15-826: Multimedia Databases and Data Mining

Lecture #6: Spatial Access Methods
Part III: R-trees
C. Faloutsos

R-trees – impact:
- Popular method; like multi-d B-trees
- Guaranteed utilization; fast search (low dim’s)
- Used in practice:
 - Oracle spatial (R-tree default; z-order, too)
 docs.oracle.com/html/A88805_01/sdo_intr.htm
 - IBM-DB2 spatial extender
 - Postgres: create index ... using [rtree | gist]
 - Sqlite3: www.sqlite.org/rtree.html

Outline
Goal: ‘Find similar / interesting things’
- Intro to DB
- Indexing - similarity search
- Data Mining

Must-read material
- MM-Textbook, Chapter 5.2
- Ramakrishnan+Gehrke, Chapter 28.6
Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
 - problem dfn
 - z-ordering
 - R-trees
 - ...
- text
- ...

Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)

Reminder: problem

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer spatial queries (range, nn, etc)

R-trees

- z-ordering: cuts regions to pieces -> dup. elim.
- how could we avoid that?
- Idea: try to extend/merge B-trees and k-d trees
(first attempt: k-d-B-trees)

- [Robinson, 81]: if f is the fanout, split point-set in f parts; and so on, recursively

But: insertions/deletions are tricky (splits may propagate downwards and upwards)
- no guarantee on space utilization

R-trees

- [Guttman 84] Main idea: allow parents to overlap!

Antonin Guttman
[http://www.baymoon.com/~tg2/]

[Guttman 84] Main idea: allow parents to overlap!
- \Rightarrow guaranteed 50% utilization
- \Rightarrow easier insertion/split algorithms.
- (only deal with Minimum Bounding Rectangles - MBRs)
R-trees

• eg., w/ fanout 4: group nearby rectangles to parent MBRs; each group -> disk page

R-trees

• eg., w/ fanout 4:

R-trees

• eg., w/ fanout 4:

R-trees - format of nodes

• \{(MBR; obj.ptr)\} for leaf nodes
R-trees - format of nodes

• \{(MBR; node-ptr)\} for non-leaf nodes

R-trees - range search?

Observations:
• every parent node completely covers its ‘children’
• a child MBR may be covered by more than one parent - it is stored under ONLY ONE of them. (ie., no need for dup. elim.)
R-trees - range search

Observations - cont’d
• a point query may follow multiple branches.
• everything works for any dimensionality

Indexing - more detailed outline

• R-trees
 – main idea; file structure
 – algorithms: insertion/split
 – deletion
 – search: range, nn, spatial joins
 – performance analysis
 – variations (packed; hilbert;...)

R-trees - insertion

• eg., rectangle ‘X’
R-trees - insertion

- eg., rectangle ‘Y’

\[
\begin{aligned}
P1 & \quad P3 & \quad I \\
A & \quad B & \quad C & \quad G \\
Y & \quad P2 & \quad D & \quad E & \quad H \\
\quad P4 & \quad J
\end{aligned}
\]

R-trees - insertion

- eg., rectangle ‘Y’ : extend suitable parent.

\[
\begin{aligned}
P1 & \quad P3 & \quad I \\
A & \quad B & \quad C & \quad H \\
Y & \quad P2 & \quad D & \quad E & \quad I \\
\quad P4 & \quad J
\end{aligned}
\]

R-trees - insertion

- eg., rectangle ‘Y’ : extend suitable parent.

\[
\begin{aligned}
P1 & \quad P3 & \quad I \\
A & \quad B & \quad C \\
Y & \quad P2 & \quad D \\
\quad P4
\end{aligned}
\]

R-trees - insertion

- eg., rectangle ‘Y’ : extend suitable parent.

\[
\begin{aligned}
P1 & \quad P3 & \quad I \\
A & \quad B & \quad C \\
Y & \quad P2 & \quad D
\end{aligned}
\]

Q: how to measure ‘suitability’?

A: by increase in area (volume) (more details: later, under ‘performance analysis’)

Q: what if there is no room? how to split?
R-trees - insertion

• eg., rectangle ‘W’

A
B
C
D
E
F
G
H
I
J
K
W

P1
P2
P3
P4

R-trees - insertion

• eg., rectangle ‘W’ - focus on ‘P1’ - how to split?

