Problem

Given a large collection of (multimedia) records, find similar/interesting things, ie:
- Allow fast, approximate queries, and
- Find rules/patterns

Outline

Goal: ‘Find similar / interesting things’
- Intro to DB
- Indexing - similarity search
- Data Mining

Reading Material

[Ramakrishnan & Gehrke, 3rd ed, ch. 10]
Indexing - Detailed outline

- primary key indexing
 - B-trees and variants
 - (static) hashing
 - extendible hashing
- secondary key indexing
- spatial access methods
- text
- ...

In even more detail:

- B – trees
 - B+ - trees, B*-trees
 - hashing

Primary key indexing

- find employee with ssn=123

B-trees

- the most successful family of index schemes (B-trees, B+ -trees, B* -trees)
- Can be used for primary/secondary, clustering/non-clustering index.
- balanced “n-way” search trees
Citation

• Received the *2001 SIGMOD innovations* award
• among the most cited db publications
 • www.informatik.uni-trier.de/~ley/db/about/top.html

B-trees

Eg., B-tree of order \(d = 1 \):

```
\begin{array}{c}
1 \quad 3 \\
6 \quad 9 \\
7 \quad 13
\end{array}
```

Properties

• “block aware” nodes: each node -> disk page
• \(O(\log(N)) \) for everything! (ins/del/search)
• typically, if \(n = 50 - 100 \), then 2 - 3 levels
• utilization >= 50%, guaranteed; on average 69%

B-tree properties:

• each node, in a B-tree of order \(d \):
 – Key order
 – at most \(n = 2d \) keys
 – at least \(d \) keys (except root – it may have just 1 key)
 – all leaves at the same level
 – if number of pointers is \(k \), then node has exactly \(k-1 \) keys
 – (leaves are empty)

```
\begin{array}{c}
\vdots \\
P_1 \quad v_1 \\
v_2 \quad \ldots \\
v_k \quad P_{n+1}
\end{array}
```
Queries

• Algo for exact match query? (eg., ssn=8?)

Queries

• Algo for exact match query? (eg., ssn=8?)
Queries

- Algo for exact match query? (eg., ssn=8?)

Queries

- what about range queries? (eg., 5<salary<8)
- Proximity/nearest neighbor searches? (eg., salary ~ 8)
B-trees: Insertion

- Insert in leaf; on overflow, push middle up (recursively)
- split: preserves B-tree properties

B-trees

Easy case: Tree T0; insert ‘8’

Hardest case: Tree T0; insert ‘2’
B-trees

Hardest case: Tree T0; insert ‘2’

push middle up

Final state

B-trees: Insertion

• Insert in leaf, on overflow, push middle up (recursively – 'propagate split’)
• split: preserves all B-tree properties (!!!)
• notice how it grows: height increases when root overflows & splits
• Automatic, incremental re-organization
Overview

- B – trees
 - Dfn, Search, insertion, deletion
- B+ - trees
- hashing

Deletion

Rough outline of algo:
- Delete key;
- on underflow, may need to merge

In practice, some implementors just allow underflows to happen…

B-trees – Deletion

Easiest case: Tree T0; delete ‘3’
B-trees – Deletion

Easiest case: Tree T_0; delete ‘3’

- **Case 1**: delete a key at a leaf – no underflow
- **Case 2**: delete non-leaf key – no underflow
- **Case 3**: delete leaf-key; underflow, and ‘rich sibling’
- **Case 4**: delete leaf-key; underflow, and ‘poor sibling’

Case 2: delete a key at a non-leaf – no underflow (eg., delete 6 from T_0)

Delete & promote, ie:
B-trees – Deletion

• Case 2: delete a key at a non-leaf – no underflow (eg., delete 6 from T0)

Q: How to promote?

