Carnegie Mellon University
15-415 Database Applications
Spring 2012, Faloutsos
Assignment 1 : ER + Formal Q.L.
Due: 2/07, 1:30 pm, in class – hard copy

Solution

Question 1 : Olympic Database [10 points]
Q1.1 Any of the solutions below is fine.

Solution #1

Solution #2
Q1.2

CREATE TABLE ATHLETE

 (ssn CHAR(11), name CHAR(20), birthdate DATE, PRIMARY KEY (ssn))

CREATE TABLE OLYMPIAD

 (year INTEGER, country CHAR(30), city CHAR(30), PRIMARY KEY (year))

CREATE TABLE PARTICIPATE

 (ssn CHAR(11) NOT NULL, year INTEGER NOT NULL, sport CHAR(30),
 PRIMARY KEY (ssn, year, sport),
 FOREIGN KEY (ssn) REFERENCES ATHLETE,
 FOREIGN KEY (year) REFERENCES OLYMPIAD)
Question 2: Cuisine Database [10 points]

Q2.1
Question 3 : Student Database [20 points]

Q3.1

Q3.2 Yes. They are overlapping constraints since a student can belong to both schools.

Q3.3 No. There are other schools than the two schools.

Q3.4

CREATE TABLE STUDENT

 (ssn CHAR(11), name CHAR(20), age INTEGER, PRIMARY KEY (ssn))

CREATE TABLE ENG-STUDENT

 (ssn CHAR(11), E-SAT INTEGER, PRIMARY KEY (ssn),
 FOREIGN KEY (ssn) REFERENCES STUDENT,
 ON DELETE CASCADE)

CREATE TABLE FA-STUDENT

 (ssn CHAR(11), FA-SAT INTEGER, PRIMARY KEY (ssn),
 FOREIGN KEY (ssn) REFERENCES STUDENT,
 ON DELETE CASCADE)
Question 4 : Relational Algebra [20 points]

Q4.1 $\pi_{v\cdot ipaddr}[\sigma_{\text{date}='2/7/2012'}(\text{EVENT})]$

Q4.2 $\pi_{os}[\sigma_{v\cdot ipaddr='10.10.10.2'}(\text{MACHINE \bigtriangleup EVENTS.a\cdot ipaddr \cdot EVENT})]$

Q4.3.1 It gives all the attackers that attacked all the victims (and maybe more) attacked by the attacker 9.9.9.9.

Q4.3.2 It returns 1 column.

Q4.3.3 The column header is ‘a\cdot ipaddr’

Q4.3.4 It returns 2 rows.

Q4.3.5 The returned rows are 9.9.9.9 and 9.9.9.10.

Question 5: Relational Tuple Calculus [20 points]

Q5.1 $\{t \mid \exists d \in \text{EVENT} \ (d.\text{date} = '2/7/2012' \land t.\text{v} \cdot \text{ipaddr} = d.\text{v} \cdot \text{ipaddr})$

Q5.2 $\{t \mid \exists a \in \text{MACHINE}, \exists d \in \text{EVENT} \ (a.\text{ipaddr} = d.\text{a} \cdot \text{ipaddr} \land t.\text{os} = a.\text{os} \land d.\text{v} \cdot \text{ipaddr} = '10.10.10.2')$

Q5.3.1 It gives all the ip addresses of machines who are both a victim and an attacker.

Q5.3.2 It returns 1 column.

Q5.3.3 The column header is ‘ipaddr’

Q5.3.4 It returns 2 rows.

Q5.3.5 The returned rows are 9.9.9.1 and 10.10.10.1.
Question 6: Relational Domain Calculus [20 points]

Q6.1 \[< v \rightarrow ipaddr > | \exists aip(< aip, v \rightarrow ipaddr,'2/7/2012' > \in \text{EVENT})\]

Q6.2 \[< os > | \exists am, \exists aip, \exists d(< am, aip, os > \in \text{MACHINE} \land < aip,'10.10.10.2', d >\in \text{EVENT})\]

Q6.3.1 It gives all the attackers’ machine names who attacked Windows machines.

Q6.3.2 It returns 1 column.

Q6.3.3 The column header is ‘mname’

Q6.3.4 It returns 3 rows.

Q6.3.5 The returned rows are Jupiter, Sun, and Mars.