Data mining - detailed outline

- Problem
 - Getting the data: Data Warehouses, DataCubes, OLAP
 - Supervised learning: decision trees
 - Unsupervised learning
 - association rules
 - (clustering)

Problem

Given: multiple data sources
Find: patterns (classifiers, rules, clusters, outliers...)

NY
- sales(p-id, c-id, date, $price)
- customers(c-id, age, income, ...)

PGH

SF
Data Warehousing

First step: collect the data, in a single place (= Data Warehouse)

How?
How often?
How about discrepancies / non-homogeneities?

A: Triggers/Materialized views
A: [Art!]
A: Wrappers/Mediators

Step 2: collect counts. (DataCubes/OLAP)

Eg.:
OLAP

Problem: “is it true that shirts in large sizes sell better in dark colors?”

<table>
<thead>
<tr>
<th></th>
<th>ci-d</th>
<th>p-id</th>
<th>Size</th>
<th>Color</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>C10</td>
<td>Shirt</td>
<td>L</td>
<td>Blue</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>C10</td>
<td>Shirt</td>
<td>Red</td>
<td></td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>C20</td>
<td>Shirt</td>
<td>XL</td>
<td>White</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

DataCubes

‘color’, ‘size’: DIMENSIONS
‘count’: MEASURE

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>
DataCubes

'color', 'size': DIMENSIONS
'count': MEASURE

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>
DataCubes

• Naively (and painfully:)
 select size, color, count(*)
 from sales where p-id = 'shirt'
 group by size, color

 select size, count(*)
 from sales where p-id = 'shirt'
 group by size

...
DataCubes

DataCube issues:
Q1: How to store them (and/or materialize portions on demand)
Q2: Which operations to allow

A: ROLAP/MOLAP
A: roll-up, drill down, slice, dice

[More details: book by Han+Kamber]
DataCubes

Q1: How to store a dataCube?

A1: Relational (R-OLAP)

<table>
<thead>
<tr>
<th>Color</th>
<th>Size</th>
<th>count</th>
<th>C/S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td></td>
<td></td>
<td>47</td>
</tr>
</tbody>
</table>

A2: Multi-dimensional (M-OLAP)

A3: Hybrid (H-OLAP)

Pros/Cons:

ROLAP strong points: (DSS, Metacube)
DataCubes

Pros/Cons:
ROLAP strong points: (DSS, Metacube)
• use existing RDBMS technology
• scale up better with dimensionality

DataCubes

Pros/Cons:
MOLAP strong points: (EssBase/hyperion.com)
• faster indexing
 (careful with: high-dimensionality; sparseness)

HOLAP: (MS SQL server OLAP services)
• detail data in ROLAP; summaries in MOLAP

DataCubes

Q1: How to store a dataCube
Q2: What operations should we support?
DataCubes

Q2: What operations should we support?

Roll-up

<table>
<thead>
<tr>
<th>C / S</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>

Drill-down

<table>
<thead>
<tr>
<th>C / S</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>
Q2: What operations should we support?

Slice

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>

Dice

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>

DataCubes

Q2: What operations should we support?
- Roll-up
- Drill-down
- Slice
- Dice
- (Pivot/rotate; drill-across; drill-through
- top N
- moving averages, etc)
D/W - OLAP - Conclusions

- D/W: copy (summarized) data + analyze
- OLAP - concepts:
 - DataCube
 - R/M/H-OLAP servers
 - 'dimensions'; 'measures'

Outline

- Problem
- Getting the data: Data Warehouses, DataCubes, OLAP
- Supervised learning: decision trees
- Unsupervised learning
 - association rules
 - (clustering)

Decision trees - Problem

<table>
<thead>
<tr>
<th>Age</th>
<th>Chol-level</th>
<th>Gender</th>
<th>...</th>
<th>CLASS-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>150</td>
<td>M</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

??
Decision trees

• Pictorially, we have

num. attr#2 (eg., chol-level)

+ + - -
+ + - -
+ + - -
+ + - -
+ + - -
+ + - -
+ + - -

num. attr#1 (eg., ‘age’)

Decision trees

• and we want to label ‘?’

num. attr#2 (eg., chol-level)

? + - -
+ + + -
+ + - -
+ + - -
+ + - -
+ + - -

num. attr#1 (eg., ‘age’)

Decision trees

• so we build a decision tree:

num. attr#2 (eg., chol-level)

40 50

? + - -
+ + + -
+ + - -
+ + - -
+ + - -

num. attr#1 (eg., ‘age’)

Decision trees

- so we build a decision tree:

```
    age<50
    +
    chol. <40
    -
```

Outline

- Problem
- Getting the data: Data Warehouses, DataCubes, OLAP
- Supervised learning: decision trees
 - problem
 - approach
 - scalability enhancements
- Unsupervised learning
 - association rules
 - (clustering)

Decision trees

- Typically, two steps:
 - tree building
 - tree pruning (for over-training/over-fitting)
Tree building

• How?

num. attr#1 (eg., 'age')

num. attr#2 (eg., chol-level)

A: Partition, recursively - pseudocode:

Partition (Dataset S)

if all points in S have same label
then return

evaluate splits along each attribute A
pick best split, to divide S into S1 and S2

Partition(S1); Partition(S2)

Q1: how to introduce splits along attribute A_i
Q2: how to evaluate a split?
Tree building

- Q1: how to introduce splits along attribute A_i
 - A1:
 - for num. attributes:
 - binary split, or
 - multiple split
 - for categorical attributes:
 - compute all subsets (expensive!), or
 - use a greedy algo

Tree building

- Q1: how to introduce splits along attribute A_i
- Q2: how to evaluate a split?

- A: by how close to uniform each subset is - ie., we need a measure of uniformity:
Tree building

entropy: $H(p^+, p^-)$

Any other measure?

