Lecture #27: Time series mining and forecasting

Christos Faloutsos

Must-Read Material

- Chungmin Melvin Chen and Nick Roussopoulos, Adaptive Selectivity Estimation Using Query Feedbacks, SIGMOD 1994

Outline

- Motivation
- Similarity search – distance functions
- Linear Forecasting
- Bursty traffic - fractals and multifractals
- Non-linear forecasting
- Conclusions

Thanks

Deepay Chakrabarti (UT-Austin)
Spiros Papadimitriou (Rutgers)
Prof. Byoung-Kee Yi (Samsung)
Problem definition

- **Given**: one or more sequences
 \[x_1, x_2, \ldots, x_t, \ldots \]
 \((y_1, y_2, \ldots, y_t, \ldots) \)
- **Find**
 - similar sequences; forecasts
 - patterns; clusters; outliers

Motivation - Applications

- Financial, sales, economic series
- Medical
 - ECGs +; blood pressure etc monitoring
 - reactions to new drugs
 - elderly care

Motivation - Applications (cont’d)

- ‘Smart house’
 - sensors monitor temperature, humidity, air quality
- video surveillance

Motivation - Applications (cont’d)

- civil/automobile infrastructure
 - bridge vibrations [Oppenheim+02]
 - road conditions / traffic monitoring
Motivation - Applications (cont’d)

• Weather, environment/anti-pollution
 – volcano monitoring
 – air/water pollutant monitoring

Motivation - Applications (cont’d)

• Computer systems
 – ‘Active Disks’ (buffering, prefetching)
 – web servers (ditto)
 – network traffic monitoring
 – ...

Stream Data: Disk accesses

<table>
<thead>
<tr>
<th>#bytes</th>
<th>Disk traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5000000</td>
<td></td>
</tr>
<tr>
<td>1000000</td>
<td></td>
</tr>
<tr>
<td>1500000</td>
<td></td>
</tr>
<tr>
<td>2000000</td>
<td></td>
</tr>
</tbody>
</table>

Problem #1:

Goal: given a signal (e.g., #packets over time)
Find: patterns, periodicities, and/or compress

lynx caught per year
(packets per day; temperature per day)
Problem #2: Forecast
Given x_p, x_{t-1}, \ldots, forecast x_{t+1}

Problem #2’: Similarity search
E.g., Find a 3-tick pattern, similar to the last one

Problem #3:
- Given: A set of correlated time sequences
- Forecast ‘Sent(t)’

Important observations
Patterns, rules, forecasting and similarity indexing are closely related:
- To do forecasting, we need
 - to find patterns/rules
 - to find similar settings in the past
- to find outliers, we need to have forecasts
 - (outlier = too far away from our forecast)
Outline

• Motivation
• Similarity Search and Indexing
 • Linear Forecasting
 • Bursty traffic - fractals and multifractals
 • Non-linear forecasting
• Conclusions

Importance of distance functions

Subtle, but absolutely necessary:
• A ‘must’ for similarity indexing (→ forecasting)
• A ‘must’ for clustering
Two major families
 – Euclidean and Lp norms
 – Time warping and variations

Euclidean and Lp

\[D(\bar{x}, \bar{y}) = \sum_{i=1}^{n} (x_i - y_i)^2 \]
\[L_p(\bar{x}, \bar{y}) = \sum_{i=1}^{n} |x_i - y_i|^p \]

- \(L_1 \): city-block = Manhattan
- \(L_2 \) = Euclidean
- \(L_{\infty} \)
Observation #1

- Time sequence -> n-d vector

Day-1 Day-2 Day-n

Observation #2

Euclidean distance is closely related to:
- cosine similarity
- dot product
- ‘cross-correlation’ function

Time Warping

- allow accelerations - decelerations
 - (with or w/o penalty)
- THEN compute the (Euclidean) distance (+ penalty)
- related to the string-editing distance

Time Warping

‘stutters’:
Time warping

Q: how to compute it?
A: dynamic programming

\[D(i, j) = \text{cost to match} \]

prefix of length \(i \) of first sequence \(x \) with prefix
of length \(j \) of second sequence \(y \)