A
B
C
D
E
F
G
H
I
J
K
W

P1
P2
P3
P4

R-trees - insertion

• eg., rectangle ‘W’ - focus on ‘P1’ - how to split?

(A1: plane sweep, until 50% of rectangles)

• A2: ‘linear’ split

• A3: quadratic split

• A4: exponential split

R-trees - insertion & split

• pick two rectangles as ‘seeds’;

• assign each rectangle ‘R’ to the ‘closest’ ‘seed’

seed1
seed2
R
R-trees - insertion & split

- pick two rectangles as ‘seeds’;
- assign each rectangle ‘R’ to the ‘closest’ ‘seed’
- Q: how to measure ‘closeness’?

R: by increase of area (volume)
R-trees - insertion & split

- pick two rectangles as ‘seeds’;
- assign each rectangle ‘R’ to the ‘closest’ ‘seed’
- smart idea: pre-sort rectangles according to delta of closeness (ie., schedule easiest choices first!)

R-trees - insertion - pseudocode

- decide which parent to put new rectangle into (‘closest’ parent)
- if overflow, split to two, using (say,) the quadratic split algorithm
 - propagate the split upwards, if necessary
- update the MBRs of the affected parents.

R-trees - insertion - observations

- many more split algorithms exist (next!)

Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...
R-trees - deletion

• delete rectangle
• if underflow
 – ??

R-trees - deletion

• delete rectangle
• if underflow
 – temporarily delete all siblings (!);
 – delete the parent node and
 – re-insert them

R-trees - deletion

• variations: later (eg. Hilbert R-trees w/ 2-to-1 merge)

Indexing - more detailed outline

• R-trees
 – main idea; file structure
 – algorithms: insertion/split
 – deletion
 – search: range, nn, spatial joins
 – performance analysis
 – variations (packed; hilbert;...)

Copyright: C. Faloutsos (2017)
R-trees - range search

pseudocode:
check the root
for each branch,
if its MBR intersects the query rectangle
apply range-search (or print out, if this is a leaf)

R-trees - nn search

• Q: How? (find near neighbor; refine...)

R-trees - nn search

• A1: depth-first search; then, range query
R-trees - nn search

• A1: depth-first search; then, range query

A
B
C
D
E
F
G
H
I
J
P1
P2
P3
P4
q

R-trees - nn search

• A1: depth-first search; then, range query

A
B
C
D
E
F
G
H
I
J
P1
P2
P3
P4
q

R-trees - nn search

• A2: [Roussopoulos+, sigmod95]:
 – priority queue, with promising MBRs, and their best and worst-case distance
• main idea:

consider only P2 and P4, for illustration

A
B
C
D
E
F
G
H
I
J
P1
P2
P3
P4
q
R-trees - nn search

best of P4

worst of P2

\[q \]

P2

D

E

P4

\[\Rightarrow P4 \text{ is useless} \]

for 1-nn

worst of P2

\[q \]

P2

D

E

P4

\[\Rightarrow P4 \text{ is useless} \]

for 1-nn

\[\Rightarrow P4 \text{ is useless} \]

for 1-nn

what is really the worst of, say, P2?

worst of P2

\[q \]

P2

D

E

\[\Rightarrow P4 \text{ is useless} \]

for 1-nn

what is really the worst of, say, P2?

• A: the smallest of the two red segments!
R-trees - nn search

- variations: [Hjaltason & Samet] incremental nn:
 - build a priority queue
 - scan enough of the tree, to make sure you have the k nn
 - to find the $(k+1)$-th, check the queue, and scan some more of the tree
- ‘optimal’ (but, may need too much memory)

Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, **spatial joins**
 - performance analysis
 - variations (packed; hilbert;...)

R-trees - spatial joins

Spatial joins: find (quickly) all counties intersecting lakes

R-trees - spatial joins

Spatial joins: find (quickly) all counties intersecting lakes
R-trees - spatial joins

Spatial joins: find (quickly) all counties intersecting lakes

Assume that they are both organized in R-trees:

for each parent P1 of tree T1
for each parent P2 of tree T2
if their MBRs intersect,
process them recursively (i.e., check their children)
R-trees - spatial joins

Improvements - variations:
- [Seeger+, sigmod 92]: do some pre-filtering; do plane-sweeping to avoid $N1 \times N2$ tests for intersection
- [Lo & Ravishankar, sigmod 94]: ’seeded’ R-trees (FYI, many more papers on spatial joins, without R-trees: [Koudas+ Sevcik], e.t.c.)