$0 \quad 0.5 \quad 1 \quad p^+$

$0 \quad 1$

$0 \quad 0.5 \quad 1 \quad p^+$

$1 \quad 1$

'gini' index: $1 - p^+ \cdot p^-$

(How about multiple labels?)
Tree building

Intuition:
• entropy: #bits to encode the class label
• gini: classification error, if we randomly
 guess ‘+’ with prob. p_+

Thus, we choose the split that reduces
entropy/classification-error the most: Eg.:

- Before split: we need
 $(n_- + n_+) * H(p_-, p_+) = (7+6) * H(7/13, 6/13)$
 bits total, to encode all the class labels
- After the split we need:
 0 bits for the first half and
 $(2+6) * H(2/8, 6/8)$ bits for the second half
Tree pruning

- What for?

- num. attr#1 (eg., 'age')

- num. attr#2 (eg., chol-level)

Tree pruning
Shortcut for scalability: DYNAMIC pruning:
- stop expanding the tree, if a node is 'reasonably' homogeneous
 - ad hoc threshold [Agrawal+, vldb92]
 - (Minimum Description Language (MDL) criterion (SLIQ) [Mehta+, edbt96])

Tree pruning
- Q: How to do it?
- A1: use a ‘training’ and a ‘testing’ set - prune nodes that improve classification in the ‘testing’ set. (Drawbacks?)
- (A2: or, rely on MDL (= Minimum Description Language))
Outline

- Problem
- Getting the data: Data Warehouses, DataCubes, OLAP
- Supervised learning: decision trees
 - problem
 - approach
 - scalability enhancements
- Unsupervised learning
 - association rules
 - (clustering)

Scalability enhancements

- Interval Classifier [Agrawal+, vldb92]: dynamic pruning
- SLIQ: dynamic pruning with MDL; vertical partitioning of the file (but label column has to fit in core)
- SPRINT: even more clever partitioning

Conclusions for classifiers

- Classification through trees
- Building phase - splitting policies
- Pruning phase (to avoid over-fitting)
- For scalability:
 - dynamic pruning
 - clever data partitioning
Outline

- Problem
- Getting the data: Data Warehouses, DataCubes, OLAP
- Supervised learning: decision trees
 - problem
 - approach
 - scalability enhancements
- Unsupervised learning
 - association rules
 - (clustering)

Association rules - idea

[Agrawal+SIGMOD93]

- Consider ‘market basket’ case:
 (milk, bread)
 (milk)
 (milk, chocolate)
 (milk, bread)
- Find ‘interesting things’, eg., rules of the form:
 milk, bread -> chocolate | 90%

Association rules - idea

In general, for a given rule
 I_j, I_k, ... I_m -> I_x | c

‘c’ = ‘confidence’ (how often people buy I_x, given that they have bought I_j, ... I_m

‘s’ = support: how often people buy I_j, ... I_m, I_x
Association rules - idea

Problem definition:
• given
 – a set of ‘market baskets’ (=binary matrix, of N rows/baskets and M columns/products)
 – min-support ‘s’ and
 – min-confidence ‘c’
• find
 – all the rules with higher support and confidence

Closely related concept: “large itemset”
\(I_j, I_k, \ldots I_m, I_x \)
is a ‘large itemset’, if it appears more than ‘min-support’ times

Observation: once we have a ‘large itemset’, we can find out the qualifying rules easily (how?)
Thus, let’s focus on how to find ‘large itemsets’

Naive solution: scan database once; keep \(2^{|I|}\) counters
Drawback?
Improvement?
Association rules - idea

Naive solution: scan database once; keep $2^{|I|}$ counters

Drawback? 2^{1000} is prohibitive...

Improvement? scan the db $|I|$ times, looking for 1-, 2-, etc itemsets

E.g., for $|I|=3$ items only (A, B, C), we have

\begin{itemize}
 \item A
 \item B
 \item C
\end{itemize}

First pass:

- A: 100
- B: 200
- C: 2

\text{min-sup: 10}

\begin{itemize}
 \item A, B
 \item A, C
 \item B, C
\end{itemize}
Association rules - idea

Anti-monotonicity property:
if an itemset fails to be ‘large’, so will every superset of it (hence all supersets can be pruned)

Sketch of the (famous!) ‘a-priori’ algorithm
Let $L(i-1)$ be the set of large itemsets with $i-1$ elements
Let $C(i)$ be the set of candidate itemsets (of size i)

Association rules - idea

Compute $L(1)$, by scanning the database.
repeat, for $i=2,3...$,
‘join’ $L(i-1)$ with itself, to generate $C(i)$
two itemsets can be joined, if they agree on their first $i-2$ elements
prune the itemsets of $C(i)$ (how?)
scan the db, finding the counts of the $C(i)$ itemsets - set this to be $L(i)$
unless $L(i)$ is empty, repeat the loop
(see example 6.1 in [Han+Kamber])

Association rules - Conclusions

Association rules: a new tool to find patterns
• easy to understand its output
• fine-tuned algorithms exist
• still an active area of research
Overall Conclusions

- Data Mining: of high commercial interest
- DM = DB+ ML+ Stat
- Data warehousing / OLAP: to get the data
- Tree classifiers (SLIQ, SPRINT)
- Association Rules - 'a-priori' algorithm
- (clustering: BIRCH, CURE, OPTICS)

Reading material

- Agrawal, R., T. Imielinski, A. Swami, 'Mining Association Rules between Sets of Items in Large Databases', SIGMOD 1993.

Additional references

- Jiawei Han and Micheline Kamber, Data Mining, Morgan Kaufman, 2001, chapters 2.2-2.3, 6.1-6.2, 7.3.5