Full-text scanning

• Approximate matching - string editing distance:

\[d(\text{'survey'}, \text{'surgery'}) = 2 \]

\[= \text{min } \# \text{ of insertions, deletions, substitutions to transform the first string into the second} \]

SURVEY
SURGERY

Time warping

Thus, with no penalty for stutter, for sequences

\[x_1, x_2, \ldots, x_i; \quad y_1, y_2, \ldots, y_j \]

\[D(i, j) = \|x[i] - y[j]\| + \min \left\{ \begin{array}{ll}
D(i-1, j-1) & \text{no stutter} \\
D(i, j-1) & \text{x-stutter} \\
D(i-1, j) & \text{y-stutter}
\end{array} \right. \]

Time warping

VERY SIMILAR to the string-editing distance

\[D(i, j) = \|x[i] - y[j]\| + \min \left\{ \begin{array}{ll}
D(i-1, j-1) & \text{no stutter} \\
D(i, j-1) & \text{x-stutter} \\
D(i-1, j) & \text{y-stutter}
\end{array} \right. \]
Full-text scanning

if s[i] = t[j] then
 cost(i, j) = cost(i-1, j-1)
else
 cost(i, j) = min (1 + cost(i, j-1) // deletion
 1 + cost(i-1, j-1) // substitution
 1 + cost(i-1, j) // insertion
)

Time warping

VERY SIMILAR to the string-editing distance

Time-warping

\[D(i, j) = \|x[i] - y[j]\| + \min \{ D(i-1, j-1), D(i, j-1), D(i-1, j) \} \]

String editing

\[D(i, j) = \min \{ 1 + \text{cost}(i-1, j-1) // \text{sub.}, 1 + \text{cost}(i, j-1) // \text{del.}, 1 + \text{cost}(i-1, j) // \text{ins.} \} \]

Other Distance functions

- piece-wise linear/flat approx.; compare pieces [Keogh+01] [Faloutsos+97]
- ‘cepstrum’ (for voice [Rabiner+Juang]) – do DFT; take log of amplitude; do DFT again!
- Allow for small gaps [Agrawal+95]

See tutorial by [Gunopulos + Das, SIGMOD01]
Other Distance functions

• In [Keogh+, KDD’04]: parameter-free, MDL based

Conclusions

Prevailing distances:
– Euclidean and
– time-warping

Outline

• Motivation
• Similarity search and distance functions
• Linear Forecasting
• Bursty traffic - fractals and multifractals
• Non-linear forecasting
• Conclusions

Linear Forecasting
Forecasting

"Prediction is very difficult, especially about the future." - Nils Bohr

http://www.hfac.uh.edu/MediaFutures/thoughts.html

Outline

- Motivation
- ...
- Linear Forecasting
 - Auto-regression: Least Squares; RLS
 - Co-evolving time sequences
 - Examples
 - Conclusions

Reference

(Describes MUSCLES and Recursive Least Squares)

Problem#2: Forecast

- Example: give x_{t-1}, x_{t-2}, ..., forecast x_t
Forecasting: Preprocessing

MANUALLY:
- remove trends
- spot periodicities

7 days

Problem#2: Forecast

- Solution: try to express
 \(x_t \)
 as a linear function of the past: \(x_{t-2}, x_{t-2}, \ldots \)
 (up to a window of \(w \))

Formally:

\[
 x_t \approx a_1 x_{t-1} + \ldots + a_w x_{t-w} + \text{noise}
\]

(Problem: Back-cast; interpolate)

- Solution - interpolate: try to express
 \(x_t \)
 as a linear function of the past AND the future:
 \(x_{t+1}, x_{t+2}, \ldots, x_{t+w_{\text{future}}}, x_{t+1}, x_{t+1}, \ldots, x_{t+w_{\text{past}}} \)
 (up to windows of \(w_{\text{past}}, w_{\text{future}} \))
- EXACTLY the same algo’s

Linear Regression: idea

- express what we don’t know (= ‘dependent variable’)
- as a linear function of what we know (= ‘indep. variable(s)’

