Reminders

- Weight: 5% of the homework grade.
- Out of 100 points.
- Lead TA: B. Aditya Prakash

Notes:

- Rough time-estimate: 2~4 hours (about 30-60mins per question).
- You are encouraged to type your answers. Illegible handwriting may get no points, at the discretion of the grader.
- Drawings may be hand-drawn, as long as they are neat and legible.
- The textbook referred to in the homework is Database Management Systems by Ramakrishnan and Gehrke, 3rd edition.
- Whenever you are making an assumption, please state it clearly.

Question 1: B+ Trees [22 points]

Consider an empty B+ Tree with order d=2, i.e. there are at most 4 keys per node, and at most 5 pointers to children. Bulk load the B+ tree with data entries with even numbers from 2 to 100 (i.e. 2, 4, 6, ... , 100) so that each leaf is full using the algorithm outlined in Section 10.8.2 (Page 360) of the textbook.

Q1.1 What is the height of the tree after inserting all the above keys? [5 points]

Q1.2 List all the keys whose insertion increased the height of the tree e.g. when key 2 was inserted, tree height increased from 0 to 1. [5 points]

For the next 2 questions consider the B+ tree shown in Figure[1]. The leaf key values are represented with * next to them. Unassigned values are represented with _. The subtrees A, B and C are valid B+ sub-trees. Note that again, it is of order d=2. Answer the following:

Q1.3 Show the tree after deleting key 31. [6 points]

Q1.4 Starting from the tree in Figure[1], find a key which increases the height of the tree when inserted. [6 points]
Question 2: Extendible Hashing [12 points]

We have the following records where we indicate the hashed key in parenthesis (in binary):

- a [000110]
- b [111100]
- c [010111]
- d [010000]
- e [101001]
- f [010111]
- g [101001]
- h [011010]
- i [011010]
- j [001110]

Q2.1 Consider an extendible hash structure where buckets can hold up to three records. Initially the structure is empty. Show the extendible hash structure after these records (in the order shown above) have been inserted. Assume that as mentioned in the textbook, the directory doubles in size at each overflow. [6 points]

Q2.2 Consider the Extendible Hashing index shown in Figure 11.6 (Page 377) of the textbook. What is the maximum number of entries that can be inserted into the index without doubling the size of the directory? [6 points]
Question 3: Linear Hashing [12 points]

Building

Q3.1 For the same records, hash keys, and assumptions as in Q2.1, show the linear hash structure for the file. Initially the structure is empty. Assume that we split whenever the new key goes into a full bucket (which may or may not be the split bucket). [6 points]

Deletion

Q3.2 Consider the Linear Hashing index shown in Figure 11.13 (Page 384) of the textbook. Draw the index after deleting the entries with hash values 66, 22 and 32. Make sure you indicate where the Next pointer is present. Assume that the full deletion algorithm is used and we contract when a bucket becomes empty. [6 points]

Question 4: External Sorting [18 points]

Suppose we have a disk with an average seek time of 10ms, average rotational delay of 5ms, and a transfer time of 1ms for a 4K page. Assume that the cost of reading/writing a page is the sum of those values (i.e., 16ms) unless a sequence of pages is read/written. In this case, the cost is the average seek time plus the average rotational delay (to find the first page) plus 1ms per page (to transfer data). You are given 320 buffer pages and asked to sort a file with 10^7 pages. Make the assumptions used in Section 13.3 of the textbook.

Find the cost of the following operations [6 points each = 1 point for formula used + 5 points for numerical substitutions and answer]:

Q4.1 Do 319-way merges on 319 input buffers of 1 page each, and 1 output buffer page.
Q4.2 Do 256-way merges on 256 input buffers of 1 page each, and output buffer of 64 pages.
Q4.3 Do 16-way merges on 16 input buffers of 16 pages each, and output buffer of 64 pages.

Question 5: Relational Operators [36 points]

Consider the join $R \bowtie_{R.a=S.b} S$ of relation $R(a, c)$ and relation $S(b, d)$ given the following:

- Relation R contains $N_R = 200,000$ tuples with 20 tuples per page.
- Relation S has $N_S = 4,000,000$ tuples with 20 tuples per page.
- $B = 1002$ buffer pages are available.

Assume that both relations are stored as simple heap files and that neither relation has any indexes built on it.

Q5.1 Find the costs of the following joins [6 points each = 1 point for formula used + 5 points for numerical substitutions and answer]:

a. Nested Loops Join (Figure 14.4 of textbook)
b. Block nested loops Join (Figure 14.5 of textbook)
c. Sort-Merge Join (Figure 14.8 of textbook)
d. Hash Join (Figure 14.12 of textbook)

Q5.2 Can we use fewer buffer pages to achieve the same cost of the sort-merge join previously (Q5.1(c))? If yes, give B_{MIN}^{SMJ} - the minimum number of buffer pages required. If no, explain briefly (1-2 lines). [6 points]

Q5.3 Similarly, can we use fewer buffer pages to achieve the same cost of the hash join previously (Q5.1(d))? If yes, give B_{MIN}^{HJ} - the minimum number of buffer pages required. If no, explain briefly (1-2 lines). [6 points]

Notes:

• The cost is measured by the number of page I/Os.
• Make no distinction between sequential and random I/Os.
• Ignore the cost of writing the result pages to disk.