A: pick the largest key from the left sub-tree (or the smallest from the right sub-tree)

Observation: every deletion eventually becomes a deletion of a leaf key
B-trees – Deletion

- Case 3: underflow & ‘rich sibling’ (eg., delete 7 from T0)

- ‘rich’ = can give a key, without underflowing
- ‘borrowing’ a key: THROUGH the PARENT!
B-trees – Deletion

• Case 3: underflow & ‘rich sibling’ (eg., delete 7 from T0)

Delete & borrow, ie:

\[\begin{array}{c}
& <6 & 6 & 9 & >9 \\
1 & 3 & 13 & & \\
\end{array} \]

FINAL TREE

\[\begin{array}{c}
& <3 & 3 & 9 & >9 \\
1 & 6 & 13 & & \\
\end{array} \]
B-trees – Deletion

- Case 1: delete a key at a leaf – no underflow
- Case 2: delete non-leaf key – no underflow
- Case 3: delete leaf-key; underflow, and ‘rich sibling’
- Case 4: delete leaf-key; underflow, and ‘poor sibling’

B-trees – Deletion

- Case 4: underflow & ‘poor sibling’ (eg., delete 13 from T0)

![Diagram](image_url)

A: merge w/ ‘poor sibling’

1. Insert: Insert a key at a leaf – no underflow.
2. Insert: Insert a key at a non-leaf – no underflow.
3. Insert: Insert a leaf key; underflow, and ‘rich sibling’.
4. Insert: Insert a leaf key; underflow, and ‘poor sibling’.

B-trees – Deletion

- Case 4: underflow & ‘poor sibling’ (eg., delete 13 from T0)

![Diagram](image_url)

A: merge w/ ‘poor sibling’
B-trees – Deletion

- Case 4: underflow & ‘poor sibling’ (e.g., delete 13 from T0)
 - Merge, by pulling a key from the parent
 - exact reversal from insertion: ‘split and push up’, vs. ‘merge and pull down’
 - I.e.:
B-trees – Deletion

- Case 4: underflow & ‘poor sibling’
- \(b \) pull key from parent, and merge
- Q: What if the parent underflows?
- A: repeat recursively

Overview

- B – trees
- B+ - trees, B*-trees
- hashing

B+ trees - Motivation

if we want to store the whole record with the key \(\rightarrow \) problems (what?)

Solution: B⁺ - trees

- They string all leaf nodes together
- AND
- replicate keys from non-leaf nodes, to make sure every key appears at the leaf level
Overview

- B – trees
- B+ – trees, B*-trees
- hashing

B*-trees

- splits drop util. to 50%, and maybe increase height
- How to avoid them?
B*-trees: deferred split!

- Instead of splitting, LEND keys to sibling! (through PARENT, of course!)

\[
\begin{align*}
&<6 \quad \quad \quad \quad \quad \quad \quad >6 \quad <9 \quad >9 \\
&1 \quad 3 \quad 6 \quad 9 \\
&1 \quad 3 \quad 6 \quad 9 \\
&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad 1 \quad 2 \\
&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad 1 \quad 2 \\
\end{align*}
\]

B*-trees: deferred split!

- Notice: shorter, more packed, faster tree
- It’s a rare case, where space utilization and speed improve together
- BUT: What if the sibling has no room for our ‘lending’?

\[
\begin{align*}
&<3 \quad >3 \quad <9 \quad >9 \\
&1 \quad 2 \quad 3 \quad 9 \\
&1 \quad 2 \quad 3 \quad 9 \\
&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad 1 \quad 2 \\
&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad 1 \quad 2 \\
\end{align*}
\]

B*-trees: deferred split!

- BUT: What if the sibling has no room for our ‘lending’?
- A: 2-to-3 split: get the keys from the sibling, pool them with ours (and a key from the parent), and split in 3.
- Details: too messy (and even worse for deletion)
Conclusions

- Main ideas: recursive; block-aware; on overflow -> split; **defer** splits
- All B-tree variants have excellent, $O(\log N)$ worst-case performance for ins/del/search
- B+ tree is the prevailing indexing method
- More details: [Knuth vol 3.] or [Ramakrishnan & Gehrke, 3rd ed, ch. 10]