Linear Auto Regression:

<table>
<thead>
<tr>
<th>Time</th>
<th>Packets Sent(t-1)</th>
<th>Packets Sent(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>54</td>
<td>72</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>??</td>
</tr>
</tbody>
</table>

- lag \(w = 1 \)
- Dependent variable = # of packets sent (S[t])
- Independent variable = # of packets sent (S[t-1])

Outline

- Motivation
- ...
- Linear Forecasting
 - Auto-regression: Least Squares; RLS
 - Co-evolving time sequences
 - Examples
 - Conclusions

More details:

- Q1: Can it work with window \(w > 1 \)?
- A1: YES!
More details:

- Q1: Can it work with window $w > 1$?
- A1: YES! (we’ll fit a hyper-plane, then!)

$X_{[N \times w]} \times a_{[w \times 1]} = y_{[N \times 1]}

- OVER-CONSTRAINED
 - a is the vector of the regression coefficients
 - X has the N values of the w indep. variables
 - y has the N values of the dependent variable
More details:

• $X_{[N \times w]} \times a_{[w \times 1]} = y_{[N \times 1]}$

<table>
<thead>
<tr>
<th>Ind-Var1</th>
<th>Ind-Var-w</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_{11}, X_{12}, \ldots, X_{1w}$</td>
<td>$X_{21}, X_{22}, \ldots, X_{2w}$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$X_{N1}, X_{N2}, \ldots, X_{Nw}$</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

$\begin{bmatrix}
X_{11} & a_1 \\
X_{12} & a_2 \\
\vdots & \vdots \\
X_{N1} & a_w
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_N
\end{bmatrix}
=
\begin{bmatrix}
X_{11} & X_{12} & \ldots & X_{1w} & y_1 \\
X_{21} & X_{22} & \ldots & X_{2w} & y_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
X_{N1} & X_{N2} & \ldots & X_{Nw} & y_N
\end{bmatrix}$

More details

• Q2: How to estimate $a_1, a_2, \ldots, a_w = a$?
• A2: with Least Squares fit

$\mathbf{a} = (X^T \times X)^{-1} \times (X^T \times y)$

(Moore-Penrose pseudo-inverse)

• \mathbf{a} is the vector that minimizes the RMSE from y

• <identical math with ‘query feedbacks’>

More details

• Straightforward solution:

$\mathbf{a} = (X^T \times X)^{-1} \times (X^T \times y)$

\mathbf{a} : Regression Coeff. Vector
X : Sample Matrix

• Observations:
– Sample matrix X grows over time
– needs matrix inversion
– $O(Nw^2)$ computation
– $O(Nw)$ storage
Even more details

- Q3: Can we estimate \(a \) incrementally?
- A3: Yes, with the brilliant, classic method of ‘Recursive Least Squares’ (RLS) (see, e.g., [Yi+00], for details).
- We can do the matrix inversion, WITHOUT inversion! (How is that possible?!)
EVEN more details:

\[
G_{N+1} = G_N - [c]^{-1} \times [G_N \times x_{N+1}^T] \times x_{N+1} \times G_N
\]

\[
\text{Let's elaborate (VERY IMPORTANT, VERY VALUABLE!)}
\]

\[
c = [1 + x_{N+1} \times G_N \times x_{N+1}^T]
\]

EVEN more details:

\[
a = [X_{N+1}^T \times X_{N+1}]^{-1} \times [X_{N+1}^T \times y_{N+1}]
\]

\[
\text{[w x (N+1)]} \quad [(N+1) x w] \quad [(N+1) x 1]
\]

\[
\text{[w x (N+1)]} \quad [w x (N+1)]
\]

EVEN more details:

\[
a = [X_{N+1}^T \times X_{N+1}]^{-1} \times [X_{N+1}^T \times y_{N+1}]
\]

\[
\text{[((N+1) x w)]}
\]

\[
\text{[w x (N+1)]}
\]
EVEN more details:

\[a = \left[X_{N+1}^T \times X_{N+1} \right]^{-1} \times \left[X_{N+1}^T \times y_{N+1} \right] \]