R-trees - performance analysis

• How many disk (=node) accesses we’ll need for
 – range
 – nn
 – spatial joins
• why does it matter?

Indexing - more detailed outline

• R-trees
 – main idea; file structure
 – algorithms: insertion/split
 – deletion
 – search: range, nn, spatial joins
 – performance analysis
 – variations (packed; hilbert;...)

R-trees - performance analysis

• How many disk (=node) accesses we’ll need for
 – range
 – nn
 – spatial joins
• why does it matter?
• A: because we can design split etc algorithms accordingly; also, do query-optimization
R-trees - performance analysis

• How many disk (=node) accesses we’ll need for
 – range
 – nn
 – spatial joins
• why does it matter?
• A: because we can design split etc algorithms accordingly; also, do query-optimization

R-trees - performance analysis

• motivating question: on, e.g., split, should we try to minimize the area (volume)? the perimeter? the overlap? or a weighted combination? why?

R-trees - performance analysis

• How many disk accesses for range queries?
 – query distribution wrt location?
 – “ “ wrt size?

R-trees - performance analysis

• How many disk accesses for range queries?
 – query distribution wrt location? uniform; (biased)
 – “ “ wrt size? uniform
R-trees - performance analysis

• easier case: we know the positions of parent MBRs, eg:

R-trees - performance analysis

• How many times will P1 be retrieved (unif. queries)?

R-trees - performance analysis

• How many times will P1 be retrieved (unif. POINT queries)? A: x1*x2
R-trees - performance analysis

• How many times will P1 be retrieved (unif. queries of size q1xq2)?

P1

q2

x1

x2

P1

q2

x1

x2

1

0

1

0

q1

1

0

q1

1

0

P1

q2

x1

x2

P1

q2

x1

x2

1

0

1

0

q1

1

0

q1

1
R-trees - performance analysis

• How many times will P1 be retrieved (unif. queries of size q1xq2)? A: (x1+q1)*(x2+q2)

• Thus, given a tree with N nodes (i=1, ... N) we expect

\[\text{#DiskAccesses}(q1,q2) = \sum (x_{i,1} + q1) \cdot (x_{i,2} + q2) \]

\[= \sum (x_{i,1} \cdot x_{i,2}) + q2 \cdot \sum (x_{i,1}) + q1 \cdot \sum (x_{i,2}) + q1 \cdot q2 \cdot N \]

Observations:
• for point queries: only volume matters
• for horizontal-line queries: (q2=0): vertical length matters
• for large queries (q1, q2 >> 0): the count N matters
R-trees - performance analysis

Observations (cont’ed)
• overlap: does not seem to matter
• formula: easily extendible to n dimensions
• (for even more details: [Pagel +, PODS93], [Kamel+, CIKM93])

Berndt-Uwe Pagel

R-trees - performance analysis

Conclusions:
• splits should try to minimize area and perimeter
• ie., we want few, small, square-like parent MBRs
• rule of thumb: shoot for queries with q1=q2 = 0.1 (or =0.5 or so).

R-trees - performance analysis

• How many disk (=node) accesses we’ll need for
 – range
 – nn
 – spatial joins

R-trees - performance analysis

Range queries - how many disk accesses, if we just now that we have
- N points in n-d space?
A: ?
R-trees - performance analysis

Range queries - how many disk accesses, if we just now that we have - \(N \) points in \(n \)-d space?
A: can not tell! need to know distribution

R-trees - performance analysis

What are obvious and/or realistic distributions?
A: uniform
A: Gaussian / mixture of Gaussians
A: self-similar / fractal. Fractal dimension \(\sim \) intrinsic dimension

R-trees - performance analysis

Formulas for range queries and k-nn queries: use fractal dimension [Kamel+, PODS94], [Korn+ ICDE2000] [Kriegel+, PODS97]
Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)

R-trees - variations

Guttman’s R-trees sparked much follow-up work

- can we do better splits?
 - i.e, defer splits?

R-trees - variations

Guttman’s R-trees sparked much follow-up work

- can we do better splits?
 - what about static datasets (no ins/del/upd)?
 - what about other bounding shapes?

