15-826: Multimedia Databases and Data Mining

Lecture #28: Graph mining - patterns

Christos Faloutsos

Must-read Material

- Jure Leskovec, Jon Kleinberg, Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005, Chicago, IL, USA

Main outline

- Introduction
- Indexing
- Mining
 - Graphs – patterns
 - Graphs – generators and tools
 - Association rules
 - …
Outline
• Introduction – Motivation
• Problem#1: Patterns in graphs
• Problem#2: Scalability
• Conclusions

Graphs - why should we care?
• IR: bi-partite graphs (doc-terms)

• web: hyper-text graph

• ... and more:
Outline

- Introduction – Motivation
- Problem #1: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
- Problem #2: Scalability
- Conclusions

Problem #1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is ‘normal’ / ‘abnormal’?
- which patterns/laws hold?

- To spot anomalies (rarities), we have to discover patterns

- Large datasets reveal patterns/anomalies that may be invisible otherwise…
Are real graphs random?

- random (Erdos-Renyi) graph – 100 nodes, avg degree = 2
- before layout
- after layout
- No obvious patterns

(generated with: pajek
http://vlado.fmf.uni-lj.si/pub/networks/pajek/)

Graph mining

- Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
 - Diameter ('6 degrees', 'Kevin Bacon')
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let’s look at the data

Solution# S.1

- Power law in the degree distribution
 [SIGCOMM99]
 internet domains
 log(degree)
 log(rank)
 att.com
 ibm.com
Solution# S.1

- Power law in the degree distribution
 [SIGCOMM99]

\[
\log(\text{rank}) \quad \log(\text{degree}) = 0.82
\]

internet domains

\(-0.82\)

Q: So what?

A1: # of two-step-away pairs:

\(100^2 \times N = 10\) Trillion

internet domains

friends of friends (F.O.F.)
Solution S.1

- Q: So what?
- A1: # of two-step-away pairs: $100^2 * N = 10$ Trillion

Observation – big-data:

- $O(N^2)$ algorithms are ~intractable - $N=1B$
- N^2 seconds = 31B years (>2x age of universe)

- ~0.8PB -> a data center(!)

Gaussian trap

- Such patterns -> New algorithms
Observation – big-data:
• $O(N^2)$ algorithms are ~intractable - $N=1B$
 • N^2 seconds = 31B years
 • 1,000 machines

Observation – big-data:
• $O(N^2)$ algorithms are ~intractable - $N=1B$
 • N^2 seconds = 31B years
 • 1M machines

Observation – big-data:
• $O(N^2)$ algorithms are ~intractable - $N=1B$
 • N^2 seconds = 31B years
 • 10B machines ~ $10Trillion$

Observation – big-data:
• $O(N^2)$ algorithms are ~intractable - $N=1B$
 • N^2 seconds = 31B years
 • 10B machines ~ $10Trillion$

And parallelism might not help
Solution S.2: Eigen Exponent E

Exponent = slope

$E = -0.48$

May 2001

Eigenvalue

Rank of decreasing eigenvalue

- A2: power law in the eigenvalues of the adjacency matrix

Ax = λx

But:

How about graphs from other domains?

More power laws:

- web hit counts [w/ A. Montgomery]

Web Site Traffic

Count (log scale)

Zipf

sites

users

in-degree (log scale)

May 2001

Exponent = slope

$E = -0.48$

May 2001

Eigenvalue

Rank of decreasing eigenvalue

- [Mihail, Papadimitriou ’02]: slope is $\frac{1}{2}$ of rank exponent

15-826 (c) C. Faloutsos, 2017

15-826 (c) C. Faloutsos, 2017
epinions.com

- who-trusts-whom [Richardson + Domingos, KDD 2001]

And numerous more
- # of sexual contacts
- Income [Pareto] –’ 80-20 distribution’
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs (‘mice and elephants’)
- Size of files of a user
 - ...
 - ‘Black swans’

Outline
- Introduction – Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,
 - Triangles
 - Weighted graphs
 - Time evolving graphs

Solution# S.3: Triangle ‘Laws’
- Real social networks have a lot of triangles
Solution # S.3: Triangle ‘Laws’

- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?

