Database Design

- Requirements Analysis
- Conceptual Design
- Logical Design
- Schema Refinement
- Physical Design
- Security Design

- user’s needs
- high level (ER)
- Tables
- Normalization
- Indices etc
- Access controls
Overview

- concepts
 - Entities
 - Relationships
 - Attributes
 - Specialization/Generalization
 - Aggregation
 - ER modeling questions

Tools

- Entities (‘entity sets’)
- Relationships (‘rel. sets’) and mapping constraints
- attributes

Example

Students, taking courses, offered by instructors; a course may have multiple sections; one instructor per section

nouns -> entity sets
verbs -> relationship sets
STUDENT

name

ssn

INSTRUCTOR

primary key = unique identifier

STUDENT name ssn

INSTRUCTOR issn

COURSE c-id c-name

but: sections of course (with different instructors)?

INSTRUCTOR issn

STUDENT ssn

SECTION s-id

COURSE c-id

but: s-id is not unique... (see later)
Q: how to record that students take courses?
Cardinalities

- 1 to 1 (example?)
- 1 to N
- N to M
Cardinalities

Book’s notation:

PERSON owns CAR
STUDENT takes SECTION

Book’s notation vs 1 to N notation

COUNTRY has CAPITAL
PERSON owns CAR
STUDENT takes SECTION

‘Total/partial’ participation

total, total

PERSON owns CAR
STUDENT takes SECTION

??

COUNTRY has CAPITAL
PERSON owns CAR
STUDENT takes SECTION

??

COUNTRY has CAPITAL
PERSON owns CAR
STUDENT takes SECTION
‘Total/partial’ participation

- Total, total
 - COUNTRY
 - 1:1 has
 - CAPITAL
 - PERSON
 - 1:1 owns
 - CAR
 - STUDENT
 - ?:N takes
 - ?:M SECTION

- Partial, total
 - COUNTRY
 - 1:1 has
 - CAPITAL
 - PERSON
 - 1:1 owns
 - CAR
 - STUDENT
 - 1:N takes
 - 0:M SECTION

- ??
 - PERSON
 - 0:N
 - STUDENT
 - ?M

Weak entities

- ‘section’ has no unique-id of its own! (?)

- SECTION
 - 1:N
 - COURSE
 - has
 - c-id

- COURSE
 - 1
 - SECTION
 - has
 - c-id
Weak entities

- ‘weak’ entities: if they need to borrow a unique id from a ‘strong entity’ - thick box.
- ‘c-id’ + ‘s-id’: unique id for SECTION
- partial key (eg., ‘s-id’) - dashed-underline
- identifying relationship (eg., ‘has’)

More details

- self-relationships - example?
More details

• 3-way and k-way relationships?

More details

• 3-way and k-way relationships? Rare, but possible:

Overview

• concepts
 – Entities
 – Relationships
 – Attributes
 – Specialization/Generalization
 – Aggregation
 – ER modeling questions
More details - attributes

- **key** (or primary key): unique identifier
- **underlined**, in the ER diagram
- [not in textbook - FYI:
 - multivalued or set-valued attributes (e.g., ‘dependents’ for EMPLOYEES)
 - derived attributes (e.g., 15% tip)]

Overview

- concepts
 - Entities
 - Relationships
 - Attributes
 - Specialization/Generalization
 - Aggregation
 - ER modeling questions

Specialization

- eg., students: part time (#credit-hours) and full time (major)
Observations

• Generalization: exact reverse of 'specialization'
• Attribute inheritance
• Could have many levels of an IS-A hierarchy

More details

• Overlap constraints
 – Can an entity belong to both ‘B’ and ‘C’?
• Covering constraints
 – Can an ‘A’ entity belong to neither ‘B’ nor ‘C’?
More details

• Overlap constraints - examples?

More details

• Covering constraints - examples?

Overview

• concepts
 – Entities
 – Relationships
 – Attributes
 – Specialization/Generalization
 – Aggregation
 – ER modeling questions
Aggregation

- computer model (w/ CPU and HD)
- and Maker (eg., Dell, HP)

![Diagram of computer model with CPU, HD, and Maker]

Aggregation

- treat a relationship as an entity
- used to express a relationship among relationships

![Diagram of relationship among CPU, HD, and Maker]

Overview

- concepts
 - Entities
 - Relationships
 - Attributes
 - Specialization/Generalization
 - Aggregation
 - ER modeling questions
Conceptual design

- Entity vs attribute
- Entity vs relationship
- Binary or ternary relationships?
- Aggregation?

Entity vs. attribute

- Entity EMPLOYEE (w/ emp#, name, job_code, ...)
- Q: How about ‘spouse’ - entity or attribute?

- Q: How about ‘dependents’?

- Entity EMPLOYEE (w/ emp#, name, job_code, ...)
- Q: How about ‘spouse’ - entity or attribute?
- A: probably, ‘attribute’ is enough
- Q: How about ‘dependents’?
- A: Entity - we may have many dependents
Entity vs. Relationship

- Student takes N - M Sections
- Or
- Student takes 1 - N Sections

Binary vs. Ternary Relationships

- Usually, binary relationships are ‘cleaner’:

Binary vs. Ternary Relationships

- If each policy is owned by just 1 employee:
Binary vs. Ternary Relationships

If each policy is owned by just 1 employee:

Key constraint on Policies would mean policy can only cover 1 dependent!

Better design

What are the additional constraints in the 2nd diagram?
Binary vs Ternary Rel.

- But sometimes ternary rel. can not be replaced by a set of binary rel’s:

Binary vs. Ternary Relationships (Contd.)

- S “can-supply” P, D “needs” P, and D “deals-with” S does not imply that D has agreed to buy P from S.
- How do we record qty?

why is it bad?
Binary vs. Ternary Relationships (Contd.)

Not in textbook:
in practice, often:

Suppliers

qty

Parts

Contract

Departments

Suppliers

Ternary vs. aggregation

- use aggregation, if we want to attach a relationship to a relationship
- (see book for example)
- (in practice, again we create a unique-id and resort to binary relationships)
Summary

- E-R Diagrams: a powerful, user-friendly tool for data modeling:
 - Entities (strong, weak)
 - Attributes (primary keys, discriminators, derived, multivalued)
 - Relationships (1:1, 1:N, N:M; multi-way)
 - Generalization/Specialization; Aggregation

Summary - cont’d

- (strong) entity set
- weak entity set
- relationship set
- identifying rel. set for weak entity

Summary - cont’d

- cardinalities
 - partial/total
 - N:M
 - 1:h
 - 1:h'

(cardinalities with limits)
(not in textbook - FYI)
Summary - cont’d

IS-A

aggregation