R-trees - variations

Popular

A: R*-trees [Beckmann+, SIGMOD90]

Norbert Beckmann
Hans Peter Kriegel
Ralf Schneider
Bernhard Seeger
R-trees - variations

A: R*-trees [Beckmann+, SIGMOD90]
• defer splits, by forced-reinsert, i.e.: instead of splitting, temporarily delete some entries, shrink overflowing MBR, and re-insert those entries
• Which ones to re-insert?
• How many?

R-trees - variations

A: R*-trees [Beckmann+, SIGMOD90]
• defer splits, by forced-reinsert, i.e.: instead of splitting, temporarily delete some entries, shrink overflowing MBR, and re-insert those entries
• Which ones to re-insert?
• How many? A: 30%

R-trees - variations

Q: Other ways to defer splits?

R-trees - variations

Q: Other ways to defer splits?
A: Push a few keys to the closest sibling node (closest = ??)
R-trees - variations

R*-trees: Also try to minimize area AND perimeter, in their split.
Performance: higher space utilization; faster than plain R-trees. One of the most successful R-tree variants.

R-trees - variations

Guttman’s R-trees sparked much follow-up work
• can we do better splits?
• what about static datasets (no ins/del/upd)?
 – Hilbert R-trees
• what about other bounding shapes?

R-trees - variations

• what about static datasets (no ins/del/upd)?
• Q: Best way to pack points?
• A1: plane-sweep
 great for queries on ‘x’;
terrible for ‘y’
R-trees - variations

• what about static datasets (no ins/del/upd)?
• Q: Best way to pack points?
• A1: plane-sweep
great for queries on ‘x’;
bad for ‘y’

R-trees - variations

• what about static datasets (no ins/del/upd)?
• Q: Best way to pack points?
• A1: plane-sweep
great for queries on ‘x’;
terrible for ‘y’
• Q: how to improve?

R-trees - variations

• A: plane-sweep on HILBERT curve!

R-trees - variations

• A: plane-sweep on HILBERT curve!
• (see [Kamel+, VLDB’94]
R-trees - variations

Guttman’s R-trees sparked much follow-up work
 • can we do better splits?
 • what about static datasets (no ins/del/upd)?
 – Hilbert R-trees - main idea
 – handling regions
 – performance/discusion
 • what about other bounding shapes?

R-trees - variations

• What if we have regions, instead of points?
 • I.e., how to impose a linear ordering (‘h-value’) on rectangles?

 A1: h-value of center
 A2: h-value of 4-d point (center, x-radius, y-radius)
 A3: ...

• What if we have regions, instead of points?
 • I.e., how to impose a linear ordering (‘h-value’) on rectangles?

 A1: h-value of center
 A2: h-value of 4-d point (center, x-radius, y-radius)
 A3: ...

R-trees - variations

- with h-values, we can have deferred splits, 2-to-3 splits (3-to-4, etc)
- experimentally: faster than R*-trees
 (reference: [Kamel Faloutsos vldb 94])

Gutman’s R-trees sparked much follow-up work
- can we do better splits?
- what about static datasets (no ins/del/upd)?
 what about other bounding shapes?

R-trees - variations

- what about other bounding shapes? (and why?)
- A1: arbitrary-orientation lines (cell-tree, [Guenther]
- A2: P-trees (polygon trees) (MB polygon: 0, 90, 45, 135 degree lines)

R-trees - variations

- A3: L-shapes; holes (hB-tree)
- A5: SR-trees [Katayama+, SIGMOD97] (used in Informedia)
R-trees - conclusions

• Popular method; like multi-d B-trees
• guaranteed utilization; fast search (low dim’s)
• Used in practice:
 – Oracle spatial (R-tree default; z-order, too)
 docs.oracle.com/html/A88805_01/sdo_intr.htm
 – IBM-DB2 spatial extender
 – Postgres: create index ... using [rtree | gist]
 – Sqlite3: www.sqlite.org/rtree.html
• R* variation is popular

References

• Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bernhard Seeger: The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles. ACM SIGMOD 1990: 322-331

References, cont’d

Other resources

- Code, papers, datasets etc:
 www.rtreeportal.org/
- Java applets and more info:
 donar.umiacs.umd.edu/quadtree/points/rtrees.html