Triangle Law: #S.3
[Tsourakakis ICDM 2008]

- ASN
- HEP-TH
- Epinions

X-axis: # of participating triangles
Y: count (~ pdf)

Triangle Law: #S.4
[Tsourakakis ICDM 2008]

- SN
- Reuters
- Epinions

X-axis: degree
Y-axis: mean # triangles
n friends \(\sim n^{1.6} \) triangles

Faloutsos
Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algs)
Q: Can we do that quickly?

But: triangles are expensive to compute
(3-way join; several approx. algs)
Q: Can we do that quickly?
A: Yes!

#triangles = 1/6 \(\sum (\lambda_i^3) \)
(and, because of skewness (S2),
we only need the top few eigenvalues!

1000x+ speed-up, >90% accuracy

Anomalous nodes in Twitter (~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
Triangle counting for large graphs?

Anomalous nodes in Twitter (~3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

(c) C. Faloutsos, 2017
Any other ‘laws’?

Yes!

- Small diameter (~ constant!) –
 - six degrees of separation / ‘Kevin Bacon’
 - small worlds [Watts and Strogatz]

Any other ‘laws’?

- Bow-tie, for the web [Kumar+ ‘99]
- IN, SCC, OUT, ‘tendrils’
- disconnected components

Any other ‘laws’?

- power-laws in communities (bi-partite cores)
 [Kumar+, ‘99]

\[
\begin{align*}
\text{Log(count)} & = \text{Log(m)} \\
\text{n:1} & \\
\text{n:2} & \\
\text{n:3} & \\
\end{align*}
\]
Any other ‘laws’?

- “Jellyfish” for Internet [Tauro+ ’01]
- core: ~clique
- ~5 concentric layers
- many 1-degree nodes

EigenSpokes

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors
 (symmetric, undirected graph)

$$A = U \Sigma U^T$$
EigenSpokes

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

\[A = U \Sigma U^T \]

15-826 (c) C. Faloutsos, 2017

EE plot:
- Scatter plot of scores of \(u_1 \) vs \(u_2 \)
- One would expect
 - Many points @ origin
 - A few scattered ~randomly

15-826 (c) C. Faloutsos, 2017
EigenSpokes

• EE plot:
 - Scatter plot of scores of u1 vs u2
 - One would expect
 - Many points @ origin
 - A few scattered ~randomly

EigenSpokes - pervasiveness

• Present in mobile social graph
 - across time and space

• Patent citation graph

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected
Near-cliques, or near-bipartite-cores, loosely connected

So what?
- Extract nodes with high scores
- High connectivity
- Good “communities”

Bipartite Communities!
- Patents from same inventor(s)
- ‘cut-and-paste’ bibliography!

Magnified bipartite community

Useful for fraud detection!
Outline

• Introduction – Motivation
• Problem#1: Patterns in graphs
 – Static graphs
 • degree, diameter, eigen,
 • Triangles
 – Weighted graphs
 – Time evolving graphs
• Problem#2: Scalability
• Conclusions

Observations on weighted graphs?

• A: yes - even more ‘laws’!

M. McGlohon, L. Akoglu, and C. Faloutsos
Weighted Graphs and Disconnected Components: Patterns and a Generator.
SIG-KDD 2008

Observation W.1: Fortification

Q: How do the weights of nodes relate to degree?

More donors, more $?

‘Reagan’ $10
‘Clinton’ $5
$7
Observation W.1: fortification:

Snapshot Power Law

- Weight: super-linear on in-degree
- Exponent $'iw': 1.01 < iw < 1.26$

More donors, even more $

- 10
- 5

Problem: Time evolution

- With Jure Leskovec (CMU -> Stanford)
- And Jon Kleinberg (Cornell – sabb. @ CMU)

T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at **slowly growing diameter:**
 - Diameter $\sim O(N^{1/3})$
 - Diameter $\sim O(\log N)$
 - Diameter $\sim O(\log \log N)$
- What is happening in real data?
T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at \textit{slowly growing diameter}:
 - \([\text{diameter} \sim O(N^{1/3})]\)
 - \([\text{diameter} \sim \log N]\)
 - \([\text{diameter} \sim O(\log \log N)]\)
- What is happening in real data?
- Diameter \textit{shrinks} over time