'gain matrix' \(G_{N+1} = [X_{N+1}^T \times X_{N+1}]^{-1} \)

\(G_{N+1} = G_N - [c]^{-1} \times [G_N \times x_{N+1}^T] \times x_{N+1} \times G_N \)

\(c = [1 + x_{N+1} \times G_N \times x_{N+1}^T] \)

EVEN more details:

\(G_{N+1} = G_N - [c]^{-1} \times [G_N \times x_{N+1}^T] \times x_{N+1} \times G_N \)

\(c = [1 + x_{N+1} \times G_N \times x_{N+1}^T] \)

Altogether:

\[a = \left[X_{N+1}^T \times X_{N+1} \right]^{-1} \times \left[X_{N+1}^T \times y_{N+1} \right] \]

\(G_{N+1} = [X_{N+1}^T \times X_{N+1}]^{-1} \)

\(G_{N+1} = G_N - [c]^{-1} \times [G_N \times x_{N+1}^T] \times x_{N+1} \times G_N \)

\(c = [1 + x_{N+1} \times G_N \times x_{N+1}^T] \)
Altogether:

\[G_0 \equiv \delta I \quad \text{IMPORTANT!} \]

where

\(I: w \times w \) identity matrix

\(\delta: \) a large positive number (say, \(10^4 \))

Comparison:

- **Straightforward Least Squares**
 - Needs huge matrix (growing in size) \(O(N \times w) \)
 - Costly matrix operation \(O(N \times w^2) \)

- **Recursive LS**
 - Need much smaller, fixed size matrix \(O(w \times w) \)
 - Fast, incremental computation \(O(1 \times w^2) \)
 - No matrix inversion

N = \(10^6 \), \(w = 1-100 \)

Pictorially:

- **Given:**
 - Independent Variable
 - Dependent Variable

- **new point**
Pictorially:
RLS: quickly compute new best fit

Even more details

- Q4: can we ‘forget’ the older samples?
- A4: Yes - RLS can easily handle that [Yi+00]:

Adaptability - ‘forgetting’
Adaptability - ‘forgetting’

- RLS: can *trivially* handle ‘forgetting’ (see [Yi+,2000])

Outline

- Motivation
- ...
- Linear Forecasting
 - Auto-regression: Least Squares; RLS
 - Co-evolving time sequences
 - Examples
 - Conclusions

Solution:

Q: what should we do?
Solution:
Least Squares, with
• Dep. Variable: Repeated(t)
• Indep. Variables: Sent(t-1) … Sent(t-w);
Lost(t-1) …Lost(t-w); Repeated(t-1), ...
• (named: ‘MUSCLES’ [Yi+00])

Forecasting - Outline
• Auto-regression
• Least Squares; recursive least squares
• Co-evolving time sequences
• Examples
• Conclusions

Examples - Experiments
• Datasets
 – Modem pool traffic (14 modems, 1500 time-
ticks; #packets per time unit)
 – AT&T WorldNet internet usage (several data
 streams; 980 time-ticks)
• Measures of success
 – Accuracy : Root Mean Square Error (RMSE)

Accuracy - “Modem”
MUSCLES outperforms AR & “yesterday”
Accuracy - “Internet”

MUSCLES consistently outperforms AR & "yesterday".

Linear forecasting - Outline

- Auto-regression
- Least Squares; recursive least squares
- Co-evolving time sequences
- Examples
 - Conclusions

Conclusions - Practitioner’s guide

- AR(IMA) methodology: prevailing method for linear forecasting
- Brilliant method of Recursive Least Squares for fast, incremental estimation.
- See [Box-Jenkins]
- (AWSOM: no human intervention)

Resources: software and urls

- free-ware: ‘R’ for stat. analysis (clone of Splus)
 - http://cran.r-project.org/
- python script for RLS
 - http://www.cs.cmu.edu/~christos/SRC/rls-all.tar
Books

