')
A->C (2'')
B->C (3)
A->B (4)
FDs - ‘canonical cover’ F_c

1. $AB \rightarrow C$ (1)
2. $A \rightarrow C$ (2’)
3. $B \rightarrow C$ (3)
4. $A \rightarrow B$ (4)

- (2’): redundant (implied by (4), (3) and transitivity)

- (2’): redundant (implied by (4), (3) and transitivity)

- (1), (3), (4) imply (1’), (3), (4), and vice versa
FDs - ‘canonical cover’ Fc

- nothing is extraneous
- all RHS are single attributes
- final and original set of FDs are equivalent (same closure)

Overview - conclusions

- Functional dependencies
 - why
 - definition
 - Armstrong’s “axioms”
 - closure and cover