T.1 Diameter – “Patents”

- Patent citation network
- 25 years of data
- @1999
 - 2.9 M nodes
 - 16.5 M edges

T.2 Temporal Evolution of the Graphs

- \(N(t)\) … nodes at time \(t\)
- \(E(t)\) … edges at time \(t\)
- Suppose that \(N(t+1) = 2 \times N(t)\)
- Q: what is your guess for \(E(t+1) =? 2 \times E(t)\)

- N(t) … nodes at time t
- E(t) … edges at time t
- Suppose that \(N(t+1) = 2 \times N(t)\)
- Q: what is your guess for \(E(t+1) =? 2 \times E(t)\)
- A: over-doubled!
 - But obeying the \``Densification Power Law'’\'
T.2 Densification – Patent Citations

- Citations among patents granted
- @1999
 - 2.9 M nodes
 - 16.5 M edges
- Each year is a datapoint

Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Scalability
- Conclusions

More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos

Weighted Graphs and Disconnected Components: Patterns and a Generator.

SIG-KDD 2008

[Gelling Point]

- Most real graphs display a gelling point
- After gelling point, they exhibit typical behavior. This is marked by a spike in diameter.
Observation T.3: NLCC behavior

Q: How do NLCC’s emerge and join with the GCC?

(‘‘NLCC’’ = non-largest conn. components)
– Do they continue to grow in size?
– or do they shrink?
– or stabilize?

• After the gelling point, the GCC takes off, but NLCC’s remain ~constant (actually, oscillate).
Timing for Blogs

- with Mary McGlohon (CMU->Google)
- Jure Leskovec (CMU->Stanford)
- Natalie Glance (now at Google)
- Mat Hurst (now at MSR)

[SDM’ 07]

T.4 : popularity over time

Post popularity drops-off – exponentially?

POWER LAW!

Exponent?

Close to -1.5: Barabasi’s stack model

And like the zero-crossings of a random walk
-1.5 slope

T.5: duration of phonecalls

Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

Pedro O. S. Vaz de Melo, Leman Akoglu, Christos Faloutsos, Antonio A. F. Loureiro

PKDD 2010

Probably, power law (?)

No Power Law!
‘TLaC: Lazy Contractor’

• The longer a task (phonecall) has taken,
• The even longer it will take

Odds ratio =
\[
\frac{\text{Casualties(<x)}}{\text{Survivors(\geq x)}}
\]

== power law

Log-logistic distribution

• CDF(t)/(1 - CDF(t)) == OR(t)
• For log-logistic: \(\log[\text{OR}(t)] = \beta + \rho \log(t) \)
Log-logistic distribution

- Logistic distribution: CDF -> sigmoid
- LOG-Logistic distribution:

\[CDF(x) = \frac{1}{1 + \exp(-x)} \quad \text{CDF}(x) = \frac{1}{1 + \frac{1}{x}} \]

Data Description

- Data from a private mobile operator of a large city
 - 4 months of data
 - 3.1 million users
 - more than 1 billion phone records
- Over 96% of ‘talkative’ users obeyed a TLAC distribution (‘talkative’: >30 calls)

Outliers:
Outline

• Introduction – Motivation
• Problem#1: Patterns in graphs
• Problem#2: Scalability - PEGASUS
• Conclusions

Scalability

• Yahoo: 5Pb of data [Fayyad, KDD’07]
• Problem: machine failures, on a daily basis
• How to parallelize data mining tasks, then?
• A: map/reduce – hadoop (open-source clone)
 http://hadoop.apache.org/

Outline – Algorithms & results

<table>
<thead>
<tr>
<th></th>
<th>Centralized</th>
<th>Hadoop/PEGASUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree Distr.</td>
<td>old</td>
<td>old</td>
</tr>
<tr>
<td>Pagerank</td>
<td>old</td>
<td>old</td>
</tr>
<tr>
<td>Diameter/ANF</td>
<td>old</td>
<td>HERE</td>
</tr>
<tr>
<td>Conn. Comp</td>
<td>old</td>
<td>HERE</td>
</tr>
<tr>
<td>Triangles</td>
<td>done</td>
<td>HERE</td>
</tr>
<tr>
<td>Visualization</td>
<td>started</td>
<td></td>
</tr>
</tbody>
</table>

HADI for diameter estimation

• Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM’10
• Naively: diameter needs $O(N^{**2})$ space and up to $O(N^{**3})$ time – prohibitive (N~1B)
• Our HADI: linear on E (~10B)
 – Near-linear scalability wrt # machines
 – Several optimizations -> 5x faster
Faloutsos

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
- Largest publicly available graph ever studied.