Additional Reading

- [Papadimitriou vldb2003] Spiros Papadimitriou, Anthony Brockwell and Christos Faloutsos
- [Yi+00] Byoung-Kee Yi et al.: *Online Data Mining for Co-Evolving Time Sequences*, ICDE 2000. (Describes MUSCLES and Recursive Least Squares)

Outline

- Motivation
- Similarity search and distance functions
- Linear Forecasting
 - Bursty traffic - fractals and multifractals
 - Non-linear forecasting
- Conclusions

Bursty Traffic & Multifractals
Outline

- Motivation
- ...
- Linear Forecasting
- Bursty traffic - fractals and multifractals
 - Problem
 - Main idea (80/20, Hurst exponent)
 - Results

Reference:

Full thesis: CMU-CS-05-185

Recall: Problem #1:

Goal: given a signal (e.g., #bytes over time)
Find: patterns, periodicities, and/or compress

<table>
<thead>
<tr>
<th>#bytes</th>
<th>Bytes per 30’</th>
</tr>
</thead>
<tbody>
<tr>
<td>hacker</td>
<td>packets per day; earthquakes per year</td>
</tr>
<tr>
<td>time</td>
<td></td>
</tr>
</tbody>
</table>

Problem #1

- model bursty traffic
- generate realistic traces
- (Poisson does not work)
Motivation

• predict queue length distributions (e.g., to give probabilistic guarantees)
• “learn” traffic, for buffering, prefetching, ‘active disks’, web servers

But:

• Q1: How to generate realistic traces; extrapolate; give guarantees?
• Q2: How to estimate the model parameters?

Outline

• Motivation
• ...
• Linear Forecasting
• Bursty traffic - fractals and multifractals
 – Problem
 – Main idea (80/20, Hurst exponent)
 – Results

Approach

• Q1: How to generate a sequence, that is
 – bursty
 – self-similar
 – and has similar queue length distributions
Approach

- A: ‘binomial multifractal’ [Wang+02]
 - ~ 80-20 ‘law’:
 - 80% of bytes/queries etc on first half
 - repeat recursively
- b: bias factor (e.g., 80%)

Could you use IFS?
To generate such traffic?
Could you use IFS?
To generate such traffic?
A: Yes – which transformations?

A:
\[x' = \frac{x}{2} \quad (p = 0.2) \]
\[x' = \frac{x}{2} + 0.5 \quad (p = 0.8) \]

Parameter estimation
• Q2: How to estimate the bias factor \(b \)?

• A: MANY ways [Crovella+96]
 – Hurst exponent
 – variance plot
 – even DFT amplitude spectrum!
 (‘periodogram’)
 – Fractal dimension (D2)
 • Or D1 (‘entropy plot’ [Wang+02])
Fractal dimension

- Real (and 80-20) datasets can be in-between: bursts, gaps, smaller bursts, smaller gaps, at every scale

Dim = 1

Dim = 0

0 < Dim < 1

Estimating ‘b’

- **Exercise:** Show that

\[D_2 = - \log_2 (b^2 + (1-b)^2) \]

Sanity checks:

- \(b = 1.0 \) \(D_2 = ?? \)
- \(b = 0.5 \) \(D_2 = ?? \)

(Fractals, again)

- What set of points could have behavior between point and line?

Cantor dust

- Eliminate the middle third
- Recursively!
Dimensionality?
(no length; infinite # points!)
Answer: \(\frac{\log 2}{\log 3} = 0.6 \)

Conclusions

- Multifractals (80/20, ‘b-model’,
 Multiplicative Wavelet Model (MWM)) for
 analysis and synthesis of bursty traffic

Further reading:

- Crovella, M. and A. Bestavros (1996). Self-
 Similarity in World Wide Web Traffic, Evidence
 and Possible Causes. Sigmetrics.
- [ieeeTN94] W. E. Leland, M.S. Taqqu, W.
 Willinger, D.V. Wilson, On the Self-Similar
 Nature of Ethernet Traffic, IEEE Transactions on
Further reading

Outline

- Motivation
- ...
- Linear Forecasting
- Bursty traffic - fractals and multifractals

- Non-linear forecasting
- Conclusions

Reference:

[Deepay Chakrabarti and Christos Faloutsos F4: Large-Scale Automated Forecasting using Fractals CIKM 2002, Washington DC, Nov. 2002.]
Detailed Outline

- Non-linear forecasting
 - Problem
 - Idea
 - How-to
 - Experiments
 - Conclusions

Datasets

Logistic Parabola:
\[x_t = ax_{t-1}(1-x_{t-1}) + \text{noise} \]
Models population of flies [R. May/1976]

How to forecast?