Diameter: shrunk

7 degrees of separation (!)

~7 (undir.)

19+ [Barabasi+]

~1999, ~1M nodes

14 (dir.)
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

Q: Shape?

- effective diameter: surprisingly small.
- Multi-modality (?)

Radius Plot of GCC of YahooWeb.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores.

Conjecture:
- EN
- DE
- BR

Outline – Algorithms & results

<table>
<thead>
<tr>
<th></th>
<th>Centralized</th>
<th>Hadoop/PEGASUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree Distr.</td>
<td>old</td>
<td>old</td>
</tr>
<tr>
<td>Pagerank</td>
<td>old</td>
<td>old</td>
</tr>
<tr>
<td>Diameter/ANF</td>
<td>old</td>
<td>HERE</td>
</tr>
<tr>
<td>Conn. Comp</td>
<td>old</td>
<td>HERE</td>
</tr>
<tr>
<td>Triangles</td>
<td></td>
<td>HERE</td>
</tr>
<tr>
<td>Visualization</td>
<td>started</td>
<td></td>
</tr>
</tbody>
</table>
Generalized Iterated Matrix Vector Multiplication (GIMV)

PEGASUS: A Peta-Scale Graph Mining System - Implementation and Observations.
U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos.
(ICDM) 2009, Miami, Florida, USA.
Best Application Paper (runner-up).

Example: GIM-V At Work

- Connected Components – 4 observations:

 ![Graph](image)

 \(\text{Count} \) vs. \(\text{Size} \)

 1) 10K x larger than next
Example: GIM-V At Work

- Connected Components

<table>
<thead>
<tr>
<th>Size</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>~0.7B</td>
<td>singleton nodes</td>
</tr>
</tbody>
</table>

3) SLOPE!

Example: GIM-V At Work

- Connected Components

<table>
<thead>
<tr>
<th>Size</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-size cmpt X 500</td>
<td>Why?</td>
</tr>
<tr>
<td>1100-size cmpt X 65</td>
<td>Why?</td>
</tr>
</tbody>
</table>

4) Spikes!

Example: GIM-V At Work

- Connected Components

<table>
<thead>
<tr>
<th>Size</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>suspicious financial-advice sites (not existing now)</td>
</tr>
</tbody>
</table>
GIM-V At Work

• Connected Components over Time
• LinkedIn: 7.5M nodes and 58M edges

Stable tail slope after the gelling point

Outline

• Introduction – Motivation
• Problem#1: Patterns in graphs
• DELETE
• Problem#2: Scalability
• Conclusions

OVERALL CONCLUSIONS – low level:

• Several new patterns (fortification, shrinking diameter, triangle-laws, conn. components, etc)
• Log-logistic distribution: ubiquitous
• New tools:
 – anomaly detection (OddBall), belief propagation, immunization
• Scalability: PEGASUS / hadoop

OVERALL CONCLUSIONS – high level

• BIG DATA: Large datasets reveal patterns/outliers that are invisible otherwise
References

- Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos, *GraphScope: Parameter-free Mining of Large Time-evolving Graphs* ACM SIGKDD Conference, San Jose, CA, August 2007
References

• Jimeng Sun, Dacheng Tao, Christos Faloutsos: *Beyond streams and graphs: dynamic tensor analysis*. KDD 2006: 374-383

References

• Hanghang Tong, Christos Faloutsos, *Center-Piece Subgraphs: Problem Definition and Fast Solutions*, KDD 2006, Philadelphia, PA

References

• Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs. KDD 2007: 737-746

(Project info)

www.cs.cmu.edu/~pegasus

Chau, Polo
Koutra, Danae
Prakash, Aditya
Akoglu, Leman
Kang, U
McGlohon, Mary
Tong, Hanghang