- ARIMA - but: linearity assumption

Recall: Problem #1

Given a time series \(\{x_t\} \), predict its future course, that is, \(x_{t+1}, x_{t+2}, \ldots \)
How to forecast?

• ARIMA - but: linearity assumption

• ANSWER: ‘Delayed Coordinate Embedding’ = Lag Plots [Sauer92] ~ nearest-neighbor search, for past incidents

Questions:

• Q1: How to choose lag L?
• Q2: How to choose k (the # of NN)?
• Q3: How to interpolate?
• Q4: why should this work at all?

Q1: Choosing lag L

• Manually (16, in award winning system by [Sauer94])
Q2: Choosing number of neighbors k

- Manually (typically ~ 1-10)

Q3: How to interpolate?

How do we interpolate between the k nearest neighbors?

A3.1: Average

A3.2: Weighted average (weights drop with distance - how?)

A3.3: Using SVD - seems to perform best ([Sauer94] - first place in the Santa Fe forecasting competition)

Q4: Any theory behind it?

A4: YES!
Theoretical foundation

• Based on the ‘Takens theorem’ [Takens81]
• which says that long enough delay vectors can do prediction, even if there are unobserved variables in the dynamical system (= diff. equations)

Example: Lotka-Volterra equations
\[
\begin{align*}
\frac{dH}{dt} &= rH - aHP \\
\frac{dP}{dt} &= bHP - mP
\end{align*}
\]

H is count of prey (e.g., hare)
P is count of predators (e.g., lynx)
Suppose only P(t) is observed (t=1, 2, …).

But the delay vector space is a faithful reconstruction of the internal system state
So prediction in delay vector space is as good as prediction in state space

Detailed Outline

• Non-linear forecasting
 – Problem
 – Idea
 – How-to
 – Experiments
 – Conclusions
Datasets

Logistic Parabola:
\[x_t = ax_{t-1}(1-x_{t-1}) + \text{noise} \]
Models population of flies [R. May/1976]

Lag-plot

Datasets

Logistic Parabola:
\[x_t = ax_{t-1}(1-x_{t-1}) + \text{noise} \]
Models population of flies [R. May/1976]

Lag-plot

ARIMA: fails

Logistic Parabola

Our Prediction from here

Value

Comparison of prediction to correct values

Timesteps

Value
Datasets

LORENZ: Models convection currents in the air
\[
\begin{align*}
\frac{dx}{dt} &= a(y - x) \\
\frac{dy}{dt} &= x(b - z) - y \\
\frac{dz}{dt} &= xy - cz
\end{align*}
\]

Datasets

- LASER: fluctuations in a Laser over time (used in Santa Fe competition)

LORENZ

Comparison of prediction to correct values

Laser

Comparison of prediction to correct values
Conclusions

• Lag plots for non-linear forecasting (Takens’ theorem)
• suitable for ‘chaotic’ signals

References

Overall conclusions

• Similarity search: Euclidean/time-warping; feature extraction and SAMs
Overall conclusions

• Similarity search: Euclidean/time-warping; feature extraction and SAMs
• Signal processing: DWT is a powerful tool

• Similarity search: Euclidean/time-warping; feature extraction and SAMs
• Signal processing: DWT is a powerful tool
• Linear Forecasting: AR (Box-Jenkins) methodology; AWSOM

• Similarity search: Euclidean/time-warping; feature extraction and SAMs
• Signal processing: DWT is a powerful tool
• Linear Forecasting: AR (Box-Jenkins) methodology; AWSOM
• Bursty traffic: multifractals (80-20 ‘law’)
• Non-linear forecasting: lag-plots (Takens)